i
{

First Steps in Synthetic Domain Theory

J. M. E. Hyland

Department of Pure Mathematics and Mathematical Statistics
16 Mill Lane, Cambridge CB2 1SB (GB)

1 Introduction

1.1 Aims of synthetic domain theory

Domain theory is the study of various concrete categories C typically of (directed)
complete partial orders in which constructions fundamental to the analysis of computing
can be performed.

e One can take fixed points of endofunctions X — X, so as to give meaning to
functions defined by general recursion.

o One can find fixed points for various operations C — C in order to provide
interpretations for recursively defined types.

Domain theory is a well developed body of mathematics, in which the stress is on limits
of increasing sequences. Continuity serves in the theory as a substitute for effectivity.

This paper is concerned with an approach to programming semantics of a different
flavour. The motivating slogan is “domains are sets”. (More exactly but less memorably,
“domains are certain kinds of constructive sets”.) An investigation of the general kind
presented here was proposed by Dana Scott in a talk at a meeting of the Peripatetic
Seminar on Sheaves and Logic in Sussex in 1980. He had in mind the example of
Synthetic Differential Geometry where generalized manifolds are treated as (special
kinds of) sets with the result that the development of the basic theory becomes highly
intuitive: and he asked for a treatment of domain theory in a similar spirit. Initial
progress was slow, but it now appears that the major conceptual advance was made
by Scott’s student Rosolini in his thesis [10]. There he took the recursively enumerable
subobject classifier T as the lynch-pin of the theory. Rosolini also described axioms
in the internal logic which unified features of the effective and recursive toposes, and
took the first steps towards formulating a synthetic theory of computation. (Mention
should also be made in this context of Lawvere’s student Mulry who had identified the
recursively enumerable subobject classifier, in the course of his study of the recursive
topos, see [6].) In a theory of computation, effectivity must be analyzed directly. The
category theoretic approach is to consider intrinsic structure of objects within a category
(see the discussion in [7]); and as envisaged by Scott and Rosolini, this exploits the
analogy with continuity. The result is the development of a kind of coding-free recursion
theory, and it is this that is stressed in this paper.
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1.2 Scope of the paper

The study of Synthetic Differential Geometry has two complementary aspects: a syn-
thetic (or axiomatic) aspect and a semantic aspect (involving categorical models), and
so it is also with Synthetic Domain Theory. In this paper the emphasis is on the first of
these two aspects. The approach taken is to attempt to axiomatize effectivity in a cat-
egorical framework by means of properties of a classifier & of ‘semi-decidable’ subsets.
(One might regard X as playing the same central role in Synthetic Domain Theory as
the synthetic line R does in Synthetic Differential Geometry.)

The reader should perhaps be aware of limitations on the scope of the enquiry.
We only reach the first aspect of domain theory: the existence of fixed points of end-
ofunctions. Furthermore the word domain is used only in the general sense associated
with Scott (though not as synonomous with what are usually called Scott domains)
as distinct from the sense associated with Berry. This has a number of consequences.
Computations may run in parallel and so the ‘semi-decidable subsets’ are closed un-
der unions (Axiom 7). Also, for good objects the intrinsic order on function spaces
is pointwise. Properties of Scott’s topological notion of domain are reflected in all of
the paper from section 3 onwards, though some aspects of the later sections are more
widely applicable. Perhaps this is a drawback of the presentation; what we have is far
from being an axiomatization of domains in the general sense. It remains a challenging
problem to produce a synthetic theory of (the various flavours of) stable domains.

1.3 Background assumptions

We shall work within a non-trivial category of sets S, and need to state what we assume
about this category. Of course one can assume that it is a topos, but the full structure of
a topos will not play any part in our axiomatization. Hence it seems important to give
some more precise indication of the kind of situation which one should have in mind.
We assume that we work in a category with properties enjoyed by (amongst others) the
category of modest sets within the effective topos.

In addition to the tacit assumption of non-triviality, the assumptions which we
have in mind are as follows:

1. S is a locally cartesian closed subcategory of a topos £ (in the internal sense);

2. S has a natural number object N;

3. S is the category of separated objects for a topology j on a subpretopos of the
topos; '

4. S is a small category contained within and complete relative to the category of
j-separated objects of the topos.

A discussion of (1) for the particular case of the modest sets in the effective topos
can be found in Hyland [2]. It seems best in view of some applications not to assume
in (2) that N is the natural number object in the ambient topos. But we have the usual
structure ;

1->N-5N
satisfying Lawvere’s ‘initial algebra’ universal property. And in view of (3) we may
assume Freyd’s formulation of a natural number object in terms of a coproduct 14+N = N
and coequalizer N—3N — 1. As regards (3), Carboni and Mantovani have characterized
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the categories which arise as j-separated objects for a topology j on a pretopos. Such
a category

e is regular (in the logical sense - it has finite limits and stable (regular epi, mono)
factorization);

e has stable (epi, regular mono) factorization;
o has finite stable coproducts;

o has all ‘quotients’ of equivalence relations and these are quasi-effective (that is,
the natural map from an equivalence relation to the kernel pair of its quotient is
an epimorphism).

There is some analysis of (4) in Hyland, Robinson, Rosolini [3] and a fuller discussion in
Robinson [9]. The full force of this assumption does not seem necessary for the theory
developed here; and it does not hold in some of our models. It is important however if
we wish to model strongly polymorphic type systems.

We give some examples of toposes in which we can find at least some of our back-
ground assumptions satisfied, and which support models for much of the synthetic
domain theory which we shall describe.

1. Suitable realizability toposes. It seems that these may not all model the full theory
which will be described below, but many do. For example

o The effective topos. (Historically this was the motivating example.)
e Toposes based on domain theoretic models for the lambda calculus.

2. Some toposes based on other notions of functional interpretation (modified re-
alizability, Dialectica Interpretation). I have only made “back of an envelope”
calculations in these cases, but they should be a good source of counter examples.

3. Topological toposes. These include
e Johnstone’s topological topos see [4].
o Scott toposes in the general sense indicated in [10].

