
Annals of Pure and Applied Logic 40 (1988) 135-165 
North-Holland 

135 

A SMALL COMPLETE CATEGORY 

J.M.E. HYLAND 
Department of Pure Mathematics and Mathematical Statktics, 16 Mill Lane, Cambridge CB2 
ISB, England 

Communicated by D. van Dalen 
Received 14 October 1987 

0. Introduction 

This paper is concerned with a remarkable fact. The effective topos contains a 
small complete subcategory, essentially the familiar category of partial equiv- 
alence realtions. This is in contrast to the category of sets (indeed to all 
Grothendieck toposes) where any small complete category is equivalent to a 
(complete) poset. Note at once that the phrase ‘a small complete subcategory of a 
topos’ is misleading. It is not the subcategory but the internal (small) category 
which matters. Indeed for any ordinary subcategory of a topos there may be a 
number of internal categories with global sections equivalent to the given 
subcategory. The appropriate notion of subcategory is an indexed (or better 
fibred) one, see 0.1. Another point that needs attention is the definition of 
completeness (see 0.2). In my talk at the Church’s Thesis meeting, and in the first 
draft of this paper, I claimed too strong a form of completeness for the internal 
category. (The elementary oversight is described in 2.7.) Fortunately during the 
writing of [13] my collaborators Edmund Robinson and Giuseppe Rosolini 
noticed the mistake. Again one needs to pay careful attention to the ideas of 
indexed (or fibred) categories. 

The idea that small (sufficiently) complete categories in toposes might exist, 
and would provide the right setting in which to discuss models for strong 
polymorphism (quantification over types), was suggested to me by Eugenio 
Moggi. And he first realized that the effective topos did indeed contain a small 
complete category. When, led by Moggi’s suggestion, I first came to consider the 
matter, I realized that the ‘result’ was staring me in the face. It is just a matter of 
putting together some well-known facts. 

The effective topos is the world of realizability (Kleene [15]) extended from 
arithmetic to general constructive mathematics. Details are in [ll], and the 
general context in [12] and [21]. The relevant subcategory, called the category of 
effective objects in [ll], is already in Kreisel [16]. Briefly the problem is to show 

* Paper presented at the conference “Church’s Thesis after fifty years”, Zeist, The Netherlands, 
June 14, 15, 1986. 
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that an internal version fi of this category has all indexed products in Eff. (This is 
an indexed/internal version of the fact that the effective objects form an 
exponential ideal [ll].) H owever Girard [lo] already shows that the externaliza- 
tion of @ has all indexed products over Sets. The extension to Eff is analogous to 
tripos theory: the completeness of an indexed poset in Sets gives completeness (as 
the subobject classifier) in the generated topos. (Indeed, the poset reflection of @ 
is well known to be complete, as it corresponds to ‘extensional realizability’ and 
so (Pitts [21]) gives a locale in Eff.) The conceptually natural way to see the 
products in @ itself is to recognize that these should be exactly the products for a 
full subcategory of Eff indexed over itself. Then the passage from Sets to Eff is a 
triviality. 

A more abstract approach to the material of this paper has recently emerged, 
based on an idea of Peter Freyd. Accounts have been prepared in [13] and [3]. 
Yet other aspects have been considered by Rosolini and Scott. They found an 
approach to proving completeness based on the identification of the category P 
with the internally defined category of (double negation) closed subquotients of 
the natural number object. 

In the remainder of Section 0, I treat some background on small categories in 
toposes. Section 1 contains a concrete introduction to the category of effective 
objects (now called modest sets). Section 2 gives the main proof and conse- 
quences are briefly discussed in Section 3. 

0.1. Small full subcategories of a topos 

The reader can consult [14] for background topos theory and for the notion of a 
category object in a topos. I prefer to drop the ‘object’, and talk of a category C 
in a topos 8 with objects Co E 8 and maps C1 E 8. 

Some understanding of fibred and indexed categories is essential. The reader 
can consult [20] or [2]. The telling discussion in Benabou [l] is strongly 
recommended! For ease of exposition, I will mainly use the language of indexed 
categories rather than fibrations. (But note that fibrations describe a more general 
situation.) 

A topos 8 is fibred over itself by the codomain map g2+ 8. That is, it is 
indexed over itself by slice categories 

E- 8/E, 

reindexing being by pullback. A subcategory % of 8 in the general fibred/indexed 
sense consists of a full faithful Cartesian functor 

(A Cartesian functor is one preserving the Cartesian morphisms (pure relabellings) 
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of the fibration. Often this functor will be an embedding, but it seems best to 

allow the more general situation.) 

In the corresponding situation for indexed categories, there is a full and faithful 
functor of indexed categories 

(Were Ce+ 8’ an embedding, %(E) would be a subcategory of (8/E.) 
The Cayley representation (see [9]) will represent any small category as a 

category of sets and functions. This has an analogue over any base topos. A 
category C in 8 gives rise to ifi externalization a category C indexed over ‘8 with 
fibres 

C(E) = 8(E, C). 

This can be identified as some category of ‘sets’ and ‘functions’ in that there is a 
faithful Cayley representation C(E) + g/E natural in E. However I do not need 
this general situation, but rather the case when the internal category C has a 
terminal object 1 and the (internal) global sections functor Homc(l, -) represents 
C faithfully; that is the case when 1 ti generator or C has enough points. 

(Unfortunately computer scientists sometimes use concrete category here!) 
Suppose that the internal category C in 8 has a terminal object 1. Then the 

(internal) global sections functor can be described as a functor of indexed 
categories 

C(E) * 8/E, 

as follows. 
On objects. The generic family of objects of 8 represented in C is given by the 

map p : Ci(1, -)+ Co which appears in the pullback 

C,(l,-) C, 

P 

l4 

(do. 4) 

CO 
(111, id) 

’ co x c, 

where ]l] :CO+ C, is the constant map to the terminal object. Now given an 
object R : E+ Co in C(E) we take the pullback of p along it to get an object 
R+E in 8/E 

On maps. To obtain the generic family of maps of 8 consider first the 
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pullbacks 

PI - C,(l,-) 4 - C,(l,-) 
4 1 1 I P r I P 

Cl----, co do Cl d, ‘C” 

PO is a subobject of C2 and composition m : C2-, C, restricts to m : PO+ C,(l, -) SO 

that 

PO * C,(L-) 

4 I 

commutes. Thus we get a generic map s : PO+ PI. The generic family of maps is 

Now given a map g : E+ C1 in C(E) with domain R = do. g and codomain 
S = dI . g, we pull the above triangle back along g to obtain 

g*P, g*(s) , g*pl 

\J 
E 

But g*P,+ E and g*PI+ E are (isomorphic to) R-, E and S-t E respectively, so 
we have a map in 8/E with the right domain and codomain. 

