A SURVEY OF SOME USEFUL PARTIAL ORDER RELATIONS ON TERMS OF '

THE LAMBDA CALCULUS
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§0 Introduction. The equality in models for the A-calculus gives

rise to equality relations on terms of the A-calculus, where byran

eguality relation we mean an eqpiTalence‘re;atiOR preservedrunder |
context substitution. We focus attention on equality relationé\a& | %
of'ten these afe given syntactically and so prior te any model. Of |
course from s given equality‘relation one can always define a model
( the modél of terms factored out by the relation ) which gives
rise to it. !
The most interesting purely semantic models for the A-calculus,

the continuous lattices of Dana Scott, are equipped with a partial

order, This gives rise to what we call a2 partial order relation

( po0er. ) om terms of the A-caleulus, that is a pre-partial-order

( i.e. transitive relation ) preserved under context substitution.
To any p.o.r., there corresponds the equality reiation obtained by
setting two terms squal iff each is less than or equal to the other.
So the p.o.r. induces an ordinary partial order on the equivalence
classes.

We take the view ( arising out of the theses of Barendregt
and Wadsworth ) that terms with no head normal form ( i.e. terms
ﬁhase closure is unsolvable ) have no computational value and so -
may sensibly be set equal. Thus we say that a2 p.o.r. 15 sensible

iff it extends that p.oc.r. obtained from f-equality by setiting all
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terms with no head normal form equﬁl, and less then any term; this
latter p.o.r. iz thus the minimal sensible p.o.r.

| Qur aim in this paper is to map out some of the mein landmarks
in the territory of sensible p.o.r.'s, To this end we make use of
the Xi-calculus as described in Wadsworth (1971). This arises by
adding a constant @ to the pure A-calculus. 2 will be 2 minimal
element in all our p.o.r.'s; that is to say Q cenonically represents
the terms without head normal form. Thus the addition of adds.
nothing to the expressive power of the A-calculus as Q can always
be replaced by (Ax.xx)(Ax.xx).

An equality relation iz consistent iff it does not set all
terms equal; a p.o.r. i8 consistent iff its induced equality relation
is so. Barendregt (1971) shows that the minimal semsible p.o.r. is
consistent. Our paper contains many consistent sensible p.o.r.'s,
and thereby many alternative proofs of Barendregt’s result; the
interest of his analysis is that it shows directly the computational

irrelevance of terms with no head normal form.

€1 Head normsl forus. We define which terms of the A-calculus

are hesd normal forms ( h.n.f.'s ) as follows:

(a) ~all variebles are h.n.f'.'s;

are terms, and x is-a varisble, then xX ....X_ 1is

4 k

(b) if LyseososXy

an hnncfo;'
(¢) 3if P is an h.n.f. then so is Ax.P.
A term M has h.n.f., iff there is an h.n.f. N with M =g o

Otherwise M has no h.n.f.. &n h.n.f. has the form,

)\-XJI .oo-Xi.ZX1 ooonxjg
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and z is the head variable., A non-h.n.f. has the form,

.T
the head redex is (Ay.P)X1, and the (possibly infinite ) reduction

?\,x,l e oaXi,(}tyeP)X e oo 'Xj;

of a term, obtsined by always reducing the head redex if any, 18

the hesd reduction of that term. By the Standsrdization Theorem, a
term has h.n.f. iff{ i£s head reduction terminates; hence the set of
terms with no h.n.f. has strong closure properties ( Wadsworth (1971) ).
A term has h.n.f. iff its closure is solvable in the gense of
Barendregt (1971).

Let Ax1...,xm,zX1....Xi and Ay1...eyn.wY1

By a=conversion we may take X, to be I for r € min(m,n), and so we

""Yj he two hen.f.'s.

assune the two terms are,

(1) Ayeesox o 2K

cesek, and AXx
1 1

evr 0k oWl , enest .0
n J

1 1 1

The two h.n.f.'s are
(i) similar iff ( when arranged as in (1) )m=1n, 1= J and z is W,

and (ii) inseparsble iff ( when arranged as in (1) ) (m-i) = (n-J)

and 7 18 We

Proposition 1.1, Let M be any term and let M gereduce { .respectively

gn-reduce ) to M, end to M, both h.n.f.'s, Then M, and M, are similar

1 1 2

( respectively inseparable ).
Proof: Immediate by the Church-Rosser Theorem.