4. Recursive versions of topological toposes. The recursive topos of Mulry. (This
was the first topos in which an r.e. subobject classifier was identified.) (The
natural example is analogous to the simplest “well-adapted” models for synthetic
differential geometry.

1.4 Conventions and notation

We shall use the usual set-theoretic language appropriate within (pre-)toposes, and refer
to subobjects as subsets and to regular epis as surjections. A pretopos also provides
good notions of (finite) intersections and unions of subobjects; and we suppose enough
completeness to give us small (internal) intersections and unions. Note however that
the existence of two factorization systems already adds a nuance to the set theory which
reflects the j-modality. The regular monomorphisms are j-closed subobjects, while the
epimorphisms are j-dense maps.

We mention a few standard category theoretic conventions. If A is an object of
a category (with terminal object), then we shall write A: A — 1 for the unique map
to the terminal object 1. The identity map on A is denoted by 14: A — A, and the
subscript will be dropped wherever possible. Also we use some non-standard notation. If
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a:1 — A is a point or element of A, then I shall write k.: X — A for the map of the form
X-%,1-°+A. Finally if w: A — C and v: B — C are maps, we write [u,0]:A+ B — C
for the induced map from the coproduct.

1.5 Acknowledgements

Recently many people have been taking an interest in aspects of Scott’s challenging
proposals to use domains in toposes as the semantics of programming languages. The
work reflected in this paper was done as part of the EC Esprit BRA project ‘Categorical
Logic in Computer Science’, and I have benefitted from the critical interest of Samson
Abramsky, Eugenio Moggi, Andy Pitts, Pino Rosolini and Paul Taylor. Independently
I owe intellectual debts on the one hand to Dana Scott and on the other to my student
Wesley Phoa. Others from whom I have learnt in the course of the development of the
effective topos as a context for programming semantics include Peter Freyd, Phil Mulry,
Gordon Plotkin, and Edmund Robinson. Finally I acknowledge the use of Paul Taylor’s
useful diagram macros in the production of this paper.

2 Basic theory of partial maps
2.1 Semi-decidable or ¥-subsets

We follow Rosolini in making the notion of a Z-subobject of an object the cornerstone
of the theory. These L-subobjects should be thought of as recursively enumerable or
(better) semi-decidable subsets, and we shall refer to them as -subsets. Our first
assumption is that this notion is classified.

Assumption 1 We assume that we have an object & equipped with o subobject {:1 — .
The pullbacks of t:1 — T are called L-subsets, and we assume thatt:1 — X is a generic
Y-subset in the sense that any D-subset A — X appears in a pullback diegram

g AL N

A—>1
for a unique map a: X — . We shall write ACg X for Aisa T-subset of X.
This assumption has the obvious consequences.
Proposition 2.1.1 The collection of T-subsets satisfies the basic closure properies:
(i) For any object X, X Cg X, that is the mazimal subset 1: X — X is a D-subset.
(ii) The pullback of a T-subset is ¢ T-subset.

Note that the object £X internalises the notion of a I-subset of X; its global sections
correspond to the I-subsets.
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2.2 The lift functor

Now we can exploit the background assumption that S is locally cartesian closed to
obtain from the classifying map 1 — ¥ a further piece of structure, namely a T-partial
map classifier. In the usual way, we let L(X) — & be IL,(X — 1) and obtain a pullback

1(X) —— 3%
nx i

X——>1

The map n = nx: X — L(X) classifies partial maps whose domain is a X-subset, We
refer to these as L-partial maps; we let X —5 Y denote a Z-partial map from X to
Y. TACyg X and u: A — Y is a I-partial map X —y Y, then there is a unique map
#: X — L(Y) such that

x —% s 1(v)
ny

A——>Y
is a pullback. In particular, 1(1) 2 ¥ and n:1 — 1(1) corresponds to t:1 — . The
object L(X) is called the lift of X and is sometimes written X .
1 extends to a functor in a natural way. If u: X — Y then L(u) = u, classifies the
L-partial map X, —z Y defined on X Cy X as u. Furthermore it is easy to see that
1 is an S-functor. Finally note that the lift functor has familiar preservation properties.

Proposition 2.2.1 The lift functor L preserves connected limits in both the ezternal
and internal senses.

We can of course iterate the lift functor, and so in particular can obtain a sequence
of objects I, defined by

Po=1; Dnp41=L(Z,).
Clearly the sequences of maps
1-5HE—5; ... Dy — 3,
classify sequences of subobjects
A Crs A1 Cz 4.4, 1 Cx X
of an object X where each A; is a L-subset of A;y;.

2.3 The lift monad

Our first axiom states the closure of (representatives for) L-subsets under composition.
Axiom 2 If A is a L-subset of B and B is a T-subset of X, then A is a S-subset of
X.

There is an immediate consequence.
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Proposition 2.3.1 The collection of T-subsets of an object is closed under (finite)
intersection.
Corollary 2.3.2 If A Cx B, then Y4 is a retract of TE.

In the language of Rosolini [10], Axiom 2 says that the T-subsets form a dominance
classified by :1 — £. Axiom 2 has a useful alternative formulation in terms of the lift.

Proposition 2.3.3 Given the classifying map t:1 — I for -subsets, the following ave
equivalent
(i) D-subsets form a dominance, that is Aziom £ holds;
(ii) the composite (1-52-5%,) is @ L-subset;
(iif) there is a (mecessarily unique) naturel transformation u: (L) — L such that
(L,n,u) is ¢ monad.

Externally we have the usual ‘subset ordering’ or inclusion ordering on the -
subsets of X. Suppose that a: X — ¥ and b: X — ¥ classify A Cg X and B Cx X
respectively. The inclusion relation induces a relation on classifying maps: if A C B,
then we write a Cx b.