Definition. Suppose that C is a category in a topos 8 with (explicit) terminal 
object. Then C is (or represents) a small full subcategory of 8 if and only if the 
global sections functor 

C(E)-, 8/E 

is full and faithful. 

0.2 Completeness of internal categories 

Suppose that C is an internal category in a topos $, and that one wishes 
(implausibly enough) to say that C is complete. There are a number of notions of 
varying strengths. One could have a scheme giving a limit for each internal 
diagram in C. (Clearly this should mean ‘in every slice’.) Or better, one could ask 
for a right adjoint to the diagonal functor for each internal category. (Express this 
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in an appropriate internal logic and again it means ‘in every slice’.) However 
since I am not using the internal logic in this paper it seems best to obtain a 
formulation from the notion of completeness for indexed categories. There is no 
point in assuming more than pullbacks for the base category. 

Definition. Suppose that Ce is an indexed category over a category 8 with 
pullbacks. Then %’ is complete if and only if 

(i) % has finite limits, that is each fibre Y(E) has finite limits and they are 
preserved by the reindexing functors, 

(ii) %’ has indexed products, that is each reindexing functor %(a) has a right 
adjoint l-l (Y, such that the Beck-Chevalley condition holds: if 

F’Y- F 

6 
i I 

a is a pullback in 8, then %(P)ofl LY = II 6 0 G%‘(y). 

E’,-E 

Definition. Suppose that C is a (small) category in a locally Cartesian closed 
category 8. Then C is complete if and only if 

(i) C is equipped with the structure of a category with finite limits, 
(ii) the externalization of C has indexed products. 

Remarks. If C is complete in ‘8, then the externalization of C is complete, and 
what is more reindexing preserves the finite limits on the nose. For modelling 
languages one often wants the Beck-Chevalley condition to hold on the nose 
also. 

Though I do not prove it here, it is worth recording the fact (which is ‘almost 
obvious in.the internal logic’) that full subcategories (with terminal object) have 
their limit structure determined by that of the ambient category. 

Theorem. Suppose that % is a full subcategory of a locally Cartesian closed 
category 8 with terminal object so that 

V(E)-+ 8/E 

preserves the terminal object. 
(i) If % has finite limits, then these agree with those of 8. Conversely, if % is 

closed under the finite limits of 8, then % has finite limits. Thus 

%(-) ---* 8/- 

preserves and reflects finite limits. 
(ii) Zf %Y is Cartesian closed, then that structure agrees with the structure in $. 

Conversely, if % is closed under (binary) products and function spaces in 8, then 



140 J. M. E. Hyland 

% is Cartesian closed. Thus 

q-)+ 8- 

preserves and reflects Cartesian closed structure. 

(iii) If % has indexed products, then these agree with those of 8. Conversely, if 
5% is closed under indexed products in 8, then % has indexed products. Thus 

q-)+ 8/- 

preserves and reflects indexed products. 

In particular this theorem applies to small full subcategories of a topos 8 as 
defined in 0.1. Unfortunately, as I write, it is not clear whether there are such 
small categories in a topos, so a weaker notion of completeness is needed. The 
sense and significance of the following definition will be explained in [13]. (It 
amounts to a scheme giving the existence of limits.) 

Definition. Suppose that there is a full subcategory s(8) of a topos 8 such that 
any object in 8 is covered by one in s(a). 

(i) If % is indexed over 8 and is complete as a category indexed over s(8), 
then %? is weakly complete over 8. 

(ii) If C is a small category in 8 whose externalization is weakly complete over 
8, then C is weakly complete in 8 
Say that the category s(a) is sound for % or C. 

0.3. Notation 

The notation is mainly that of [ll] with one main exception. I now use an 
absolute value sign ‘1. - -1 ’ instead of open face brackets ‘1. . -1’ to denote the 
realizability interpretation of a formula. The full subcategory of Eff consisting of 
all separated objects plays an important part in this paper and is written Sep. 
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1. The category of modest sets 
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effective objects discussed in [ll]. There, the category was introduced as a 
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subcategory of the effective topos, and its own categorical properties were not 
systematically presented. Here I try to remedy that deficiency by giving a 
self-contained treatment. 

The idea behind the category of effective objects is familiar and stems from 
Kreisel [16]. An explicitly categorical formulation of the same idea (based on a 
model for the L-calculus in place of a more general applicative structure) is in 
[24]. Originally I used the name effective objects as they generalize the efiective 
operations in [16]. However this terminology is only good for one realizability 
topos. So I have adopted Scott’s recent suggestion to give the objects of the 
category the distinctive name of modest sets. 

1.1. Modest set and effective objects 

Definition. A modest set consists of a set X together with a partial enumeration 
JC = JC~: ]X]+X of X. That is to say, 1x1 is a subset of the natural numbers N, 
and 3d : [XI+ X is surjective. The notation does not distinguish between a modest 
set and its underlying set. The subset 1x1 of N is the set of codes or indices of X. 
(Usually I do not trouble to give n a subscript.) 

If X is a modest set and x E X, then set 1x1 = n-‘(x). 1x1 is the set of codes or 
indices for x. 

A map from a modest set X to another Y is a map f :X+ Y of underlying sets 
such that there is a partial recursive function # with dom 4 2 1x1 and f 0 Ed = 
n 0 C/J : IX] + Y: that is so that the following diagram commutes: 

14 53 IV 

1 P 
X-Y 

f 

It seems reasonable to adopt the language of recursive algebra and say that $ 
tracks f, 

If f :X-t Y is a map of modest sets, then write If I for the set of indices of 
partial recursive functions which track f. 

Finally, it is clear that the collection of maps contains identities and is closed 
under (associative) composition, so that the modest sets and maps form a 

category, the category M of modest sets. 

Remark. Our formulation makes it obvious that ErSov’s category of enumera- 
tions [7] is a full subcategory of the category of modest sets. It consists of those X 
in M with IX] = N. 

In [ll] the full subcategory of (strictly) effective objects in the effective topos 
Eff is described. There is an obvious connection with M. 
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Proposition. There is a full and faithful functor T : M-, Eff whose image is the 
subcategory of strictly effective objects. 

Proof. A modest set X gives rise to an effective object (X, =) determined by 

[x E X] = 1x1 = &({n}). 

The correspondence of the maps is given in Section 7 of [ll]: maps between 
strictly effective objects in Eff are exactly given by maps on underlying sets 
tracked by partial recursive functions. q 

1.2. The modest sets are Cartesian closed 

M has a terminal object 1 defined by 

I= {*>, 

some one-element set, and 

III = (01. 

(Equivalently one could set 111 equal to any non-empty set of natural numbers.) 
The product in M of two modest sets X and Y can be defined by taking the 

product X x Y of the underlying sets, setting 

IX X YI = {(n, m> 1 n E 1x1, m E IV> 
anddefiningn:IXXYI+XXYby 

*7dI(n,m)l=(x,y) iff nx(n) =x and ny(m) = y. 

