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1. Topological models for intuitionistic analysis were first developed by
Scott [17,181 . Analogous models have been studied by Moschovakis [15] and van
Dalen [2] . Our interest dates from seminars on topoi and logic organized by Scott
1973-4 . The models we shall consider are over complete Heyting algebras (cHa)
Mostly they are spatial, i.e. the complete Heyting algebra is 0(T) , the open sets
of some topological space T . However, in section 4 , we make essential use of
non-spatial cHa . Topol provide a general framework for higher order models, and

lead to further generalizations which we do not exploit.

The general theory of sheaf models is described in Fourman and Scott [7] .
These models provide interpretations for intuitionistic type thecry with products,
(extensional) power sets and full comprehension as introduced in Fourman [5] . Of

course this gives function spaces as subtypes. Choice principles of the form
Vxdy o¢(x,y) = T fvx ¢(x,f(x))

are not part of this logiec. We say that a result is true constructively (or is
constructive) when it is provable in this logic. Since sheaves can be used to model
intuitionistic set theory (see Grayson [8] ) the reader can also consider the models
in that setting. Most of our results are themselves constructive and we have phrased

our definitions accordingly. The few exceptions are pointed out as they cccur.

Much of this paper concerns elementary analysis: that part of analysis expressed

in terms of function spaces without use of the power set. We observe that there are
two notions of Cauchy sequence -  with or without a given modulus of convergence
- which lead (respectively) to weak and strong notions of Cauchy completeness.

We take the weak notion as basic.

*¥  Research supported by NSF Grant MCS T7T7-02759



281

We have various independence results. The independence of a proposition
may be shown strongly by exhibiting a model where -—1¢ holds, E —=¢ , Or
weakly by exhibiting a model where ¢ fails to hold, K ¢ .

We now outline the paper. 1In section 2 we give a representafion for the models
of three basic spaces: R (Dedekind reals), :m:m (Baire space) and 2:N (Cantor
space). We introduce three principles to give these representations, and discuss
them. In the absence of choice from numbers to numbers, the Dedekind reals R may
differ from the Cauchy reals R® . Of course RCE R . We look at some subfields
of R and C (the complex field constructed from R ). There may be various
Cauchy complete proper subfields of R which are models for elementary analysis.
Much of the first half of section 3 ("models over spaces") will have been remarked
by anyone looking seriously at this subject, but it seems worthwhile to record it.
The remainder is devoted to a discussion of Bar Induction, models being used to
compare its various forms. Freyd first showed that non-spatial cHa give rise to
higher order properties which can not be obtained with standard spatial models. 1In
the final section we use models over non-spatial cHa to show the independence of
the compactness of 2tIN and the local compactness of R . We believe such models

will prove useful in other ways.

Most of our results were obtained in 1973-5 when we were both in Oxford. The
last section is more recent. Together we have benefited from discussions with
almost every worker in the field. Our main debt is to Dana Scott; his influence
pervades the paper. Robin Grayson (our constructive conscience) provided many

helpful comments on an earlier draft. A postscript has been added in proof.

2. We now look at some basic examples of higher-order constructs and their
sheaf models. Firstly we recall a few fundamental facts. Peano's axioms are
categorical by the usual proof. Any sheaf model for them is (isomorphic to) the
simple sheaf IN . Internalizing the usual construction of the rationals with their
usual structure (0,1,+,%,<) gives the simple sheaf Q (henceforth we omit mention

of impertinent isomorphisms). In logical terms, these constructions are "absolute".

Let A be a simple sheaf. For any sheaf B , a section of Bé is just an

A-indexed family of sections of B . The internally constructed sheaf &<i§ of
finite sequences of elements of A is the simple sheaf (A<]N)~ . A global

section X of P(A) is just a family of truth values {[ aeX I | acA} c @
Finally

L Vaed ¢ T A{l5a~>¢ I | aca}l

and (2.1)

L 9ach ¢ T V{TEané I | ach) .

Il
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These facts enable us to develop an adequate picture of the sheaf models for
the Dedekind reals, Baire space and Cantor space. We make one more remark for later
use.

2.2 DEFINITION Let @ be a cHa. We say Vel is connected iff

Vww (I[WAW' =1 and WVW'2V] + W=V or W'2V ) .

Furthermore, @ 1is locally connected iff for every UeQ

U = V{VSUIV is connected } .

2.3 LEMMA If A and B are simple sheaves over a locally connected cHa § then

A 5
B~ is the simple sheaf (BA)N

Proof. Any section of B over a comnected open is constant as the equality on B

is decidable., Thus a section of Qé is locally a function from A to B .

Dedekind reals R . Starting from § we construct the subobject R ¢ P(Q) x P(Q)

consisting of those pairs <U,L> such that

1) dgq,reQ ( qeU A rel ) inhabited

2) ¥V p -1( peU A pel ) disjoint

3) Vp (pel +> T qel. q>p ) open lower cut (2.4)
L) vp ( peU +» T qeU q<p ) open upper cut

5) ¥p,a ( p>q -+ peU v gel ) near together

This definition was first introduced in the context of topoi by Tierney who
showed that in a spatial topos 5h(X) we have a representation of R as the
sheaf of (germs of) continuous real-valued functions on X . 1In the presence of
choice from numbers to numbers, it is easily seen to be equivalent to the definition
in terms of Cauchy sequences (see Bishop [1] ). We shall see that this equivalence

does not hold in general.