The rest of this section presents a technical analysis of the
theorem of Bohm (1968), by way of some lemmas which will be important
later. Proof's are omitted as the methods are fairly well known, and

details appear in Hyland (1975).
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Lemma 1.2. (a) Suppose M, N have h.n.f.'s which are not imseparable;

then there is a context CL 1 such that ol u] =ﬁ X, ' jg

where x and y are distinet variables. !é

(b) Suppose M has no h.n.f, while ¥ has an h.n.f.; then

there is a context C[ 1 such that C[M] has no hen.f., }é

ol n] =, ¥, for some varisble y.

Proof: See Hyland (1975). |§

Fow we define for k 2 1, (a) the terms ¥ and N have the same

k-normal form ( henceforth written M = I ), and (b) the set of

k-pairs of the pair (M,K). The definition is by induction on k as
follows: |

Case k= 1. =, N iff either both ¥ and N have no h.n.f. or both M

end N have h.n.f.'s, and the h.n.f.'s to which M and N reduce are
inseparsble. ( Proposition 1.1 shows that this last requirement is
unambiguous ). In the first case, there are no 1-pairs of (M, 7). It
remains to conéider the second case. We may assume that M and N

reduce to the h.n.f.'s of (1) above ( to fix things Jjust consider

g-reduction ) where (m~i) = (n-j) and z is w. Suppose without loss

of generality that n € m, and consider,

Ilfbc1ﬂﬂﬂﬂxm =;8 Z.X.’Iaﬂﬂﬂxig

LI = Y BBQD. ¢ d e h s i
Nx1 X, g W, ijn+1 o W ich is zy1

Then the 1-pairs of (M,N) are the pairs (Xr’Yr) for 1 € r € i,

Y., sa
2 2 0@ 19 y@

Induction step. M =y I iff M = N and for any 1-pairs (¥,Y) of (M, N)

we have X =Y. The (k+1)-pairs of (¥,N) are the k-pairs of the 1-pairs

of (M,N).
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Lemma 1.3. Given terms M and N, with (%,Y) k-pairs of (M,N), there is

a2 context Gl ] and substitutions (R/x,....) such thet,
cl vl =3 X{R/%,+.0.) & substitution instance of X, and
¢l N] = Y(R/%,....) the same substitution instance of Y.
The terms R substituted are of the form Ax1,q..xh,xhx1..,xh_1, for
h sufficiently large.
Proof: See Hyland (1975).
Remark. The substitutions of (1.3) have the following trivial effect on
the similarity type ( respectively ihseparability type ) of X and Y.
X and Y g-reduce { respectively gn-reduce } to gimilar ( respectively
inseparsble ) h.n.f.'s iff X(R/x,....) and Y(R/%;s000) GO 80

Corollary 1.4. ( Bdhm )o If terms M and N have distinct An-normal forms

then thefe is @ context C[ ] such that cl M) :ﬁ X,
cl v} VRE
where x and y are distinct variables.
Proof: By (4.2), (1.3) and the observation that if M and N have distinct
gn-normal forms, then there is some k-pair (X,Y) of (M,¥) such that
X and ¥ have hen.f.'s which are not inseparable.

&2 Q-gpproximants. We recall that we have introduced a constant Q

into our language to represent the terms with no h.n.f.. The closure
properties of the set of terms with no h.n.f. make it sensible to

sntroduce (Q=reductions as follows. Terms of the forms QN and Ax.l are

Q=redexes and both Q-reduce to Q. A term M is in gQ-normal form iff it

contains no. B-redexes and no Q-redexes; it is in gri-normal form iff

it also contains no nM=-redexes.
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Attempts to present arbitrarylk-terma as limits of normal forms
which approximate them, give rise to.the notion of an Q-approximant.
We shall need two such notions ( depending on whether or not we are
taking 7m-reduction into account Yo For a given term M, we define its
sets of approximants w(M) and wn(M) as follows:
©(#) = {L|L is a g0-normal form obteined from some N, where N =5 K,

by replacing subterms of N by Q}; |
wn(M) = {LIL is a grt-normal form obteined from some N, where N ign M,
by replacing subterms of N by 0},