The projections are the usual ones on the underlying sets which are tracked by 
functions taking (n, m) to IZ and to m. It is easy to check that this is the 
categorical product. 

If X and Y are modest sets, then a function space can be defined as follows. Set 

Y”={f If:X+YinM}, w-7 = u {If I : If I E w 
(so that lYxl is the set of indices for functions which track maps f :X-, Y), and 
define n: IYxl+ Yx by 

n(k)=f iff kE[fl. 

(Note that the notation If I for the indices of functions tracking f which was 
introduced in 1.1 agrees with the notation If I= z-‘(f) also introduced there.) 

There is an isomorphism 

M(Z, Yx) = M(Z x X, Y) 

(natural in Z and Y, and hence in X) obtained from the natural isomorphism at 
the level of sets. 
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Proposition. M is Cartesian closed. 

In view of the identification of M with the strictly effective objects of Eff, this 
proposition can also be deduced from Section 7 of [ll]. Strictly effective objects 
are closed under product and function space in Eff. In particular we have the 
following result. 

Proposition. The functor T : M + Eff preserves the Cartesian closed structure. 

1.3. Families of modest sets indexed by a modest set 

Suppose that A is a modest set. There are two ways to think of an A-indexed 
family of modest sets. 

(i) There is the traditional category-theoretic picture of a map whose fibres are 
the members of the family. So an A-indexed family is just a map f :X-A in M. 

(ii) There is the traditional set-theoretic picture of a map from A to M. To do 

this forget about the structure so that an A-indexed family is just a collection 
(Xa 1 a E A ) of modest sets indexed by the underlying set of A. 

Given a collection as in (ii) with Ed, : IX,1 +X, for each a E A, we construct a 
modest set X as follows. We set 

the disjoint sum of the X,, 

anddefinez:lXl+Xbyn((n,m)))=xifandonlyifn~lal, rnEl_xl andxEX,. 
It seems reasonable to adopt Martin-Lof’s notation and write X = CaeA X,. 
There is an obvious map of sets X-A which sends all of X, to a and this map is 
tracked by the function sending (n, m) to n. This gives a map f : X+A of 
modest sets. 

Conversely a map f : X+A in M gives a collection (Xa 1 a E A) of modest sets 
as follows. Set 

-K = {x If(x) =a), Ixzl = u {IN I x Em, 

and define JC~ : IX, I+ X, to be the restriction of ;r~ to IX, I. 
Of course functions f :X +A in M are objects of the slice category M/A. The 

equivalence of the two notions of indexed family can be expressed by imposing an 
equivalent category structure on the indexed collections. 

Definition. Let A be a modest set. Given collections {Xa I a E A) and (Y, 1 a E 
A) of modest sets, a map from one to the other (over A) is a family of maps 
h, : X, * Y, such that there is a partial recursive Q!J : IA I + N satisfying n E la I implies 
r/~(n) an index for h,, all a E A. It is easy to give identities and check closure 
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under (associative) composition. Thus collections indexed over A form a 
category, the category MA of collections of modest sets over A. 

Proposition. The two constructions described above are (the object parts of) 
equivalences between the slice category M/A and the category MA of collections of 

modest sets. 

(The only apparent difference between objects in MA and in M/A is that those in 
MA contain no information about codes of A. But this comes into the definition of 
maps. There is an analogous phenomenon already for ordinary sets. To make a 
fibred set from an indexed family one makes the fibres disjoint.) 

1.4. Pullback of modest sets 

One natural way to think of pullbacks is in terms of indexed collections. 
Suppose given a map h : B + A in M and an A-indexed collection (Xa ( a E A) of 
modest sets. Reindexing gives a B-indexed collection (Xhcb) 1 b E B). Clearly 
reindexing extends to maps and gives a functor 

Mh:MA-+MB. 

Just as in the category of sets this gives rise to the pullback functor. Compose 
with the equivalences of 1.3 to get a functor 

h* :MIA+MIB, 

such that 

MIA A M/B 

ll 1r 
MA oh_ MB 

commuts up to natural isomorphism. 
A pullback functor h * : M/A+ M/B should be right adjoint to the functor 

I,, : M/B+ M/A, the indexed sum along h, obtained by composition with h. Now 

given Y + B in M/B and (X0 1 a E A) in MA, it is easy to see that maps 

correspond exactly to maps 

((ChY),(a~A) -,(x,la~A) inMA. 

The required identification follows from the equivalence in 1.3. 

Proposition. h* : M/A 4 Ml B is a pullback functor in M. 
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An equivalent explicit description of the pullback can be given as follows. 
Suppose given f : X+ A. We set 

h*X = {(b, x) I h(b) =f (x)1 
(the pullback at the level of sets), 

Ih*XI = {(n, m> I n E PI, m E 1x1, h(b) =f@)> 

(effectively, the pullback of IBI and 1x1 over A), and define Ed : Ih*XI + h*X by 

;n((n, m)) = (b, x) iff n E lbl, m E 1x1 and h(b) = f (x). 

Not only does M have pullbacks, but using a characterization of pullbacks in 

Eff (2.8 of [12]) one sees that they correspond under T to pullbacks in Eff. 
Putting this together with the corresponding result for products (1.2), one has the 
following result. 

Proposition. M has finite limits and T : M+ Eff preserves finite limits. 

For completeness one should note the following triviality. 

Proposition. T : M+ Eff preserves the C-functors in M. 

The following is an important consequence of the preservation properties of T. 

Proposition. The Beck-Chevalley condition holds in M: if 

B’h” A’ 

k1 Ik 
B?A 

is a pullback, then h*o Ck = Ckoht*. 

Proof. The condition holds in the topos Eff and T :M+ Eff is full and faithful 

and preserves the structure. Cl 

1.5. Indexed products: the right adjoint to pullback 

Given a map h : B -+A in M, the indexed product along h is a functor 
& : M/B + M/A (if such exists) right adjoint to h* : M/A+ M/B. For g : Y-, B 
in M/B we expect IIh 0 Y E M/A to be such that a fibre (II,, 0 Y)n is the modest set 
of sections of g : Y+ B over h-‘(a). So it is natural to work with indexed 
collections. 

First however note that h-‘(a) can be regarded as a modest set where 

W’(a)1 = {n E IBI 1 h(n(n)) = a), 
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and where n : Ih-‘(a)l+ h-‘(a) is just the restriction of ng. It is in a natural sense 
a modest subset of B, which corresponds to a (canonical) closed manic in Eff as in 

WI.) 
Suppose that ( Yb 1 b E B ) is in MB and let g : Y+ B be the corresponding 

object of M/B defined in 1.3. For each a E A, define (II, * Y)= as a modest subset 
of the function space Yh-‘@) as follows. Take 

(II,. Y)O = {k:h-‘(a)+ Y 1 gok = idh-l(o)}, 

I(IL, . YLl = U WI 1 k E (II, - %I, 

with 3t induced from the function space. Note that if there is no b with h(b) = a, 

then as one expects (II,, . Y), is (isomorphic to) 1. 