The conditions (2.4) may be translated using (2.1) into conditions on the

families of truth values {[[ qeUT,[ qeL T | qeQ} . This translation gives
1) V{LqUDALrelT | q,re@} = T
2) CpeUDNALpelD = 1 for peQ
3) TpelT = V {[qelD | a>p} for peQ (2.5)
4) CpeUT = V{DTqUT | qg<p} for peq

5) CpeUNl vOgell = T for q<peQ
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Tierney's representation may be constructivised by showing that given r = <U,L>
a global section of R in Sh(X) and +teX the pair E, = <Ut,Lt> is a Dedekind
real, where

B, = {aeQ | te L geU D} 3 L, = {qeQ@ | tel qelL I}

and that the mapping t - r, is continuous [T7] .

We dualise this construction and generalise to sheaves over an arbitrary cHa.
In Sh(R) a section of R over peR will turn out to be an AY map
r¥ : 0(R)=—> Q@ }p . To show this we shall have to appeal to the local compactness

of R . (Our definition is not equivalent to the classical one!)

2.6 DEFINITION A cHa Q is locally compact iff for every UeQ

U = V {vsU | for every cover I of U there is a finite subset of AU

covering V }
Classically, 0(R) is locally compact.
We now consider a global section r = <U,L> of R . For I[p,q) a rational
open let
Crelp,g) 1 = [Lpel A geUT ;
by (3) and (L) of (2.5) we have

(psa) < (p'ya'") = Mrelq,p) Dslre(p',g") I

Defining r* : 0(R)—s Q@ by

r*(V) = V{[Ire(p,a)T | p,aeQ and (p,a)cV} (2.7)
thus gives a monotone map such that r*(p,q) = [ re(p,q)I . Furthermore
Cpel ] = r*(p,») and [ geUl = r*(-=,q) (by (1) of (2.5) ) so r 1is

determined by r¥ . ‘

2.8 LEMMA r* : 0(R)—>Q is an AV map and every such map arises uniquely

in this way,

Proof. To show r* is an AV map it suffices to show that it preserves finite
A and existing V among rational open intervals (and then appeal to 2.7 ).
Finite meets follow easily from 2.5 . The empty meet T 1is preserved by (1) .
The intersection of (a,b) and (c,d) is either empty in which case (2) applies,
or is one of (e,b), (c,d), (a,b) or (a,d) which are treated severally using (3)
and (L) .

Joins require more argument. Starting with the simplest non-trivial join of

all we show that if (a,d) = (a,b) u {c,d) then

L acl A deUT = [ aeL A beUTIVI cel, A deUT .
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Monotonicity gives us an inclusion > . Furthermore since b>c we have from (5)

{(of 2.% ) that
= ael A deU + ( ael A beU ) v ( cel A ael )

by a short and straightforward logical deduction. Translating gives the inclusion
< . A simple induction now shows that finite joins are preserved. We leave the

reader to do this (using the decidability of = on Q ).

Bo far our argument has been wholly constructive. We now use compactness to
reduce arbitrary joins to finite ones: Suppose that WV { (pi’qi) | ieI} 2 (p,q)

we must show that
V {Cre (p;>a) D | ieT} 2 Tre(p,g) 1

Happily, Dre(p,q) T = V {Lre(a,b)T | p<a and b<qg} (by (3) ana (L)
of 2.4 ). Thus it suffices to show that for a>p and b<g that [T re(a,b) T
< V{lre {pi,qi) I | ieI} . But by compactness we have a finite FcI such

that (a,b) ¢ U { (pi,qi) | ieF}  which reduces us to the case of finite joins.
Given ¢ : 0(R)—> @ an AV map define 2w <U¢,L¢> by
[Eq€U¢:ﬂ = ¢(-w,q) and [[qeL¢J] = ¢(q,=)
We assert that rqb is & Dedekind real since the conditions (2.5) follow
immediately from corresponding relations between rational intervals which are

preserved by the AV map ¢ . Since

[[r¢e(P=Q):D = ¢(p,aq)

we are done.

2.9 THEOREM Sections of R over WeQ correspond exactly to AY maps
0(R)— QMW . Restrictions (for V<W ) are given by composing with the inter-

section map QMW—sq }V ,

Proof. The construction of R is local (i.e. commutes with restrictions) as it
is carried out in the internal logic. A section of R over W is just a global
section of R }W and hence by the lemma an AV map O(R)—Q MW . Finally,

since

LqeL PWID AW = [qel T A W (and similarly for U )

we see that

Cre(p,a) DAW = TrpWel(p,g) D AW

We call R the sheaf of AV maps O(R)— @ .
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Baire space IL\I]N . The internal Baire space is constructed as the function space

ININ . Our representation here depends on the principle of Bar Induction. Consider
the tree qu of finite sequences. Each element of IN]N determines a branch of this
tree. Horticulturally, Bar Induction tells us that if we prune each branch to a finite

node and continually prune any node from which no twigs appear, then we destroy our

tree. More formally:

2.10 Bar Induction with monotonicity condition (BI) states: "If B is a predicate

on T satisfying the hypotheses

. ™ —

i) VaeN ZnelN Blaln)) B is a bar
ii) Vue INdN Vke N B(u) » B{u*k) B is monotonic
iii) Vue IN<JN ( YkeN B{(u*k) > B(u)) B is inductive

then B(<>) , the empty sequence <> satisfies B ".