It is a consequence of Axiom 2 that we can identify in S a monic representing the
subset order on . We denote such a subobject of £? (which automatically exists in an
ambient topos) by

2= X* or C— iy
as appropriate. (It is convenient notationally to distinguish between the subobjects C
and D of £2 which are isomorphic via the twist map.) We have two maps L(Z): X1 — 2
and g;:3; — X and these induce a map (1, L(Z)):8L = ExZ. Itisa further
consequence of Axom 2 that intersection is also represented in S. We let N: & X =X
be the classifier of the D-subset (t,t):1 — I x Z.
Proposition 2.3.4 (i) A map (a,b): X — T2 factors through (p1, L(Z)) if and only
ifaCy b;

(i) (p1,L(Z)): S — L7 represents the ‘subset order’ C on X;

(ii1) (p1,L(Z)):Z1 — T2 is the equalizer of the maps fst,N:T* — I

(iv) (Z,T,C,N) forms a (meet) semilattice.

Finally it is easy to see that the monad (L, 7, 1) is strong. Hence the second part
of 2.3.5 follows from the first.

Proposition 2.3.5 (i) (EL-5T) is the free L-algebra on 1.
(i) Each TX has the structure of ¢ 1 -algebra.

2.4 The intrinsic order

The subset ordering on (&%) gives rise to a preorder on any object X of S.

Definition 1 The intrinsic pre-order on an object X is the relation < which appears
in the pullback
X2 5 (22)(2" )

& s €T,
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Using the internal logic, the definition says that
SE(z<y)+<> (VReZXze€R=y€R)

Generally the pointwise preorder on function spaces need not coincide with the intrinsic
preorder (see the discussion in [8]). We define the pointwise preorder < on a function
space B4 in the internal logic by stipulating that

Sk (f 2 9) <= (Va € A.f(a) < g(a)).

The intrinsic preorder on an object is analogous to the topological specialization order
used in algebraic geometry. (Indeed the latter is a special case of the former.) Properties
of the intrinsic preorder are most rapidly established using the internal logic. We now
state a number of properties which we shall need and whose proofs are quite trivial in
these terms. (I cannot resist remarking however that the intrinsic order seems to be a
distraction. I would rather avoid reference to it where at all possible, and am distressed
at my failure to do so more successfully.)

We shall eventually have an axiom ensuring that the intrinsic preorder on an object
of the form £4 coincides with the inclusion ordering. One entailment is however both
automatic and easy.

Proposition 2.4.1 R < § entails RC S in T4,
Proposition 2.4.2 Internally any function preserves the intrinsic preorder:

S EVf € BAVa,ce A(a £ ¢ = f(a) < f(c)).

(And hence externally functions preserve the inirinsic order.)

Proof Essentially clear as f induces a map C¥ —CZE", 0
Corollary 2.4.3 The intrinsic preorder on a product is the product of the inirinsic
preorders.

Note that the pointwise preorder < has a simple alternative characterization.

Proposition 2.4.4 We have the following in the internal logic:
S = Vf,g € BA(f < g <= (VS € T8)f1(S) € gX(5)).
Preorders are rather a bore. It is convenient to work with objects for which the

intrinsic preorder is in fact an order.

Definition 2 For any object X there is a natural map X — S*. An ob ject X is a
Z-space just when this map is a monic. X is eztensional just when it is a regular monic.

Proposition 2.4.5 If X is a X-space then the intrinsic preorder is an order.

In what follows we shall often tacitly assume that we are working with T-spaces.
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2.5 Objects with bottom

There are clearly a number of distinct notions of an object with a least or bottom
element in the intrinsic order. In conformity with the ‘algebraic spirit’ of the categorical
axiomatization, it seems best to work with a rather strong notion of an object equipped
with a bottom element. As a conceit I introduce the definition before Axioms 3 and 6
which ensure that there really are bottom elements in these objects.

Definition 3 An object X (equipped) with bottom is an algebra L(X) — X for the lift
monad. A strict map between such objects is a map of algebras.

Note that as we have presented the definition, having a bottom element is an
additional piece of structure. However if we restrict attention to X-spaces, there is at
most one such stucture on any X, so we may regard having a bottom element as a
property. Since we may tacitly assume that the objects with which we are dealing are
Y-spaces, we shall not make any fuss over this.

There is considerable interest in the free algebras for the lift monad, that is, in
objects which are themselves lifts of some object. We say that such an object A, is
a lift. We already know that maps intc such an object classify T-partial maps. But
as 1?(A)-L1(A) is a free L-algebra, we also know about strict maps from such an
object into objects with bottom. In principle we want to regard these maps as maps
preserving L, but clearly one has to say this in a positive way as one cannot yet identify
the bottom elements! One particular case of interest is that of maps to an object of the
form TX.

Lemma 2.5.1 Suppose that W Cy X x L(A). Then the diagram

r 2 IXP‘A 's
X x 1(A) — 5 X x 1(A)

w W
13 a pullback if and only if W C X x A.

Proposition 2.5.2 Take a map u: L(A) — ZX and let U Cg X x L(A) be the subobject
classified by the transpose w: X x L(A) — L of u. Then u is strict if and only if
UCX x A.

2.6 The empty set

As things stand it is possible that £ = 1 and that the collection of 2-subsets is trivial.
The next axiom ensures that this is not the case.

Axiom 3 For any object X, the empty set is a L-subset of X.
Proposition 2.6.1 The following are equivalent:

(i) For any object X, the empty setl is a T-subset of X.

(i1) The empty set is a L-subset of 1.
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(iii) There is @ map f:1 — X distinct from t:1 — X in the sense that the diagram

..._t._..>)3

]

1s a pullback.

One simple consequence of Axiom 3 is that decidable subsets are semi-decidable. As
usual a decidable subset of an object X is a subobject A C X which is complemented:
there is an isomorphism 4 + B & X inducing 4 C X.

Proposition 2.6.2 Decidable subsets are T-subsets.