Amap (XO]a~A) to ((II,.Y),] a E A) in M” consists of a family pa :X,+ 

(fl, . Y), of maps whose indices can be found effectively from codes of a. Given 

(pa 1 U E A) define qb z-&(b)+ yb by 

qb@) = %((Pw(X))(b)) 

(where n2 denotes the second projection from Y = {(b, y) ) y E Yb}). Clearly 
qb : it&@)+ Yb is a map of modest sets for each b E B, and indices for qb can be 
found effectively from codes for b. Thus (46 I b E B) is a map (Xh(b) ) b E B) to 
(YbIbEB) in MB. Conversely given (46 ( b E B) define pa :Xa+ (n,, . Y)a by 

setting 

(p&))(b) = (b, qb@)) 

for b E h-‘(u). Again one can check that (pa I a EA) is a map (X= I a EA) to 
((&.Y)alu~A) inMA. Th ese two constructions are inverse to each other and 

natural. So the functor Mh :MA+ MB has a right adjoint. Now use the 
equivalence of 1.3. 

Proposition. The pullback functor h* : M/A + M/B has a right udjoint 

&:M/B-+M/A. 

Note that the Beck-Chevalley condition holds for C and hence by taking right 
adjoints for l-I. Again II-functors in M coincide with those in the large category 
Eff. A direct proof would be laborious, but an indirect one will be provided by 
the analysis in [ 131. 

Proposition. T : M+ Eff preserues II-functors. 

The following theorem encapsulates the results of the last few sections. Recall 
that a category is 1ocuZZy Cartesian closed if and only if it has finite limits and each 
slice category is Cartesian closed. 

Theorem. M is u locully Cartesian closed category. 
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Proof. Exponentials in slices came from n-functors and pullbacks. (See, e.g. 

PI.) 0 

It follows from [25] that M is a model for the version of Martin-Lof type theory 
with the unintended extensional equality described in [19]. 

1.6. Finite colimits in M 

Finite colimits can be computed in M in a quite straightforward way. M has an 
initial object, 0, the empty set with unique partial enumeration. Given objects X 
and Y of M, take X + Y, the coproduct of the underlying sets, put 

IX+ YI = ((0, n> In E I-q) lJ 107 4 112 E IV>9 

anddefinen:(X+Y(+X+Yby 

n((O,n))=x~X ifneIXl,XEX, 

~d((l,~~))=yeY ifneIyl,yeY. 

There are obvious maps X-,X + Y, Y + X + Y making X + Y the coproduct of 
X and Y. Finally given maps f, g : X=f Y in M, take Y, the coequalizer of the 
underlying sets CJ : Y + Y, set I El= 1 Y I and define n : I PI + y to be 4 0 ny. Then 

is a coequalizer diagram in M. 

Proposition. M has finite colimits. 

For completeness at this point note the following. 

Proposition. M has a natural number object and T : M+ Elf preserves it. 

Proof. The identity on N gives a natural number object in M, and T carries it to 
the standard (N, =) in Eff. Cl 

The coproducts in M are well behaved. 0 is a strict initial object and coproducts 
are disjoint and stable under pullback. In particular, by an easy extension of [25], 
M provides a model for (the unintended version of) Martin-LGf type theory with 
sum types. Also coproducts in M correspond to those in Eff by the description in 

P21. 

Proposition. M has stable @kite) coproducts and T : M-, Eff preserves them. 

The situation for coequalizers is different. Recall first from [ll] the following 

two facts. 
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(1) The image of M in Eff is closed under subobjects in Eff. 

(2) The image of M in Eff is not closed under all quotients in Eff but only 
under those by a closed equivalence relation. 
Take a quotient in Eff of an effective object by a non-closed equivalence relation. 
By (1) its kernel pair lives in (the image of) M; so by (2) the coequalizer in M of 
the kernel pair does not map to a coequalizer in Eff. 

A concrete example based on the failure in (2) may help, Consider the quotient 
(N, -) of the natural number object (N, =) in Eff where 

]n -m]={(n,m, k) [Vi>k:n.iJt,m.iL}. 

(Here “n - i” denotes Kleene application of the nth partial recursive function to i 
and “J” denotes termination.) The relation - is not closed for the double 
negation topology and hence (N, -) is “not a modest set”. The kernel pair of the 
quotient (N, =)+ (N, -) does live in the category of modest sets and can be 
represented as follows. Take 

E = {(n, m> 13k (n, m, k) E [n -ml>, 

PI = {(n, m, k) 1 (n, m k) E [n -ml) 

and n : JEl+ E the obvious map ( IZ, m, k) + (n, m), The two obvious projections 
E 3 N in the category of modest sets M are the kernel pair. Their coequalizer in 
M is the set of equivalence classes m under the relation 

3k (n, m, k) E [n -ml, 

with 3t : I Nj --, f%l determined by setting 

Ibll = [nl 
for [n] the equivalence class of It. So R (that is T(R)) is the separated reflection 
of (N, -) in EB, obtained by applying double negation to the relation -. (Why 
this inevitably happens will be explained in [13].) 

1.7. Monies and epis in M 

Proposition. Let f :X+ Y be a map in M. 
(i) f is manic if and only if f is injective on underlying sets. 

(ii) f is epi if and only if f is surjective on underlying sets. 

Proof. (i) is obvious as 1 is a generator. So the global sections or underlying set 
functor is faithful and preserves pullbacks (cf. 1.4). 

(ii) is not quite so obvious: but the underlying set functor is faithful and 
preserves pushouts by 1.6. 0 

The functor T :M-, Eff preserves monies as it is faithful and preserves 
pullbacks. However, 1.6 shows that the dual argument does not work for epis. 
For a counterexample let 2 be the modest set n: (0, l}+ (0, 1) with JG the 
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identity and C the modest set JC : N + { T , -l } where n is determined by setting 

Jr-l(z) = {n 1 n * ?zJ}. 

Then 2 is a coproduct of 1 with itself while C (or rather T(C)) is the r.e. 
subobject classifier in Eff considered by Rosolini [23]. A bijection from (0, 1) to 
{ T , I } is a map of modest sets which is clearly (manic and) epi. However there 
is no surjection from 2 to C in Eff (otherwise 2 would be isomorphic to C in Eif). 

Proposition. T : M+ Elf preserves monies. But M is not balanced (manic and epi 

does not imply iso) and T does not preserve epis. 