Proposition 2.1. (&) L] g=reduces { respectively gn-reduces ) to the

S-normal ( respectively gn-normal ) form N iff for some L & w (M)
( respectively L € @n(M) ) C[L] does 50,
(b) cLM] g-reduces ( respectively'ﬁn—reduceé } to a

h.n.f. of & given similarity type ( inseparability type ) iff for
some L & w(M) ( respectively L € wn(i) ) CLL] does so.
Proof; Wadsworth (1971) proves one of the cases in detail by a method
which easily extends to the others.
Lemmg 2.2. If the g-normal form L is not in w(N), then for some (X,Y)
k-pairs of {L,N)} we have, |

(1) X g-reduces to & h.n.f. X',

(ii) if Y has h.n.f. then Y f-reduces to a h.n.f, which is not
gimilar to X'.
Proof: The lemma is easily proved for all N by induction on the

structure of L.
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Theorem 2.3. (M) C w(N) iff whenever C[ ] g-reduces to the h.n.f. M’

then C{ N] g-reduces to a similer h.n.f.

Proof: That L.H.S. implies R.H.S. is immediate by a couple of
applications of (2.1).

Suppose not L.H.S.. Then there is L & w(¥), L not in @(N). Now by (2.2)
take k-pairs (X,Y) of (L,N) satisfying (i) and (ii) above. By (1.3)
there is & context [ Jsuch that C[L] end [ N] g-reduce to substitution
instances of X and Y. By the remark following (1.3) we can conclude
that ¢{ L] has h.n.f., but (L] and L N] do not g~reduce to similar
h.n.f.'s. Hence by applying (2.1) we have not R.H.S.. This completes
the proof of the theorem.

Corollary 2.4. { Independant result of Levy and of Welch ) w(M) C w(N)

does define & ( consistent ) p.o.r. on A-terms.

Proof: The relation on the R.H.S. of {2.3) is clearly preserved under
context substitution.

Remark. The relation of (2.3) properly extends the minimal sensible
pe0.r. a8 ( for example ) it sets all the members of the usual

sequence'Y Y1,... of fixed point operators, equal.

0*
Lemma 2.5. If the 371~normal form L is not in wn(N), then for some
(X,¥) k-pairs of (L,N), we have,

(i) X 3n-reduces to the variable x,

(i1) Y does not gn-reduce to x.
Proof: The lemmo is easily proved for all N by induction on the

N -
structure of L.
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Theorem 2.6. wn(i) C wn(XN) iff whenever d Ml pn-reduces to the gn-normal

form M' then C[ N] gn-reduces to M'.

Proof: That L.H.S. implies R,H;S. is immediate bj a couple of
spplications of (2.1)

Suppose not L.H.S.. Thenkfhére is L € wn(¥), L not in wn(N). Things
are not so simple now as they were in the proof of (2.3), so we

dispose of the easy case first. Suppose there exist k-pairs (X,Y) of

(L,N) such that X has h.n.f. but if ¥ has h.n.f. then it is not insepgreble

from that of X. Then not R.H.S. follows easily from (1.2), (1.3) and the
remark following (1.3).
So henceforth assume that for all k-pairs (X,¥) of (L,N), if X has h.n.f.

then Y has h.n.f. insepareble from that of X.

Now by (2.5) teke k-pairs (X,Y) of (L,N) satisfying (1) and (ii) of (2.5).