Here B describes the nodes pruned, a{n) = <a(0),...,a{n-1)> and u¥k =

<u(0),...,u(lm-1),k> for u of length m .

Classically (BI) follows easily from dependent choices (show the contraposit-—
ive), and the monotonieity condition plays no role. We discuss other forms of Bar
Induction at the end of this section, and models in which they hold and fail in

section 3 .

Now let o be a global section of ]N]N in 8h(Q) . Let ]NIN be topologized

as usual by the basic opens

V(u) = {Be]N]N | B extends ul} for ueINqN ¢
Define alV(u)l = Tof0) =u(0) A ... Aaln-1) =uln-1)0 = Toev(u) D ,
where u = <u(0), ... ,u(n-1)> e]N<IN .

2.11 LEMMA o extends to a AV map

and every such map arises uniquely in this way.

Prcof. To show that o extends uniquely to an AV  map it suffices to show that
finite intersections and existing unions of basic opens are preserved by o . Finite

intersections are easy. The joins require some work:
<IN
Suppose that for a , bi e ¥ we have
(1) v(a) ¢ ULv(p,) | deI} .
We must show that

(i1) Ceev@ D < VIagev(nh)T
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We define a predicate B by
B{u) iff [Maev(u) I < \/[[gev(bi)]]

B is monotore and by (i) B bars a . By distributivity
Caev(u) D = V {Laev(u*k) T | keN} s

so that B is inductive. Hence applying (BI) below a , we conclude B(a) , which

is  (ii)

i
)

Given an AV map p : 0(I —>{ , the corresponding global section a¢

of W& is determined by setting

[[a¢(n)=m]] = ¢({a | aln) =m}) .

This determines a functional relation on INxIN and hence a global section of INJN.

It is routine to check that for ue]N]N

3

[[a¢eV(u)]] = ¢(v(u)) ,

80 our circle is complete.
. ; : i) : .
Given the lemma which represents global sections of W we localize just

as we did for R (Thecrem 2.9) to get the general representation:

2.12 THEOREM JNJN is represented by the sheaf of AY maps

o(w™)—s g .
w ; . Iy
Cantor space 2 . Here the representation works just as for IN . However,

in place of Bar Induction we can use the (weaker) compactness of ol or Fan

Theorem (FT) . This states that for a predicate B on g+l we have

(vee2™( @n) 8@@) » (ak ) vee2 ) gnsck ) B(a(a)) . (2.13)

We leave the reader to apply FT and obtain

2.14 THEOREM 2 4o represented by the sheaf of AV maps

REMARKS 1) 1In the case where O is spatial (i.e. 0 = 0(T) for some T ),

the representations above take on a familiar form. The space X ( = Dedekind
reals, Baire space or Cantor space) is represented by the sheaf Xp = C(x,T)
of continuous X-valued functions on T . Equivalently XT is represented as

the sheaf of continuous sections of the projection map XxT —>T so we have
special cases of the general representation of a topological space in Sh(T)
described in Fourman and Scott [7] . The internal topology corresponding to this
representation is in each case just the usual topology (based on finite positive

information). The general theory tells us that internal continuous maps of sober
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spaces XT———¥ YT are represented by commuting triangles

Such a triangle is equivalent to a continuous map XxT—>Y . This representation
of spaces over T and continuous maps between them extends to the case when X and

Y are objects in a (cartesian closed) category of filter spaces (Hyland [11] ).

2) In order to give a good representation of our spaces, we have introduced
three important (and classically valid) principles: the local compactness of R ,
bar induction and the fan theorem. In general, it is possible to give similar

representations using cHa of "formal spaces" F(R) , F(:m:m) s F{2:w) in place of
actual opens O0(R), etc. In fact each of our principles is equivalent to the

isomorphism of the corresponding formal and actual opens (Fourman [6] ).
Classically Bar Induction holds in the form
(BI), (va)(&@n) claln)) A ( Vu) [( vk ) clu*k) » clu)]l + c(<>)

(i.e. without the monotonicity condition). In intuitionism, bar induction is

considered in forms (BI)M and (BI)D , involving two predicates P and @ .

(BI) [{va)an) Pla(n)) A ( vu )l vk ) {Plu) + P(u¥k) )

M
Alvu) P » Q) ) A (vu )( ( vk ) Qlu*k) > Qlu))] +al< >) ,

is equivalent to Bar Induction with Monotonicity (BI) , as introduced above (2.10).