1.8. Surjective manic factorization in M 

T does preserve some epis, the surjections (or stable extremal epis) in M. 
Consider f :X+ Y in M satisfying: 

(*) there is a partial recursive I@ : 1 Y] + 1x1 such that the following diagram 

commutes: 
1x1 z IV 

Note the following facts about (*) 

Lemma 1. Maps satisfying (*) are stable under pullback. 

Proof. Straightforward on the basis of 1.4 q 

Lemma 2. Any map X A Y in M factors as Xx x3 Y with f satisfying (*) and 
m manic. (And by Lemma 1 this factorization is stable.) 

Proof. Given f :X+ Y in M, let XAXX Y be the surjection injection 
factorization at the level of sets. Set Ikl = 1x1 and define n : l_%l+ 8 to be f 0 nx. 
This gives the factorization in M. 0 

Lemma 3. Zf f satisfies (*) then f is extremal epi. 

Proof. Suppose that XB, Z % Y is a factorization of Xf, Y with m manic. As f is 
a surjection on underlying sets, m is an isomorphism on underlying sets. There 
are partial recursive $ : IX] + ]Z] (as g is a map) and 3 : I YI * 1x1 (as f satisfies 
(*)) so that 

1x1 -f+ WI 1x1 L IV 
xl In and xl b 

x,-z X,-Y 
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commute. But then 
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commutes so that m has an inverse in M. Cl 

Lemma 4. Any extremal epi satisfies (*). 

Proof. Take its factorization. 0 

The following proposition follows from the lemmas. 

Proposition. M has (stable) surjective-manic factorization. 

One can readily read the following lemma off from the characterization of epis 
(equivalently surjections) in Eff. 

Lemma 5. f satzkjies (*) if and only if Tf is epi in Eff. 

(This gives an alternative proof of Lemma 3.) 

Proposition. T : M+ Eff preserves surjective-manic factorizations. 

Recall that a category is coherent (or logical in the terminology of Makkai and 
Reyes [18]) just when it has finite limits, surjective-manic factorization and stable 
finite sups of subobjects. However this last follows from stable finite coproducts 
and surjective manic factorization (stable images in [18] where see the proof of 
3.3.10). Of course T preserves all relevant structure. 

Theorem. M is a coherent category and T : M+ Eff is a coherent functor. 

Finally note that as there are epis which are not surjections, M is not a 
pretopos. A pretopos closely related to M will be described in [13]. 

1.9. The category of partial equivalence relations 

It is easy to see that M is an essentially small category. 
A partial equivalence relation R is a symmetric and transitive relation; so R is 

only reflexive on its field. R can be identified with its set of equivalence classes 
which partition some subset of the domain of the relation. Context should make 
clear which aspect of R is meant. Given a partial equivalence relation R on N, let 
IR 1 be the field of the relation and 3d : JR I + R the quotient map taking a natural 
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number to its equivalence class. Let P denote the full subcategory of M whose 
objects are n: ]R(+ R for some partial equivalence relation R. Clearly P is 
(isomorphic to) the familiar category of partial equivalence relations (see for 
example [24] or [ll], and also [16] and [lo]). 

Proposition. The embedding P+ M is a (weak) equivalence of categories. 

Proof. Take n: 1x1 +X in M. Define R by R(n, m) if and only if n(n) = n(m). 
Then the corresponding Ed : (RI + R is isomorphic to n : IX] + X in M. 0 

Clearly P is a small category equivalent to M, so that M is essentially small. 

2. An internal category of modest sets 

The small category P described in 1.9 is an internal category in Sets, and so is 
mapped by the inclusion A:Sets+ Eff to an internal category in Eff. However 
this category AP will not usefully represent the category of modest sets: if A is a 
modest set in Eff, then Eff(A, AP) is not equivalent to M/A. Compare it with the 
category of MA of collections of modest sets over A introduced in 1.3. Eff(A, AP) 
has a reasonable collection of objects but quite the wrong maps: there is no 
uniformity as required in the definition of 1.3. 

However there is a subcategory f of AP which does represent the modest sets 
well. It has (in Eff) all the good categorical properties of M. Moreover, and this is 
conceptually vital, it is a full subcategory of Eff in the sense of the introduction, 
The essential image of the externalization of P in Eff/(X, =) form the modest sets 
indexed over (X, =). As indexed over Sets, P is complete, a fact essentially in 
[lo]. It is a short step from that to the weak completeness of P in Eff. Thus this 
section closes by establishing the existence of a small complete category in the 
effective topos . 

2.1. The internal category fi 

Definition. fi is the subcategory of AP defined as follows. The objects of P are 
those of AP so that 

(P), = APO. 

The maps of P are given as a canonical manic 

(P)i - APr 

with existence predicate E defined by 

E(f) = If I = {a 1 a an index for f} 

where f : R-* S in P. (That is, E(f) = {a 1 nRm +a - n S a - m, and a induces f}.) 
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It is easy to check in Eff that @), contains identities and is closed under 
composition so that p is indeed a subcategory of AP. In fact, p is defined so that 
there is an immediate connection with the categories MA defined in 1.3 (see 2.3). 

2.2. Properties of B 

Express the categorical properties of M and hence P, discussed in Section 1, in 
terms of additional structure, and these properties can all be described in finite 
limit logic (see [6] for example). Hence they hold for the internal category AP in 
Eff. The fact that P inherits these properties is a consequence of the effective way 
in which the structure is defined in M and P. Note that @ itself has separated 
equality and so the analysis of [ll] applies to simplify the realizability 
interpretation. 

I will discuss briefly the case of finite limits as that is crucial to this paper. The 
other properties are left to the conscientious reader. The terminal object is easy, 
so consider pullbacks. By [ll] it suffices 

(i) to take codes a, b for maps f, g with common codomain in P and compute 
codes for the pullback diagram 

(ii) to take codes for a commuting diagram 

that is, codes c, d for the maps h, k, and compute a code for the universal 
factorization V + U. 

Assume the usual definition of U as a subobject of the product R :: S. Now (i) 
is easy. The codes needed are those for the maps U+ R and U+ S: for these, 
take indices for the first and second projections. (It is a little misleading that these 
are independent of a and b.) As for (ii), what is required is a code for the 
function 

AX. (c.x, d.x) 

which is effectively computable from c and d. Note that there is enough 
uniformity to ensure that d has finite limits in the strong sense that it comes 
equipped with the relevant structure (adjoints to the ‘diagonal functors’). 
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Theorem. The internal category f in Eff 

(i) has finite limits, 

(ii) is locally Cartesian closed, 
(iii) has finite colimits and a natural number object, 
(iv) is a coherent category with stable sums. 