Proof Decidable subsets are classified by maps into 2 = 1+ 1. As we have the pullback

T
1 1

e
they are also classified by maps into . ]

—
—_—

On the basis of Axiom 3 we start to get some recognizable structure. Note first
that 1(0) =1 and the map f:1 — T is equal to L(0 — 1). The diagram

Bty

] ——>=Z
1s automatically a pullback. Thus we can identify three distinct points of T, :
o the point (nz) -t of ; which is the classifying map for 1 Cx 1 Cy 1;
o the point 5+ f = (fL)-t of &, which is the classifying map for 0 Cy 1 C5 1;
o the point L (0 — X) of £, which is the classifying map for 0 Cyz 0 Cy 1.
The two maps L(X): 2, — ¥ and u;: B, — ¥ are clearly distinct as they classify

Y Cy X, and 1 Cy T, respectively. What’s more, we can calculate the pullbacks of f
along these maps. We get

s

1

L(XZ) B
i, —> 2y ——>
d

Y
1=—'_._._._.__1

B e i
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where 1 — £, is 1L(0 — &) and £ — X is 1*(0 — 1). The left hand diagram is a
pullback because L preserves pullbacks. For the right hand one, note that X Ny 5
factors through f if and only if u classifies subobjects 0 Cx U Cx¢ X; and that this
happens if and only if u = (L f) - (LX) - u. |

The reader will now readily see that the collection of objects Lo, 21, -... and maps
between them constructed from the maps ¢, f, # by pullbacks and composition mirrors
exactly the simplicial category of all nonempty finite ordinals and order-preserving maps.

3 Some dual structure
3.1 Co-X-subsets and the co-lift functor

Further structure of £ can be conveniently described in terms of a notion of co-Z-subset
dual to that of D-subset. We assume that f:1 — X classifies these subsets which we
think of as the complements of semi-decidable subsets.

Assumption 4 Call the pullbacks of f:1 — L co-I-subsets. We assume that f:1 = &
is a generic co-Z-subset in the sense that any co-L-subset A of X appears in a pullback
diagram

x—2 >3

A——>1
for a unique a: X — L. We shall write ACy X for Aisa co-L-subset of X.

Note that now LX also internalises the notion of co-Z-subset. In fact more is true.

Proposition 3.1.1 There is a bijective correspondence between Y-subsets and co-Z-
subsets, where a co-L-subset of X corresponds to the L-subset with the same classifying
map X — . This correspondence reverses the inclusion orders on co-X-subsets and
L-subsets.

Note that Axiom 3 enables us to ‘see’ the bottom element in a lift A;: it is the map
ki:1 — A, lying in the unique pullback of form

1l —> Ay

00— A4

As a consequence of Proposition 3.1.1 one can deduce a more intuitive form of Propo-
sition 2.5.2.

Proposition 3.1.2 A map u: L(4) — ©X is strict if and only if u-ky1:1 — X names
@ Cx X. (That is, u is strict if end only of it preserves L.)
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From the classifying map f:1 — I we can obtain structure dual to that of 2.2.
Thus there is a co-Z-partial map classifier. This consists of a map (: X — T(X) such
that if A Cg X and u: A — Y, then there is a unique map @: X — T(Y") such that

X ——-~t-i—> T(Y)

A——Y
u

is a pullback. The object T(X) is called the co-lift of X and is sometimes written Xr.
The co-lift T extends to an S-functor; and T enjoys the standard preservation property.
Proposition 3.1.3 The co-lift functor T preserves connected limits in both the external
and inlernal senses.

As things stand, there is some small interaction between the lift and co-lift. We
have T(1) 2 X = 1(1). However if we start iterating T there is no reason yet to suppose
that we shall obtain a sequence of objects (and maps) isomorphic to the Z,s (and the
face and degeneracy maps) of 2.6.

3.2 The co-lift monad

Next we introduce an axiom dual to Axiom 2.

Axiom 5 If A is a co-Z-subset of B and B is a co-Z-subset of X, then A is a co-D-
subset of X.

As in the case of Axiom 2 there is an immediate consequence.

Proposition 3.2.1 The collection of co-E-subscts of an object is closed under (finite)
intersection.

Corollary 3.2.2 If A Cg B, then T4 is a retract of £5.

Furthermore as co-X-subsets form a dominance classified by f:1 — £, the duals of
Propositions 2.3.3, 2.3.4 and 2.3.5 hold. '

Proposition 3.2.3 Given that f:1 — T classifies co-Z-subsets, the following are equiv-
alent

(i) co-Z-subsets form a dominance, that is, Aziom 5 holds;
(ii) the composite (1—’»2—%27) is a co-X-subset;
(iii) there is a (mecessarily unique) natural transformation v:(T)? — T such that
(T,¢,v) is a monad.

We have already seen in 3.1.1 that the bijective correspondence between T-subsets
and co-Z-subsets reverses the (external) inclusion orderings. Let a: X — T and b: X —

-2 classify A Cp X and B Cg X respectively; then we have A D B if and only if a Cg b.

Thus there is essentially just one inclusion ordering on £. Using Axiom 5 we can find a
representation of the subset order on ¥ dual to that of Proposition 2.3.4. We have two
maps T(X): E+ — ¥ and v;: Tt — L and these induce a map (T(Z),11): 1 — Tx . It
is a further consequence of Axiom 5 that intersection of co-Z-subsets is also represented
in S. However this does not necessarily correspond to union of X-subsets. Hence we
write V: ¥ x ¥ — I for the classifier of the co-Z-subset (f, f):1 — & x Z.
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Proposition 3.2.4 (i) A map (a,b): X — X2 factors through (T(X),v1) if and only
ifaCzb;
(i) (T(Z),1n1): Z1 — L? represents the ‘subset order’ C on I;
(iii) (T(Z),n): o1 — L2 is the equalizer of the maps snd,V:Z? — L;
(iv) (%,L,C,V) forms a (join) semilattice.

For completeress note that the monad (T, (,v) is strong, and we have the dual of
2.3.5.

Proposition 3.2.5 (i) (Z1—X) is the free T-algebra on 1.
(ii) Each ©X has the structure of a T-algebra.