(Let B(u) hold iff Vwv>ou Q(v) .) In the related Decidable Bar Induction

(BI), [(( Ve )(&@n)Plal(n)) A ( Vu)( P(u) v P(u) ) A (¥Vu)(Pu)~+ Qlu))
ACTYu ) (¥Vx) qlux) » Qlu) )1 » Ql<>) ,

the use of two predicates is essential. Intuitionists also consider extensions of

these prineiples ( BI(A) etc.) in which ﬁN:m , ﬁNﬂN are replaced by A:m ,

<N . .
A for some inhabited A c I .

Constructively (BI)C implies (BI) which implies (BI)D ; furthermore
(BI)C is equivalent to (BI) together with the logical principle

(#) ( Vkemw) [A v B(k)] > AV ( VkelN) B(k)

To see that (BI) + (¥} > (BI)C , use (¥) to show that the obvious monotone
extension of C is inductive. To see that (BI)C + (%) , suppose
¥n (A(n) v B) define C by

c(u) 4iff u=<> and BV Y¥n Aln) or u= <n> and A(n)

Over most decent topological spaces, (*) and hence (BI)C fails. However,
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Dummett has shown that Kripke models with constant domain are characteristic for
(¥} (ef. [3]1 ) ; so by Theorem 3.k , (BI)C holds in (standard) Kripke models.
In section 3 , we distinguish between (BI) and (BI)D , and also show that extended

principles of Bar Induction may fail in sheaf models where the other principles hold.

Bar Induction and the Fan Theorem are familiar principles of intuitionistic
analysis. Clearly (BI) implies F.T. and (BI}D implies a decidable version of
F.T. constructively. However, these principles do not have, in the context of
sheaves, the significance attached to them in traditional intuitionistic analysis.
For a useful analysis of Brouwer's view of bar induction the reader may consult
Dummett [3] . Brouwer's view, which rests on the notion of a fully analysed
(potentially infinite) proof, gives no argument for the fan theorem which does not
also justify bar induction. We shall easily find cases where bar induction fails
but the fan theorem still holds. In view of this it seems worth making some remarks
on the significance of our three principles for the kind of mathematics which can

be done in the logic of sheaves.

The compactness of the unit interval implies constructively that continuous real
valued Tunctions are uniformly continuous and have least upper bounds on bounded
closed intervals. Thus Scott's transition from continuity to uniform continuity for
Sh(T) mentioned above is a direct consequence of the fact that, as we shall show,
in Sh(T) the unit interval is compact. The fan theorem which states the compact-
ness of 2:m evidently has similar consequences for Cantor space, and holds in
sheaves over any topological space. Surprisingly, it also entails the local compact—
ness of the Dedekind reals (Grayson [9] ). The significance of bar induction is
probably less well known. Its most immediate application is that from it one can
prove constructively general forms of Souslin's Theorem that any two disjoint
analytic sets may be separated by a Borel set. (Logicians may already be familiar
with its use with the 2nd recursion theorem to show that there is a partial recursive
functional giving a code for a separating Borel set in terms of codes for two anal-
ytic sets.)

3. MODELS OVER SPACES (Properties of elementary analysis).

If T is a topological space, the standard model of R over 0(T) is R

T 3
the sheaf of continuous real-valued functions on T . Tt has continuous maps

a : U—>R as sections over Ue0(T) with equality given by

La=b0 = In {teFanEb | alt) = b(t)}

.
?

operations are defined pointwise. This representation is due to Tierney. The

standard model of C over O0(T) arises similarly; it is Cp » the sheaf of
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continuous complex—valued functions on T .

That the standard model of R 1is (even strongly) Cauchy complete is immediate
as this fact is easily proved in higher-order logic for which our interpretations
are sound (Fourman and Scott [7] ). However it is instructive to see that here
weak Cauchy.completeness corresponds to the classical fact that a uniform limit
of continuous functions is continuous: & section s of RN over Ue0(T) is
(weak) Cauchy iff +the corresponding sequence <s(n) [ nell> of continuous funct-

ions converges in the sense that for m>n and teU , we have
[s(m)(t) - s(n)(t)] < 1/n .
(The weak Cauchy condition is strictly local in the sense of Hyland [9] .)

Scott's model of the intuitionistic continuum (see [17] ) is defined as an
0(T)-set where T 1is the Baire space :m:m . It is equivalent to the standard model
over :m:m as every section of RT is locally the restriction of a global section,

i.e. global sections generate.

If we take Baire space as our underlying space T , the countable axiom of

choice:
ACN VnelN & yeA ¢(n,y) » I felN VnelN ¢(n,f(n))

holds: for in 0 IIN]N) any countable family {Ui | ie W} of opens has a
refinement by mutually disjoint clopen sets -[Wi | 1em} with U Ui = U Wi 3
Since ACN F R° =R (i.e. the Cauchy and Dedekind reals are the same) over Baire
space both the Dedekind and the Cauchy reals are represented as the sheaf of germs
of continuous real-valued functions. However, if we take the real numbers R as
our underlying space ACN fails. It suffices to show that over 0(R) we have

R® 2 R . As the sections of Q in any spatial model are locally constant rational
functions, a {Cauchy) sequence s : N—> Q defined over a connected open Ue0(R)
corresponds by lemma 2.3 +o0 a sequence of constant rational functions

<s(n) | neN>. No such sequence can converge to the generic real 1 : U—>R

/ 1
/

4
A

given by 1(t) =1t .