2.3. The externalization of P 

By definition, the objects of P form a set or sheaf (for the double negation 
topology), while the maps of $ are at least separated (again for the double 
negation topology). Thus the sheafification functor a and the separated reflection 
functor s can be used to describe the externalizaton of k. 

Let (X, =) be an arbitrary object of Eff. Note that there are two ways to 
describe a sheafification a(X, =). We can factor X out by the partial equivalence 
relation defined by 

x-x’ iff Ix=x’]#S; 

then 

a(X, =) = A(X/-). 

Or define on X a new equality =L2, where 

then 

(x =aXtl = (0” 

a(X, =) =(X, =,). 

Analogously, there are two ways to describe a separated reflection s(X, =), so 
that there is an epic-manic factorization 

(X, =)+s(X, =)wa(X, =). 

s(X, =) can be described by a canonical manic on A(X/-) namely by the relation 

[xl+U {Ix'l 1 x -x’> 

for [x] E Xl-. Or define on X a new equality =S where 

then 

As P, is a sheaf, maps R : (X, =)+ p, are in (natural) bijective correspondence 
with maps R : a(X, =)+ p,,. Assume for simplicity that Ix I # 0 for all x E X. Then 
such a map is given by an X-indexed family (R,),,x of partial equivalence 
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relations such that 

Ix1 = x2] f 0 implies R,, = R,,. 

As described in the introduction, such a map gives rise to an object R + (X, =) 

of the slice category, by applying the internal global sections functor. Direct 
calculation gives a representation as follows: R has as underling set 

{(x, r) 1 x EX r E Rx) 

with equality given by 

1(x1, r1) = (x2, r*)l = 1x1 = -%I x b-1 = bl. 
(This makes sense as if Ix1 =x21 # 0 then r,, r2 are in R,, = R,, and hence Ir, = r2] 
makes sense. Otherwise, 1(x,, r-r) = (x2, rz)l is empty.) The map R-+X has the 
obvious graph 

((x, r), Y)+ Ix =A X I4 

As P, is separated, maps g : (X, =)+ PI are in natural bijective correspondence 
with maps g : s(X, =) --, @, . Assume still that lx I# 0 for all x E X. Then by Section 
6.3 of [ll] such a g is an X-indexed family (gx)xex in PI such that 

Ix1 =x21 # 0 implies g,, = g,,, 

and such that there is a code c with 

LYE(xI implies c*aElgxl. 

As described in the introduction there is an induced map g : R += S over (X, =), 
where R + (X, =) and S-, (X, =) arise from the domain and codomain of g. 
Direct calculation gives the graph of g: 

((4 r), (Y,S))-+IX =yl * kx(~)=~L 
where of course 

Set 

P(X, =) = Eff((X, =), P), 

so that P is the externalization of @, usually written [b] in the indexed category 
literature. Then the above is a description of the global sections functor at 

(X7 =), 

P(X, =)+ Eff/(X, =). 

These are the components of a functor of indexed categories P(-)+= Eff/- from 
P(-) to the standard fibration of Eff over itself. (As explained in the introduction, 
reindexing in P(-) inevitably corresponds to pulling back in Eff/-.) 
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Recall the functor T : M+ Eff. For A a modest set, define P(A) by 

P(A) = Eff(TA, @. 

(Regarding M as a subcategory of Eff, P(A) is P-indexed over A.) Clearly P(-) is 
a category indexed over M. Inspection of 1.3 gives the following proposition. 

Proposition. For A a modest set, there is an equivalence functor 

P(A)-, MA, 

and hence an equivalence functor 

P(A)+ M/A. 

This gives rise to a (weak) equivalence of indexed categories 

P(-)-+ M/- 

(from P(-) to the standard fibration of M over itself). 

Remarks. (1) For a general discussion of equivalence of indexed categories, the 
reader may consult [2]. 

(2) There are other reasons for regarding P as a good internal represenation of 
the modest sets, but for the moment the above proposition must suffice. 

2.4. P is a full subcategory of E$ 

Recall from the introduction that an internal category is a full subcategory if 
and only if the global sections functor is full and faithful. In the case of P, 
faithfulness is easy and the problem is to show that the functor is full. 

Take (X, =) in Eff with (xl # 0 for all n E X. Suppose that R, S are in P(X, =) 
with corresponding indexed families (Rx),,, and (,Sx)xsx and maps R+ (X, =), 

S-(X, =) as described in 2.3. Take a map [G] (with graph G) such that the 
following diagram commutes: 

R’G’-S 

\J 

(X, =) 

Claim. There is a (uniqfie) family of maps g, : Rx + S, in P, such that 

Ix1 =x21 # 0 implies g,, = g,,, 

and such that there is a code c with 

a E 1x1 implies c - a E IgJ, 

which induces the map [G] as described in 2.3. 
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To prove the claim, just hack it out! Write down the conditions that 
G((x, r), (y, s)) is strict, extensional, single-valued, total, and makes the above 
diagram commute. The first two conditions mainly provide hygiene. The third and 
fourth provide for each r E R, a unique s E S,,, and the fifth ensures that S,, = S,. 
This gives the maps g, : Rx +- S, and it is routine to check that G is equivalent to 

Ix=yl A Ig&)=sl 

as described in 2.3. 

Theorem. The global sections functor 

P(-)+ Eff/- 

is full and faithful so that $ is a full subcategory of Eff. 

2.5. The indexed category of all modest sets in E$ 

It is natural now to consider the essential image of P(-) in Eff/-. 

Definition. For (X, =) an object of Eff, let M(X, =) be the full subcategory of 
Eff/(X, =) whose objects are isomorphic to those in the image of 

P(X, =)+Eff/(X, =). 

M(X, =) is the category of modest sets over (X, =). M(-) is the indexed category 
of modest sets (the category of modest sets indexed over Eff). 

It is clear that M(-) is indeed an indexed category, and that its (Grothendieck) 
fibration embeds by a full faithful Cartesian functor into E@-+ Eff. Note that 
M(-) is essentially small. Any R - (X, =) in M(X, =) is a pullback of the map 
G--, AP,, corresponding to the identity APO* APO. Note also that there is an 
obvious connection with the category M of Section 1. For an object A of M there 
is an equivalence 

M/A-+M(TA) 

(where T : M+ Eff is in 1.1). The following triviality is worth stating as a separate 
proposition. 

Proposition. M(-) has finite limits and M(-)-, Eff/- preserves them. 

Proof. @ has finite limits and hence so do P(-) and M(-). The preservation is a 
consequence of generalities in 0.2, but could be shown directly. 0 

Recall that the objects of P form a sheaf and the maps a separated object. 
These facts have consequences for the indexed category M(-). 
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determines a diagram 

RFR7T 
(X, =) - s(X, =) - a(X, =), 
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where the squares are pullbacks and R, R’, R” are modest over (X, =), s(X, =), 
a(X, =) respectively. Also any g : (X, =) + PI factors uniquely through s(X, =). 
The information can be summed up as follows. 