Then X =5n X,

and ¥ = an Ay1eo..yk.xY1..,aYk,.

and it follows from our assumption anove that Y has no normal form.
Consider the substitution instances X' and ¥' of X and ¥ determined by
(1»3). It suffices to show thatlY' has no normal form. ( This does not
follow from the genmeral nature of the substitutions, but from the
special form of ¥ ). Note that even if in the substitution instances

X' and Y', some R has been substituted for the variable x, there must be
(k+1)=-pairs (Xi,Yi) say satisfying (i) and (ii) of (2.5), where X, is

a varisble y; say and nothing is substituted for 5 by the appropriate

context determined by (1.3). So we can assume that nothing is substituted

for x in ¥ and Y. But then for all r-pairs (A,B) of (X,Y) nothing has
been substituted for the head variable of B. By considering normal
reductions, since Y hes no normal form, neither has Y', The proof is

now completed as for (2.3).
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&% Scott's models., In this section we outline the main results of

Hyland (1975). We are concerned with the values of A-terms in
‘continucus lattice models for the A=calculus. D denotes some ( arbitrary )
continuous lattice isomorphic to its function space, which is.
constructed from & continuous lattice Dy and the initial maps,

¢os Dy —>D,, defined by ¢O(ao) = Ax.dy, and

Yot Dy —>Dy, defined by wo(d1) = d1(ML).
Pw denotes the Graph Model described in'Scott’s "Data Types as Lattices".
( The Scott Model D is fully deseribed in Scott’s "Continuous Lattices™ )
The value of a term M in these models will be dencted by ﬂ:mfhj and
ﬂ;M'UPw respectively. [O denotes the order relation and L] the sup
operation in eitﬁer lattice.

Proofs of all the results of this section appear in Hyland (1975),
and we do not include them here. Furthermore, Wadsworth presented his
considerable improvement on our original proof of (3.1)(a) and his
own proof of (3.2)(a) at a conference in Orleans, 1972, So the basie
ideas should be familiar.

Theorem 3.1. (2) [u{, = Uf{r]ylnewtn} = LI (1]t & wn(m)i,
o) [l = UI]E] 0 e ol

Next we make some definitions which extend those of §1. Ve

introduce relations <§ and <§ for k 2 1, by induction on k. The
superseripts s and g sre to indicate that the relations are important
for the Scott and Graph Models respectively.

‘Defipition. M <? N iff whenever M has h.n.f. then W = N. Then by

induction, M <§+1 N iff ¥ <‘;" N and for any 1-pairs (X,Y) of (M,N)

we have X <i Yo
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The heNofe AX, cosoX oZA
1 m 1

.e.on iff .'f:he two h.n.f.'s are inseparé,ble and m 2 n,

o...Ki is more functional than the h.n.f.

Ay1 L nynoWY_]

Definition. M <§" N iff whenever M has h.n.f., then N S-reduces to a
h.n.f. which is more functionel than that to which ¥ g-reduces.

N iff M <® N and for any 1-pairs (X,Y) of

. . g
Then by induction, K e 1

S
k

Theorem 3.2. (a) The following are equivalent:
(1) (ul = (xT ;s

(i1) for all k 2 1, M <§ Ns

(1i1) whenever C[ 4] has h.n.f. then so has [ ¥].

(M,N) we have X < Y,

(b) The following are equivalent:

(1) (1o, & (T,
(i1) for all k > 1, ¥ <€ N
(iii) whenever ¢ M] has h.n.f. then d w] g-reduces
o a h.n.f. more functional than that to which ([ ] g-reduces.
The p.o.r. induced by the Scott Model D has a beautiful uniqueness

property.

Theorem 3.3, The p.o.r. characterised in (3.2)(a) is the unique

maximal consistent sensible p.o.r.

84 Concluding remarks. We have in (2.3), (2.6) and (3.2) charecterised

four sensible p.o.r.'s. It is easy to see that they are 2ll distinct
( though note that the induced equality of (2.3) and (3.2)(b) is the
same ). The most significant feature of the results to my mind is this,
Bach of the four P.0.r.'s has a characterisation in terms of contexts,

of & naturael form: if a context acting on one term does such and such,
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then so does the context acting on the other. In other words, each
Ps0.T's i8 characterised in terms of its computational significance.
This in my view should be a feature of any intereéting sensible p.o.r,
so at least we know what to look for should we search for more

sensible P.0.T.'S.
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