Ue 0(R)

This shows that Sh(R) = 11¢R® . Tt follows that Sh(R) B =1(R® =R ),

so that Sh(r) & —1{ACN)
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It is natural to ask whether R° = R - ACN . That this is not so is shown
by Cohen's model for -1 AC , since classically we do not need ACN +to prove
R® = R . An intuitionistic counterexample is even easier to construct. Topologise

T Ru {*} by letting UcT be open iff UnR is open in the usual topology
and V reR (reU -+ *eU) .

I

3.1 THEOREM Sh(T) ¥ R = R > ACN .

Proof. Since any continuous function from Ue0O(T) to R is constant
5n(T) E Rc = R . It is easy to see there is no choice function defined on any

neighbourhood of teR for the family of subgets of §Q given by
T ek I = {r | lg-r] <1/n} u (%

so Sh(T) B ACN . We shall use this idea of adding a generic woint again in

section b .

We now look at some familiar properties of R and C which may fall in spatial
models. In the standard model of C over the space T = C , the complex plane,
we have a generic complex number, again the identity function, 1 . We use this
generic number to construct a polynomial which fails to have a root:
B oo x (p(x) = 0) . The polynomial we consider is x° — 1 . Its set of roots
may be pictured as the (sheaf of sections of) the Riemann surface of the square

root function over C(

Over any circle about the origin, this looks like the double covering of the circle
which has no global secticns. Since any neighbourhood of the origin contains some

such circle, O0¢[I T x (p(x)=0)T . Translating this example to aeC we see
that aédll Ex ( p(x)+a = 0 )1 whence the result

F 71 C is algebraically closed.
Similar considerations show that

040l Hr,0eR 1 = reia 1

whence F = vzar,s Zz = re P

We use the same base space T » Now considered as BRxR to show that R need
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not be real closed. We have two generic reals 1, , 1, 0 RxR—> R , the project-

1.
ions. The monic polynomial p(x) = x3 + a3+ oa

] 5 has odd degree but fails to have

a root at the origin:.
(0,0) ¢ T(ax ) plx)= 0)T

We leave the reader to construct a proof of this from the picture below of the set

of roots of p .

s

If we take ]N]N as our base space as we did earlier we find that not only does

ACN hold, but also dependent choices
DC ¥V xeA 5 yeA ¢{x,y) + VaeA 3 feN->A [f(0) =a A ¥n ¢(f(n),f(n+1))] ,

is satisfied. The proof is similar to that for ACN . Using DC one can prove
the algebraic closure of C and the real closure of R . (The algebraic closure
of C 1is treated in Bishop [1] where the real closure of R is an exercise:

Dana Scott has shown us an elegant proof of the latter.) Thus over :m:w ; & 98

algebraically closed and R is real closed.

The failure in the standard models over T =C = R2 of the algebraic closure
of C , the representation of complex numbers in polar coordinates and the real
closure of R , depended on a lack of continuity on parameters, This is part of a
general phenomenon. In Hyland [11] , a notion of local continuity in parameters
is described, and a class of formulae is given for which this notion is equivalent
to truth in spatial models. In essence the class of formulae allows arbitrary
quantification on a coherent sequent. Thus as alluded to in [11]1 , in Sh(T) ,

C is separably closed and R is separably real closed (in the sense of Wraith
[19] and Kock [14%] respectively).

It seems worth clearing up a possible confusion at this point. When intuition-
igsts have talked about continuity in parameters, they have been referring to global

continuity. A recurring example in their discussicn of choice principles and

extensionality is the cubic equation

x3 -3 +p=20

with single real parameter p . There is no global solution continucus in the
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barameter p , but locally in p there is always a solution continuous in the
parameter. This contrasts with the fact that if one regards p as varying over
real number generators ( : weak Cauchy sequences of rationals) then there is a
global continuity (of & real number generator solution) in parameters. (In fact

any monie polynomial of odd degree has a solution with this kind of continuity in
barameters, as follows by [11] from the real closure of the reals in Bishop's
Constructive Mathematies [1] .) However, the logic of sheaves calls for finer
consideraticns. Local continuity in parameters is enough to show the truth in spat—
ial models of a very large class of formulae (Hyland [11] ). The problem for us
arises when a polynomial has only repeated roots. Then it is not possible to find

locally a solution continuous in the coefficients of the polynomial.

We now show that the unit interval, I and Cantor space 2:m7 are compact
in Sh(T) for any topological space T . Evidently T is represented by the
projection TxI—=T . As described in Fourman and Scott [7T] , a covering of IT
corresponds to a covering of TxI . In each fibre {t}xI , the covering is finite,
and as %he projections are closed, this covering covers a uniform neighbourhood of
the fibre, so te[ T finite subcover ] . Thus Sh(T) E T is compact
Replacing I by g B in the above we see that Sh(T)E p I is compact ,

i.e. 8h(T) E Fan theorem .
. ; : N .
3.2 THECREM In spatial topoi, R 1is locally compact and 2 1s compact.