Proposition. (i) Composition along (X, =) + s(X, =) induces an isomorphism of 

categories 

Ps(X, =)S P(X, =). 

Consequently pullback along (X, =)--f s(X, =) induces an equivalence 

Ms(X, =)‘;M(X, =). 

(ii) Composition along s(X, =) -a(X, =) induces an isomorphi&n of objects 

(Pa(X, =))o+ (Ps(X7 =))o. 

Consequently pullback along s(X, =) w a(X, =) induces a functor 

Ma(X, =)+Ms(X, =) 

which is essentially surjective on objects. 

2.6. The category fi indexed over Sets 

Recall from [ll] the embedding A : Sets- Eff. For I a set, define 

PA(Z) = P(AZ) = Eff(AZ, P). 

This category PA(-) indexed over Sets is familiar to logicians. 
The following analysis is a special case of that of 2.3. As P is a subcategory of 

PA in Eff (and as A is full and faithful) one can regard PA(Z) as a subcategory 
of P’ (the Z-fold product of P in Sets.) The objects of PA(Z) are then Z-indexed 
families (Ri)i,r of partial equivalence relations. An Z-indexed family (&I of 
maps f;: : Ri+ Sj, regarded as a map AZ+ API, factors through (P)1 if and only if 
n {I$] : i E I} # 0. These are the maps in PA(Z). Clearly PA(-) is thus a category 
indexed over Sets. Given (Y :.I+ Z, PA(o) is just reindexing: 

PA(a = (R,(j))jc,, 

PA(a) = (f+))jEp 

This indexed category is the (by now standard?) model for higher order 
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polymorphism introduced in Girard’s thesis. (Those with access to [lo] will see 
that, in order to deal with the Dialectica Interpretation, Girard uses a variant 
where types come equipped with canonical elements. The difference is not 
significant.) 

In essence the two propositions of this section are proved in [lo]. 

Proposition. Each PA(Z) is Cartesian closed and reindexing preserves this struc- 
ture. So PA(-) is an indexed Cartesian closed category over Sets. Furthermore the 

functor 

PA(-)+ Eff/A(-) 

preserves the Cartesian closed structure. 

Proof. The Cartesian closed structure is given pointwise in each PA(Z). The 
preservation is easy to check directly. 0 

Also for each a: :.Z+ Z in Sets, one can define right and left adjoints nda and 
Cda to PA(a) just as in tripos theory (see [12]). Set 

N 
la(i) = il = [ 0 

if a(Z) = i, 
otherwise, 

and then 

L, Csj)jd> = <nj [I 4) = i I -+ Sjl)idt 

Cda ((Sj)jd) = (Uj la(i) = iI x sj)i-zP 

(Here [la(Z) = il+ Sj] denotes the function space in P. The “]cu(Z) = iI” is 
redundant in the definition of C, but not in that of l-I.) 

Proposition. As an indexed category over Sets, PA(-) is complete. Also the 

finctor 
PA(-)+ Eff/A(-) 

preserves finite limits and indexed products. 

Proof. By 2.1 finite limits exist and are preserved under reindexng. Preservation 
is easy (though here we could use 0.2 on P(-)+Eff/(-). The right adjoints I-I,, 
have just been described, and the Beck-Chevalley condition is routine. That l-Ida 
as defined gives the right product in Eff can again be checked by direct 
calculation. (It is really in the internal logic.) 0 

It is worth noting here that the Beck-Chevalley condition holds ‘on the nose’ 
and not just ‘up to isomorphism’. 
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2.7. The completeness of M(-) over E$ 

The reader should have in mind the discussion of completeness in 0.2. (I do not 
need to use the results stated there.) 

Proposition. As a subcategory of Eff/-, the indexed category M(-) is closed under 
&for all maps h of sheaves. 

Proof. Recall from [ll] that the image of A: Sets+ Eff is equivalent to the 
category of sheaves. P(-) + M(-) is an equivalence so the result follows from 
2.6. 0 

The first step is to extend this result to all maps between separated objects. 
Recall from 2.5 the diagram 

I+ I? 1 
(X, =) - s(X, =) - a(X, =) 

induced by R : (X, =)+ APO. Write r for s(X, =)+ a(X, =) as a (manic) map in 
Eff, and E (or E + a(X, =)) for the corresponding modest set over a(X, =). (It is 
obviously a modest set, in fact a subobject of 1 over a(X, =).) 

Lemma. Over a(X, =), R’ = R” x E, so since M(a(X, =)) is closed under 

products in Eff, C, R’ is modest. 

Lemma. There is an isomorphism of objects over a(X, =) 

j&R' = (CT R’)“(-- RlrE), 

and hence as M(a(X, =)) is closed under exponentials in each fibre of Eff/(-), 
II, R ’ is modest. 

Proof. The isomorphism is trivial category theory. 0 

Proposition. Zf f : (X, =) -9 (Y, =) . 1s a map of separated objects in Eff, then &R 
is modest (over (Y, =)). 

Proof. As we are dealing with separated objects it is sufficient to show that &f R’ 
is modest (over s(Y, =)). Write p for the map s(Y, =)+a(Y, =). One has 
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isomorphisms 

(as p manic) 

But n, R’ is modest by the second lemma, and M(-) is closed under II, (uf a 
map of sheaves) and of course under pullback. Cl 

Recall that Sep denotes the full subcategory of Eff consisting of all separated 
objects. The following results are immediate. 

Theorem. As categories indexed over Sep, M(-) is a complete subcategory of 
Eff/-. 

Corollary. M(-) is a weakly complete subcategory of Elf/- indexed over Eff. 

Proof. Any object in Eff is covered by a separated object, so Sep is sound for 
M(-) in the sense of Section 0.2. 

Of course, as M(-) is the essential image of P(-) in Eff/-, P(-)+M(-) is an 
equivalence, so the final result is obvious. 0 

Theorem. The small category @ is weakly complete in Eff. 

The mistake which led me to believe that $ is complete in the strong sense is 
sufficiently instructive to be worth spelling out. For any (X, =) in Eff, 

P(s(X, =))+ P(X, =) 

is an isomorphism. Hence for any map f : (X, =)-, (Y, =) there is a right adjoint 
Ilf to reindexing obtained from &. Thus P(-) (or indeed M(-)) has all 

n-functors. So why is P(-) not complete? The problem is the Beck-Chevalley 
condition. It does not transfer from separated objects to all objects as the 
separated reflection does not preserve pullbacks. Since many people never bother 
to check (or even to mention!) the Beck-Chevalley condition, I hope my 
oversight can serve as an awfuf warning. 