As a consequence of 3.2.4 we have an isomorphism T(X) =& L(X). Indeed now if we
start with 1 and iterate T we do get a sequence of objects (and maps) isomorphic to
those of 2.6. A complete collectinn of identifications between the presentations in terms
of L and T results. As an example note that

e T(t): T(1) — T(X) torresponds to gg: L — L(Z).
Proposition 3.2.6 (i) The co-lift functor T preserves L-subsets.
(i1) The lift functor L preserves co-L-subsets.
Proof Suppose that u: X — I classifies U Cg X. Consider the diagram

T(u) -
TEE) s TR 1) o5 B

T(t) N i

TU) ——> T(1) =22 ——>1
where we use some of the identifications just mentioned. The left hand square is a pull-

back since T preserves pullbacks; and the right hand square is the classifying pullback
diagram for £ Cy 1 (Z). Hence the composite

T(u)

T(X)—>1(8)2;, ——> T
classifies T(U) Cg T(X). This proves (1), and (2) is just the dual. m]

Finally note that we have the dual definitions of an object equipped with a top
element (that is, the algebras for the co-lift monad), and of the co-strict maps between
them. Objects of the form At (that is, the free algebras) are co-lifts. The duals of the
result of 2.5 hold.

4 Finitary domain theory

4.1 A higher order axiom

After all the above axioms it still remains possible that ¢ and f are the two distinct maps
1 — 2, so that the Z-subsets, the co-Z-subsets and the decidable subsets all coincide.
This degeneracy is avoided by the main finitary axiom which genuinely exploits the
higher order structure in our (locally) cartesian closed ca.tegory S. By 2.6 there is a
(monic) map [t, f]:2 = Z.
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Axiom 6 The map
11 pE _, 32
represents the inclusion order on X.

Let us spell out what this means in concrete terms. Write et and e, for the evalu-
ation maps 1% 2* — T and 1/: % — T respectively. Then e; C er and there is a
commutative diagram

EE

T < 12
fst snd

with the following universal property. Suppose that a C b: X — ¥; then there is a
unique map (a;b): X — LT such that

z

v

X

< nE 3

€1 eT

comrnutes.
Amongst many automatic pullbacks

T o5
(15 k1) ¢

r——>1

should be noted. This exhibits ¥ as a I-subset of 2=,
As an application of the universal property, take u C 1(Z): T, — %; thus there
is a map (g; L(X)): B, — T%. It is easy to check that this map is inverse to the map

T T, which classifies 1 Cg & Cr ZE. Thus the content of Axiom 6 is given by
1somorphisms

YX=%, anddually T% Ty
Modulo these isomorphism we can identify many maps. We give some examples:
e 7z o f: 5 — X, corresponds to (ky;kr): T — TF;
e 2: X — X, corresponds to (1;kt): & — TF;
L(f):Z — I, corresponds to (k;;1): T — TZ;
o u:X; — X corresponds to e;: TF — I;
1(X): L — T corresponds to er: 2% — 3.
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4.2 Properties of the intrinsic order

One consequence of Axiom 6 is that it identifies the intrinsic order and the inclusion
order.

Theorem 4.2.1 The intrinsic order coincides with the inclusion order on all objects of
the form TX.

Proof The diagram

(54— (7))

|

P —> (20)

clearly commutes. But by Axiom 6 (£4)% is the subset order on 4. Hence it factors
through the pullback of (E(Z("))? which is the intrinsic order. Thus the subset order
entails the intrinsic order. But we already have the converse which was Proposition
2.4.1. m

Corollary 4.2.2 1 is the least element in A, .

Proof In X, L is the least element in the inclusion order and hence is least in the
intrinsic order. Consider the map £ x L(A) — L(A) appearing in the unique pullback

of form
Tx 1(A) —> L(4)

A=m———mA
We have f <tin L andso (f x1) < (¢ x1): L(A) — Z x L(A). Hence by composition
ky <1:1(A4) — L(A). 0

4.3 XY-subsets of lifts and co-lifts

We return to analyze the general behaviour of maps L(A) — ZX. In fact it is simpler
to consider the case of a map T(4) — £X. We know by the dual of 4.2.2 that T is
the greatest element of T(A). But maps preserve the intrinsic order; hence if we let
s € ¥ be the image of T in TX, s is the greatest element in the image in the intrinsic
and hence in the subset order. It follows that if s: X — X classifies S Cy X, then
T(A) — ©X factors through the standard split monomorphism £5 — £X. Clearly the
resulting map T(A4) — = is co-strict. Thus we have bijective correspondences:

T(4) —» =¥

S Cy X and a co-strict map T(A) — Z°
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SCegX and UCySxA

As a consequence we derive the following connections between the lift and co-lift.

Proposition 4.3.1 ZTW = | (24) and dually THA) = T(S4), both these isomor-
phisms being natural in A.

Proof The first isomorphism is a consequence of the bijective correspondences:

X 5T

T(A) — 30l

SCegX and UGz SxA

SCgX and SxA- Y%

S0 X and S-u3H

X — 1(=4)
all natural in A. The second isomorphism is just the dual of the first. o

The attentive reader will have noticed that the argument from 4.2.2 onwards goes
through simply under the assumption that the subset and intrinsic orders coincide.

But Axiom 6 is a special case of Proposition 4.3.1; and so in fact it is equivalent to the
coincidence of the two orders.

4.4 Rice’s Theorem

One can regard Axiom 6 as a weak version of the undecidability of the halting problem.
Hence we can now derive a little bit of non-trivial recursion theory.

Proposition 4.4.1 For any objects A, B, and C, we have
(B + C)t) = pti4) | cL(4)
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Proof Let b: B 4+ C — X classify B Cg B + C. Consider the diagram

(B+C)*@ > B+C
Bt > B
v \L
M4 > %
% \4
1 > 1

where the right hand face is the pullback exhibiting B Cg B + C, the left hand face is
that pullback raised to the power L(4) (and so is a pullback), and the horizontal maps
are induced by L:1 — L(A). By the naturality in 4.3.1, the map 244 4 % corresponds
to T(Z4 — 1). Hence as T preserves pullbacks, the bottom face is a pullback. It follows
at once that the top face is a pullback. The same argument works with C in place of
B. So we have pullbacks

(B+C)*¥") —> B+C (B+C)*¥ —> B+C
and

B4 5B ctd) ———>C
But coproducts are stable, so

(B + C)-L(A) ~ pgi4) 4 o4,

O
Corollary 4.4.2 If X is an object with bottom, then for any B and C
(B + C)* = BX + C*,
Proof Since X is a retract of A = L(X), this is obvious. O

An immediate consequence is an abstract version of Rice's Theorem. Let us write
P = (N.)V) for the object of E-partial functions from N to N.