In fact the compactness of I and EJN in spatial models follows from
general considerations of continuity in parameters, but we do not elaborate on this

here.

Before considering how suitable choice of base space affects our models, we look
at substructures of the standard models over more familiar spaces. We recall the
remarkable fact (discovered by Scott) that there are topological models for Brouwer's
theorem: '"all functions from R to R are uniformly continuous on closed intervals".

In fact this will hold in most of the topological models which we shall consider.

3.3 THEOREM (Hyland [12] ). Suppose T is (locally) either first countable,
zero-dimensional, Hausdorff, with no isolated points, or of the form RxS for
some first countable and normal, topological space S , then Sh(T) E Brouwer's

theorem.

It is instructive to note however that Brouwer's theorem is not in general
inherited by subspaces of R . Taking R as base space (i.e. O0(R) as cHa)
let Rdiff be the sheaf of € functions on R . The map D teking a €
function & : U—R to its derivative is certainly a sheaf map but is not

continuous:
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"
A

1.
functions which fail to be apart at a point t¢éTa=bJ (i.e. alt) = b(t) )

may have wildly different derivatives at that point.

From the continuity theorem Scott derived the fact that " R is unzerlegbar "

holds in his model. We now see that Rdiff is unzerlegbar. Let A,B be two

inhabited subsheaves of Rdiff such that ¥ V¥ xeRdiff

every point teR +there is an open interval U about t and sections a,b of

Rdiff over U such that [ aeAD =L beBID = U . Let V,W be non-empty open

subintervals of U with disjoint closures construct a C  function f on U

such that f PV =alV and flW=Db}!W. Now Vel feAD and WeclfeBJ :

( xeA Vv xeB ) then for

AN {
7 1)

v W

Since [ feA v feBJl = U and U is connected we see that [[ feA A feB T = @ .

Thus there is no partition of R into disjoint inhabited subsets.

aiff

The sheaf Rdiff of €° functions is internally a subfield of the standard
R but is not a model for analysis as it fails to be Cauchy complete.

As a final example in this section we consider the sheaf H of analytic funct~
ions on the base space C . The fact that H gives a model for complex analysis
was first noticed and applied by Rousseau [16] . That H is a subfield of C is
immediate. That H is Cauchy complete follows from Weierstrass' theorem. As a
model for analysis, H has various remarkable properties which we mention briefly.
Firstly not all functions are continuous; again this follows from the fact that the
map D taking a : U—=C to a' : U—C 1is a sheaf map. In this case there
is more to be said. Weierstrass tells us that the derivatives of a uniform limit

of analytic functions tend uniformly to the derivative of their limit:
if £ =+ f then f ' =+ ! g
n n

Thus internally the map D is Cauchy continuous:

if a =+ a then D(a ) =+ D(a) .
n n

We repeat that D 1s not topologically continuous - it does not reflect apartness.
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Further not every function on H is Cauchy continuous. This follows from the fact

that the equality on H 1is decidable,
Flvxy x=yvaxs=y)

(For if two analytic functions defined on an connected open U agree on some non-

empty open subset of U then they agree on U .)

In the remainder of this section we consider bar induction in our models. We

are mainly concerned with (BI) and (BI)D .

)

First we give some conditions which ensure that (BI) (and hence (BI)D

holds in sheaves over a space.
3.4 THEOREM Let T be locally countably compact. Then (BI) holds in Sh(T) .

Proof. We may restrict ourselves to the case when the value of the hypotheses of
(BI) is T and attempt to show T B(< >)T =T . Take any aeINJN ; regarding

o as the corresponding element in Sh(T) , we have
VA{ICBLm)D | neN} = 1 .

So by the local countable compactness of T s we have a cover of T by Vi such

that for each Vi we have

V {CBa®m)D | nsn} =V, .

i
(These V. are independent of o , coming from definition 2.6 .) Fix Vi . By

monctonicity of B ,
T Ba(m)) T 2 v, .

Thus the predicate [T B(u) I = Vi bars Baire space. It is clearly monotonic and
inductive. So applying (BI) (in the real world) we obtain
CB(<>)T = V.o Since the V. cover T , this completes the proof.

Apart from the assumption of (BI)} , the above proof is completely constructive.

In the proof of the next theorem we will use a natural principle of double bar

induction implied by (BI) :

Buppose B(u,v) bars any pair of sequences of natural numbers, and B(u,v) is
both monotonic and inductive in both its arguments (keeping the other fixed), then
B(< >,< >) holds.

3.5 THEOREM Let T be (locally) a Lusin space {a bijective image of a closed
subspace of Baire space); then (BI) holds in Sh(T) .

Proof.  Without loss of significant generality we assume that the value of the

hypotheses of (BI) is T and that f :_m:m + T is a bijective continuous map.

We claim that
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Va,8 In,m [ £~H[I B{al(n)) J) 2 v(g(m))I ,

m . i .
where V(u) ¢ is the clopen set of functions extending the sequence u , and

o 1is regarded both as an element of EIEJ and as a constant element of iN:N 5

T
while B is in £ H(T)

Pick o and B . Then for some n ,

£(g) e L B(a(n)) D ,

so that for some m ,
gev(g(m)) ¢ £~1(L B(a(n)) I) .

This proves the claim. " Now it is clear that the predicate of u and v ,
71T B(w) T) 2 v(v) ,

satisfies the hypotheses of the principle of double bar induction, so that we can
conclude that f (I B(< ») 1) 2 V(< ») = Y ,i.e. TB(<>)T = T. This

completes the proof.

The proof above is a trivial modification of Robin Grayson's constructive proof
that (BI) holds over Baire space. (The simplification at the beginning of our
proof is non-constructive, but plays an inessential role, and the proof is essent-
ially constructive apart from the assumption of (BI).) Earlier there had been
van Dalen's non-constructive proof in [2] , and a non-constructive proof for
complete metric spaces in unpublished notes of Hyland. This latter result is covered

by our next theorem.
3.6 THEOREM Let T be (locally homeomorphic to) a complete metric space;

then (BI) holds in Sh(T) .

Proof. Essentially we can follow the proof of Theorem 3.5 , using the complete
A-branching tree.
Tt is doubtful whether there is any useful constructive version of Theorem 3.6.

We next give a condition which ensures that (BI)D holds in Sh(T) .
3.7 THEOREM Let T ©be a locally connected space, then (BI)D holds in Sh(T) .

Proof. We may simplify matters by assuming that the value of the hypotheses of
(BI)D is T and that T is connected. The internal decidability of the barring
predicate P ensures that the predicate

CP(w)D = T,

bars Baire space externally. It implies the predicate
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C(w)d = T,

which is inductive. So applying (BI)D externally we find that [ Q(< >) T = 7T .
This completes the proof.

Apart from the assumption of (BI) externally, this proof is constructive.

D
It seems worth remarking that theorems 3.4 and 3.7 above are not essentially

spatial. The conditions can be formulated and the results proved for cHa.

We now discuss some particular examples of the failure of bar induction.

3.8 THEOREM 1Let Q be the rationals with the usual topology. Then
sh(Q) E -1 (BI)

Proof. With any sequence u = Uy ... U 4> 5 We associate rationals [u] and

(ul' by the continued fraction expansions
[ul = [uO . e 1

Cul?

[w +1, ... ,u
(8]

where [ ,.., ] is the usual notation for continued fractions ﬁsee e.g. Hardy and
Wright [1C] ). Define B by

CB(<>)1 @

CB(uw)D = {qeQ | ¢ is outside the closed interval between [u] and [u]'}.

(Constructively we would write the above definition in a positive way.) Tt is
easy to check that B bars :me is inductive and monotonic in Sh(Q) . However,
CB(<>T = ¢ . Hence sSn(q) E = (BI) .

In fact it is fairly easy to see that Sh(Q) ¥ —1(BI)_ , but rather than give

D 3
the details, we give another model, (independently discovered by Grayson) in which

ﬁ(BI)D holds for a choice of P equal to Q .
3.8 THEOREM There is a space T such that sh(T) &= ~1(BI)D .

Prcof. Let T %be the collection ]fQN of finite sequences of natural numbers

with the following topology:
0cT is open iff whenever ueQ then Hm Vko>m u*k e 0
We define a predicate B by,
CBw)I = ™{v | v>oul} .

It is easy to check that in Sh(T)
bar. However, DI B(u)I = ¢ .

» B 1is a decidable monotonic and inductive
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There are a number of models readily available in which (BI)D holds but
(BI) fails. We could modify @ either by taking its cone or by connecting by
adding a generic point * (as we did in 3.1 ). However, for the strongest possible
result, we take as our locally connected topological space T , the subspace of
eventually zero points in R (with the product topology). By Theorem 3.7
(BI), holds over T .

3.9 THEOREM Sh(T) ¥ =BI

Proof. For u=(u, ... ,u . )e N<N define
o n-1
CB(w)D = {ol W ali)<1/(u;+1)} (so that TB(<>)T = ¢ ). Then

B is a monotocne inductive bar in Sh{(T) .

Finally we note that principles of extended bar induction generally fail in
ocur sheaf models. For example, take T = R , enumerate Q as {qi | ieN}

Let AcN in Sh(T) be defined by
Lneall = R\{qi | i<n} .

(Set theoretically, A can be viewed as an (unruly) ordinal.)

3.10 THECREM Sh(R) E -1BI(A)

; <N
Proof. Define B on A by

CB(uw)T = I 1i,j<lengthfu) ( i=j and wu(i) =u(j) ) I
B 1is obviously monotone. To see 1t bars A]N observe that
F v aeAm dmell o en™ . That B is inductive follows from the fact that

E ¥ n ——1neh .

Since I B(< > = @ , we are done.

L., KILLING POINTS

As we have seen (3.2) , over spaces 2l compact and R locally compact.
To find models where these principles fail we manufacture pointless cHa by taking
AV  gquotients of spatial cHa. Pointless cHa are discussed in detail (under another
name) by Isbell [13] . The process of taking quotients of cHa 1is well known

(see e.g. Fourman and Scott [7] ).