Corollary 4.4.3 27 = 2.
Proof P is a power of a lift and so is an object with bottom; and 2 =1+ 1. O
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4.5 Further results

In this section we collect together some further consequences of Axiom 6, which we shall
need.

From 4.3.1 we can derive an intuitively plausible characterization of the intrinsic
order on a lift.

Proposition 4.5.1 The inirinsic order on L(B) is given in the internal logic by
S|=c5l(3)d<=>(ceB=>d€B/\c$Bd).

Corollary 4.5.2 The functor L is ezternally order-preserving. If f < g:A — B then
fo=Xg1:AL — By.

The following proposition is related to the material of 5.3.

Proposition 4.5.3 If A has a top, then £4 is a lift (and dually if A has a bottom, then
T4 is o co-lift).

Proof (Sketch.) Let T be the top element of 4, and set D = {R € £4|T € R} Cy T4
We obtain a map 4 — 1(D) classifying the partial map X4 —y D given by 1: D — D.
Further we obtain a map L(D) — 4 as follows. Let E Cy A x D be classified by the
obvious composite Ax D — AxZA - L. As AxD Cy AX T4 we get E Cp AX 1(D).
Then we take the transpose of the corresponding classifying map A X 1(D) — Z. One
checks that these two maps are inverses of one another. ]

4.6 Finite unions

So far all our finitary domain theory is the consequence of just one axiom. But there is
a further aspect of recursion theory which seems to require a further assumption. We
note that while N on ¥ represents the usual notion of intersection of subob Jjects, we do
not know that V represents union. We make this our next axiom.

Axiom 7 The class of all L-subsets is closed under finite unions.

In recognition of this axiom we shall now write U for V.

Axiom 7 can be expressed quite simply in diagrammatic terms, but we do not go
into that here.

With Axiom 7 the misleading symmetry of our treatment is broken. We do not
include its dual amongst our axioms, and indeed the dual is false in some of our standard
models (in the effective topos for example). (This corresponds to the fact that while the
collection of complements of recursively enumerable sets—the II9 sets—is closed under
union, the logical equivalence on which this fact is based

(Vzd(z) VVyy(y)) <= (VaVy(d(z) V ¥(¥)))

is not constructively valid.) Note that the failure of the dual axiom in the effective
topos shows that Axiom 7 is independent of the earlier axioms.

The main consequence of Axiom 7 is the abstract version of the familiar fact
that sets which are both semi-decidable and co-semi-decidable are decidable. First

we exhibit 2 as a regular subobject of £ x X. It is natural to consider the two maps
(U: n): (kT) kl): X 5 B2,
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Proposition 4.6.1 The above two maps give rise to an equalizer diagram
ey Pio P AP K X

Corollary 4.6.2 If both ACg X and ACs X, then AC X is decidable.

Proof If a:X — ¥ classifies A Cx X and b: X — L classifies A Cg X, then it is easy
to see that (a,b): X — L? equalizes the maps v2—3%2. Hence A C X is decidable. O

5 Infinitary structure

51 A notion of w-chain

Recall that we assumed that we have a natural number object N in our category S.
Thus one can consider N-indexed sequences of T-subobjects of an object X: these are
the maps N — ZX or by transposition the S-subsets of N x X or by further transposition
the maps X — wN We are mainly interested in increasing (N-indexed) sequences of
¥-subobjects of an object X; these are maps R:N — IX such that Vn € N.R, C Rat1
holds in S. Clearly we can represent the object of increasing sequences in I as the
equalizer of maps »N—3N one being the identity, and the other the map which takes
An.o, € N to An.on A Onir.

First let us show that there is an object w which classifies increasing sequences in
S in the sense that we can take ¢ to be the object of increasing sequences. (Morally
w corresponds to the object—usually called w in domain theory—which consists of an
infinite increasing sequence of points.) In essence w is the colimit of the internal diagram

015 s, m s

and w will be the initial algebra for the lift functor. We sketch a construction in category
theoretic terms (avoiding completeness assumptions on S).

First we need some notation for indexed families. When we consider I-indexed
families X — I, it is often the case that we have a natural notation for the implicit
fibres X (i) but no notation for the corresponding object X. In these circumstances
we shall write (X(i)) — I or more simply (X (i)) for the corresponding object of S /.
We shall use some specific families indexed over N. Let us adopt Martin-Lof’s notation
(N(n)) for the N-indexed family of finite sets. From it we obtain an N-indexed family
(£") — N. As a subobject of this one can construct an N-indexed family (Z,) — N
which internalizes the sequence Z,. It seems best to take the subobject

Eﬂ = {(p07"'apn—1)]Vi(pi Z Pi+1)} C En

which is given by a simple equalizer in S /N.

Proposition 5.1.1 The indezed family (Z,) — N satisfies the recursion equations:
Tl (Sna) = (L(Z0))

To obtain an N-indexed diagram, we need to describe the (indexed family) of maps
L7(f); but these are induced by the maps (1,f): =" — " x T = ™. Now the colimit
w of the internal diagram will appear in a coequalizer diagram I(Z) = In (Ba) = w
which lies over the standard coequalizer N=—3N — 1. (Note that the object w is both
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the initial algebra for the lift functor and for the lift monad; but of course the structures
are different!)

Recall from 2.6 that T, has n+ 1 distinct global sections. We can internalize these
as a family of maps (N(n + 1)) — (Z,), and this induces in the colimit, the standard
enumeration of N — w. Hence in particular the global sections of w include analogues
of the finite ordinals.

Proposition 5.1.2 The object ¢ is the object of increasing seg,uences in XL the enu-
meration N — w induces an equalizer diagram £¥ — TN=—=5N where the two maps
2N 5 =N are as described above.

Proof (Sketch) The covariant functor £() transforms internal colimits into internal
limits; the resulting equalizer diagram is not quite what we want, but we easily derive
from it the fact that £¥ — EN— 5N is an equalizer. a
Definition 4 For any object X of S the object X“ is the object of w-chains in X.