4.1 DEFINITION Let T %be a T, space, the cHa K(T) of coperfect opens of T
is the least AV quotient of 0(T) identifying T and T\{t} for each +teT .
We may identify K(T) as the lattice of fixed points of F : 0(T)—0(T) where
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F(W) = U{{Uel(T) | 3t (W{t})cU} .

As a first example of the strange things which go on over pointless cHa , let
I ©be the unit interval and consider the simple sheaf R with fibre R over K(I)
The subsheaf U of R defined by QL reUIl = {t | r>t} for reR is open

in the internal interval topology on R as is L given by [ relL T

n

{t | r<t} . It is easy to see that
F VreR = ( reU A relL )
Furthermore
F VreR ( reU v rel)

This is more surprising but simple to verify: given reR we have

CreUvrelDl = [MreUD v TLreL Tl = T . Taking the union of the two truth
values gives the open I\ {r} . The least fixed point of F above this is I
(= 7 in X(I) ). Since R is a simple sheaf F VreR (reU v rel)

Thus we have shown that R is not connected. We could use a similar argument
te show that I is not compact. By a slight refinement we instead show that the
unit interval of the Dedekind reals may fail to be compact. Let £ be the set of
those U c Iu{¥} such that UnIeK(I) and Vr (reU = *cU) . Evidently 0 is

& complete Heyting algebra:
T i

0(1) Q

all we have done is to add a generic point to K(I)
L,2 LEMMA Over Q the Dedekind reals R are given by the simple sheaf R .

Proof. We show that every AV map, a

]

factors uniquely through (1) as shown. That is, AV maps O0{(R)—0 corres-
pond to points of O0(R) . Since * is a point of Q we have a point a(*) of

0(R) (by composition) such that
VU ( ®*eca(U) ~a(*)eU ) .

Now if a(*)eU then a(UuR\{a(*)}) =T whence a(U) =T . So
alU) =17 «— *ea(l) «— a(*)eU

and we have our factorization.
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4.3 THEOREM TIn the sheaf model over § the Dedekind reals fail to be locally
compact. W R is locally compact.

Proof. As R 1is a simple sheaf life is easy. TLet
TreaA, T = (v (t] |r-tl>1/n} .
Certainly this gives an internal family of opens.

E vrdn reAn

as, for reR , we have [ reAnII = {¥*¥} yu I\{r} which is not a fixed point,
Can rc—:AnII = VI reAn]] = T . On the other hand, given any k

[V fe[0,1] @ n<k reA T = {*}
as

réll @ n<k reAn}} .

We note that in the asbove model R has decidable equality. Because § has
a generic point, the basic mathematical properties normally deduced from compactness
hold. 1In fact, as far as elementary analysis goes, R looks completely classical

in this model.

For our next model we use § = K(IxI) where I is the unit interval. Basic
opens of IxI form a basis for @ . We leave the reader to check that Q is

locally connected.

4.4 THEOREM 1In the model over § , Cantor space is not compact.

E v vB (vadn Bla(n)) - Tk va In<k Blaln)) .

Proof. It suffices for each teI to find Bt such that

F Vadn Bt(o:(n)) s

but

IZkVoednsk Bt(a(_n))]]ﬂlx{t} = @

Map 2]N continuously to the line Ix{t} in IxI ©by binary "decimals". Identify
az-:EJN with its image under this map. Define

[[Bt(a)]] = {xeIxI | ( Vanoa) dlx,a)>1/n} ,

where n is the length of o and d( , ) is ordinary Euclidean distance in Ix1I .

For aeEJN , we have by a now familiar argument that

CHn Bt(a(,n))Il = 1 ,

and since ol is modelled by a simple sheaf we have,
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E Vaan Bt(ot(n)) .

Further, for any kelN , we see that for each uee:m

a ¢ Lansk B (a(n)) T ,
as a perfect neighbourhood of o 1ig omitted. So
CEk va an<k B (a(n)) I

does not intersect I x {t} . This completes the proof.

As with Theorem 4.3 » the above model is completely classical from the point

of view of elementary analysis.

A postseript added in proof follows the references.
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POSTSCRIPT

Since this paper was written, Andre Joyal has shown that a model in which[e,d]
is not compact (streﬁgthening our result of k4.3 ) may be obtained using the con-
struction of generic models for geometric theories. Specifically, Joyal introduces
a generic ideal I of the partial lattice of rational open intervals and forces

the following conditions:
(1) rel for each reR
(ii)  w(UF) <3 for each finite Fcl (where M is Lebesgue measure).

Joyal's most surprising insight is to see that in this model R is represented by
the constant sheaf R . This tells us that a cover of the old reals is a cover of
the new reals. Using the same method, Joyal shows also that it is consistent to have
a partial function from N onto WY ; that is, n ¥ is subcountable.
Unfortunately these results are yet to appear in print. Joyal's approach leads us
to view much of this paper in a new light. In particular, the isomorphism between
formal and actual opens mentioned after 2.14 should be viewed as a completeness

theorem for a particular theory.

The ad hoc models we used in §4 are primitive in comparaison with Joyal's
elegant constructions. We hope to exploit his methods in a Future paper. However,
it seems that this general method is not applicable to the problems we discuss in
§3 .