In general the w-chains in X will not coincide with the sequences increasing in the
intrinsic order. However it is an easy corollary of 5.1.2 that they do coincide in the case
of retracts of powers of X. In fact they coincide for all linked Z-spaces (see Phoa [8]).

5.2 Suprema of w-chains
Suprema of w-chains (in the traditional sense) play a major role in domain theory; so
the next axiom is no surprise.

Axiom 8 The collection of T-subsets of an object is closed under suprema of increasing
(and N-indezed) sequences.

Since w classifies increasing sequences in £ we can readily express our axiom in terms
of ¥, :
Proposition 5.2.1 The following are equivalent
(i) The class of L-subsets is closed under N-directed suprema.
(ii) There is a map \V: 5% — £ which is left adjoint to the constant map L — L,
We can i1dentify w with the subobject

{(Pr)nen|V(Pn 2 Pas1) A 3n(p. = L)} C z,

Perhaps it is worth stressing that this need not be a regular subobject! Clearly w C &N
is not closed under increasing sequences in N, we identify its closure as

W= {(Pn)nevan(pn = Pn-l-l)} c EN-

For @ is a retract of ZN via the map which sends (Pn)neN t0 (Am<n(Pm))nen- Hence @
is closed under limits of w-chains in ZN: the supremum map (ZN)~ — N restricts to
a supremum map @“ — . Furthermore the pointwise intersection (EN) x BN — gN
restricts to a map w X @ — w; and its exponential transpose is a map @ — w* which
associates to every element of & a canonical increasing sequence in w tending to it. In
particular the composite @ — w* — @ is the identity. Other constructions of @ are
possible: for example we could set @ to be the internal limit of the standard diagram
of form

(13« L(D)...).

This would be given externally as an equalizer.
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5.3 The main infinitary axiom

We think of @ as the object w with a limit to the w-chain added. So morally it should
represent increasing sequences with limit point—at least in sufficiently good objects. In
particular therefore we expect w and @ to have the same Z-subsets, and we take this as
our next axiom.

Axiom 9 The map w — @ induces an isomorphism L® — L¢.

To understand the force of this axiom let us look closely at the object 9 of B-
subsets of @. Since @ is a retract of N it has a top; we write co:1 — & for this element.
Write eq: X — X for the ‘evaluation at top’ map. From e, we obtain the pullback

E‘:’_‘ibz

E——>1

exhibiting ©% = 1(E). (The reader should refer to 4.5.3.) Of course L is also an
object with top (in fact a co-lift); indeed E has a top. Let us consider this situation in
the abstract.

Proposition 5.3.1 Suppose E has a top element 1. Then the classifying map L(E) —
¥ is left adjoint to the map L(1):Z — L(E).

Proof As T is the top element of E the map T:1 — E has E — 1 as left adjoint. As L
is order-preserving in the sense of 4.5.2, 1t preserves adjunctions. Whence the result. O

Corollary 5.3.2 The evaluation map €oo: Y% — 3 is left adjoint to the constant map
T — XY

This shows, at least for objects of the form T4 and their retracts, that co € @ represents
the suprema of w-chains.

Proposition 5.3.3 The supremum map V:L¢ — Y is equal to the composite LY =
3ot

Since sups of w-chains are represented, they are automatically preserved (even in the
internal sense) by maps ¥4 — 8. In fact the following are equivalent:

(i) w — @ induces an isomorphism LY — T¥.
(ii) S | (Vf: B4 — DB)(V(Rn) € (Z4)*) f(V(Ra)) = V(f(Bn))-
We have just seen that (i) implies (ii), while (ii) implies (i) because & is the closure
of w under sups of w-chains. We could also give an equivalent formulation of Axiom 9 in

terms of a notion of intrinsic limit of w-chains; but this makes more sense in connection
with Axiom 10.
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5.4 Directed unions

As we saw in connection with Axiom 7, there may be more to closure under unions than
the existence of a suitable left adjoint. Hence there is a further infinitary axiom.

Axiom 10 The collection of L-subsets of an object is closed under unions of increasing
(and N-indezed) sequences.

(As with Axiom 6 we could easily express this extra information in diagrammatic terms.)
Obviously we can combine Axioms 7 and 10.

Proposition 5.4.1 The class of L-subsets is closed under N-indezed unions.

As a result we have a union map |J: ZN. — . Using it we can exhibit N as a regular
subobject of ZN. The essential map EN — I is that which takes (Pn)nen to U{p. N
Pm[n # m}. If we pair this map with | and &, with kr, we get two maps EN=—3%2.

Proposition 5.4.2 There is an equalizer diagram N — TZN==T2 where the maps
SN—1%? are as just described.

Corollary 5.4.3 N-indezed partitions of an object X into L-subsets correspond to maps
X —N.

A further consequence of Axiom 10 is a form of the Rice-Shapiro Theorem.

Theorem 5.4.4 (Rice-Shapiro) L-subsets of an object are Scott open with respect to
w-chains:

YU € 24 ¥(a,) € 4“.\/(4n) € U = 3n.a, € U.

A full development of material in this area is contained in Rosolini’s Thesis [10].

6 A category of predomains

6.1 The category of Y-replete objects

A number of people have considered candidates for a good category of predomains within
a topos (usually the effective topos). Phoa [8] considered the category of complete -
spaces, which consists of those objects which are complete with respect (N-indexed)
sequences increasing with respect to the intrinsic order. Freyd et al [1] considered
(in effect) the subcategory consisting of those complete £-spaces which are regular
subobjects of a power of L. Here we consider a notion which is in some sense canonical.
There are two perspectives which one can take. Since the object £# of all Z-subsets of
A is to play the crucial conceptual role in the theory, we should consider those objects
which are (in some sense ) determined by their Z-subsets. Alternatively we could argue
that we need the object  and good completeness properties, but should not take more
objects than we are forced to take. These two perspectives are equivalent; they lead to
the same good category, the category of replete objects.

We can give an account of the category of replete objects by means of some internal
category theory applied to the internal category S. The definitions which follow should
be understood in that sense. (I hope that my giving translations into the internal logic
of sets will help rather than confuse.)
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Definition 5 A map ¢:Q — I is D-equable if the induced map ¥? — ©F is an iso-
morphism. (That is, in the internal logic of sets, any map P — ¥ extends uniquely to
a map P — 2.) We write Equ for the class of Y-equable maps. A map f:A — B is
T-replete if for any T-equable map g: P — @ the diagram

A? — > AF

B? —— BF
is a pullback. (That is, in the internal logic of sets, given any commutative square as
indicated below, there is a unique fill-in @ — A
P—>Q

A——>1B

making the two triangles commute.) We write Rep for the class of all T-replete maps.

For the most part it is sufficient to restrict attention to the (internal) full subcate-
gory of all objects A such that A — 1isa replete map. We write R for this category, the
category of replete objects. (Of course maps between replete objects are automatically
replete maps.)
Clearly (Equ, Rep) forms a prefactorization on S, and with enough (internal) com-
pleteness on that category we could show that it is a factorization system. However
using rather little of the internal completeness of the ambient topos, we get what we
chiefly need.
Theorem 6.1.1 R is a reflective subcategory of S.
Proof The unit of the reflection A — r(4) appears in A — r(4) — T as the
largest subobject of T(*) such that A — r(A) is Z-equable. The image (and indeed
the regular image) of A is necessarily such a subobject. o

Unfortunately it does not seem easy to give a simple concrete description of the replete
objects in (for example) the effective topos. Indeed though Freyd was (of course) aware
of the possibility of the above definition, he prefered for this reason to work with the
more concrete category in [1]. Paul Taylor independently came to regard the replete
objects as important and has carefully analyzed different equivalent descriptions of r(A4).
The significance of R is indicated by the following standard characterization.

Theorem 6.1.2 R is the least internally full reflective subcategory of S which contains
2

Note that the categories considered by Phoa [8] and Freyd et al [1] within the effective
topos are complete and contain I. Hence they contain the category R of replete objects.
However one can show that R is strictly contained in them. Rosolini and Scott consid-
ered a more topologically motivated category of o-spaces (see [10] and [11]). In a Scott
topos, Johnstone’s example (see [5]) shows that the o-spaces are strictly contained in
the-category of replete objects. Whether or not this holds in the effective topos remains
an open question.

Ev____ e s
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6.2 Simple closure properties of R

As R is reflective in S it inherits some properties.

Theorem 6.2.1 The category R is as complete and cocomplete as is our initial category
S. In particular under the assumptions of 1.9 R is cartesian closed and closed under
products indezed over separaled objects.

Warning: Local cartesian closedness is not a completeness property. It does not
follow that R is locally cartesian closed. The problem was first made explicit by Thomas
Streicher, see [12] where there is a counterexample.

Corollary 6.2.2 (i) The objects 0 and 2 are in R, and R is closed under finite
coproducts.

(i1) The object N is in R and R is closed under coproducts (internally) indezed by N.

Proof R is closed under finite limits. Hence 0 is in yR by axiom 3, while 2 is in R by
Proposition 4.6.1. More generally A + B lies in an equalizer diagram of form

(A+B) — (AL x BL))=ST x T,

and so is in R. This deals with the first part. A similar argument involving Proposition
5.4.2 establishes the second part. O
The construction of R ensures that epimorphisms in R are easy to detect.

Proposition 6.2.3 A map e: A — B in R is an epimorphism (in R.) if and only if the
induced map T°: LB — T4 is o monomorphism.

Proof One direction is familiar enough. Take the pushout

A—S—5 B
e fo

B——>C
h

in R so that C = (B 44 B). If e is epi then f = f, = f; are (equal) isos. Hence in the
corresponding pullback
;1 Oy -

BP iy,
the map /: ¢ — %P is an iso. Thus Z*: 2% — 4 is a mono. Conversely, if £° is
mono then £/ is an iso. But f: B — C is a map between replete objects. So if £/ is an
iso, then f must be an iso. w]
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6.3 Lifts of replete objects

Next we mention a theorem which is needed for applications, and whose proof is pleas-
ingly algebraic in character.

Theorem 6.3.1 If A is replete, then so are 1(A) and T(4).

Proof We give a proof for the case of 1(A) in the style of the internal category theory
which we have been using. First we note the following trivial lemma. Suppose that
f:C — D is T-equable and that D' Cx D is a D-subset. Consider the pullback

f

¢ ——>D

C! 2 Dl
fl
of D' — D along f. Then the map f" C' — D' is T-equable. Suppose now that C—D
is Z-equable and that we are given a map C — L(A). Clearly there is a unique map
D — T making the diagram
D

C——> L(A)—— L
commute. If we pull this diagram back along t: 1 — 3, we obtain
DI

c’ —> A > 1
By the lemma C’' — D' is T-equable and so there is a unique map D' — A such that
¢'—> D

A

commutes. But this map corresponds to a »-partial map D — A and so induces a
unique map D — LA fitting into the diagram of pullbacks:

C > D > 1(4)

c’ > D' > A
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By the uniqueness property of L(A), the map D — 1(A) is the unique extension of the
map C — L(A). O

6.4 Fixed points

Repleteness of an object is of course a kind of completeness condition. Indeed Axiom
9, which says in effect that the map w — @ is equable, has the immediate effect that
replete objects have limits of w-chains.  This allows us to develop a traditional theory
of fixed points. (Another somewhat fuller treatment has been given by Paul Taylor.)
Definition 6 An object A in a cartesian closed category C is in the fized point category
just when for any I € C, the power A’ is a fized point object: any map AY — Al hasa
fixed point.

It does not matter for the purposes of this definition whether we take ‘fixed point object’
in the internal or external sense.

Proposition 6.4.1 Suppose that Ais replete and has a bottom element. Then every
map A — A has a least fized point. Hence as powers of replete objects with bottom are
again replete objects with bottom, such an A 1s automatically in the fized point category.

Proof The usual proof works! o

Thus if we take as category of domains the objects of R with bottom element, we
can interpret within it all definitions of functions by recursion. We have taken the first
steps in a synthetic domain theory.
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