3. Conclusion 

This section contains some general remarks about small complete categories, 
and some brief comments on (problems connected with) the way in which such 
categories model strongly polymorphic systems. Because there are still unsolved 
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problems associated with it, I am leaving the notion of completeness vague. So 
this section is just an impressionistic sketch. 

3.1. Small category theory 

It is customary to remark that basic category theory is constructive in character. 
(This is quite misleading in fact as is shown for example by the number of 
constructively inequivalent notions of completeness.) The discovery of interesting 

small weakly complete categories, albeit in a constructive setting, does provide 
new applications for the results of standard category theory. Tiresome size 
restrictions (for example, the solution set condition) are no longer needed, so the 
theorems seem more natural. The following is a good example. 

Proposition. Any small complete category is cocomplete. 

Proof. I sketch the argument for a weak notion of completeness and leave it to 
the reader to check the result for stronger notions. Suppose C is small complete 
and D :J+ C is a small diagram. Let Cot(D) be the category of cocones under D 
and let P: Cot(D)-, C be the obvious projection. Then define I&, D to be 

l@Coc(D) P : construction of the colimit cocone is obvious. 0 

Remarks. (1) Classically one does not stress this aspect of the adjoint functor 
theorem. The proposition applies only to complete posets (lattices), that is, 
posets where all infima exist; and it says that they are cocomplete, that is, all 
suprema exist. 

(2) For quite general reasons (as observed in 0.2) the limit structure of the 
indexed category M(-) is the same as that in Eff. But the same is not true of the 
colimit structure. The AZ coproduct of 1 in Elf is AZ, which is not in M, if Z has 
two or more elements. 

A clearer application of the adjoint functor theorem is the following. 

Proposition. Suppose that C is a small complete subcategory of a locally Cartesian 
closed category (including the terminal object). Then there is a reflection ‘from 8 to 
C’: that is, the functor 

C(-)+ a/- 

of indexed categories has a left adjoint 

8/-j C(-). 

Proof. As observed in 0.2, C(-) + 8/- preserves all limits; and C is small so the 
result follows by an indexed adjoint functor theorem (cf. [20]). q 
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Recall now a general notion of T-algebra. If T : C+ C is any endo-functor on a 
category, the category of T-algebras has as object maps 8 : TX* X in C. Maps 
from 13 : TX+ X to @ : TY+ Y are maps (Y:X+ Y in C such that the following 
diagram commutes: 

TX -% TY 

The following are easy exercises in constructive category theory. 

Proposition. Zf C is a (small or large) complete category and T :C+ C is any 
functor, then the category of T-algebras is complete. 

Corollary. Zf C is a small complete category and T : C+ C is any functor, then 
there is an initial T-algebra. 

Proof. This is the ‘theorem on the existence of initial objects’. Cl 

In the language of computer science one would say that the functor T has a 
least tixed point: if 8: TX-X is initial then 8 is an isomorphism. 

The above corollary is related to the celebrated paper of Reynolds [22]. In 
essence, Reynolds first gives an indexed category version of a proof of the 
existence of weak initial objects in a (small) category with small products. (He 
does this in the language of the second-order A-calculus.) Then he derives the 
existence of an initial object in a category which also has equializers. So in effect 
Reynolds proves the above corollary in the more general setting for polymorph- 
ism described by Seely [26]. 

One final point derived from [22] is worth making. The functor [[-+2]+2] is 
covariant on p and hence has a (least) fixed point. It follows that there is a 
modest set A and an isomorphism from A to [[A + 2]+ 21. In the case of Kleene 
realizability such a modest set seems hard to understand. (For function 
realizability it would be the natural number object.) Indeed the existence of such 
an object (and others like it) remained unnoticed until the perspective described 
in this paper was developed. 

3.2. Models for the polymorphic lambda calculus 

In this section I will do no more than sketch how small complete categories in 
toposes model strong type theories. 

The best place to start is with the higher order polymorphic lambda calculus, 
that is, the system F, of Girard [lo]. There is a clear description of the type 
system under the name ‘PL-theory’ in [26]. Seely has also made a choice of 
categorical structure, a ‘PL-category’, to correspond to the type theory. Essen- 
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tially, a PL-category is a hyperdoctrine (Lawvere [17]) over a cartesian closed 
category with a generic object in some fibre. In Seely's notation, it is a category 
Q indexed over a category $ satisfying certain conditions. 

Suppose C is a small weakly complete cartesian closed category in a topos 'jg. 
Suppose there is a category s('jg) sound for C in the sense of 0.2 which is cartesian 
closed, and such that Co is in s('jg). Then say that 'C is sound in 'jg'. Take 
(economically) $ to be the cartesian closed subcategory of 'jg generated by Co (or 
extravagantly take $ to be s('jg) itself). Then for A E $ define 

Q(A) = 'jg(A, C). 

Showing that ($, Q) is a PL-category is straightforward except for one point. To 
reflect manifest properties of syntax, a PL-category is defined so that relevant 
Beck-Chevally conditions hold 'on the nose'. Of course, if $ is the subcategory 
L1(Sets) of Eft' and C is P, then as noted in 2.6, the Beck-Chevalley condition 
does hold 'on the nose'. But this is the exception not the rule: for example 'up to 
isomorphism' is the best one can do over Eft' (see 2.8). 

Fortunately the indexed category version of weak completeness is strong for 
small categories: one can obtain internal right adjoints for diagonal functors. I 
will treat here the simplest aspect. Let A be an object of s('jg), let e denote the 
evaluation map 

and p the projection 

Then e E 'jg(C~ X A, Co) and hence IIp e E 'jg(C~, Co). One can easily show that 
IIp e is the object part of an (internal) functor 

which is right adjoint to the diagonal. Now one can define product along all 
projections of the form A x B ~ B by 

'jg(A x B, C) == 'jg(B, CA ) ~(B.m) 'jg(B, C). 

The relevant cases of the Beck-Chevalley condition have become trivial. If 
f:B2~Bl in 'jg, then 

'jg(A X B1, C) == 'jg(BI> CA
) ~ 'jg(Bl' C) 

1 1 1 
'jg(A X B2, C) == 'jg(B2' CA

) ~ 'jg(B2' C) 
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commutes (‘on the nose’), as 

S(f, Cl - WL r-0 = %(f, l-I) = 8(&, II) . S(f, CA). 

Whence the expected result follows. 

Proposition. Zf C is a small sound complete, Cartesian closed category in a topos 
8, then (5, G) (as defined earlier) forms a PL-category. 

Corollary. A small sound complete Cartesian closed category in a topos gives rise 
to a model of the higher order polymorphic lambda calculus. 

Corollary (Girard [lo]). PA(-) over Sets provides a model of the higher order 
polymorphic lambda calculus. 

The strongest known type theory which can be modelled along the lines 
indicated above is the theory of constructions of Coquand and Huet [4] (see also 
Coquand [5]). One way to see that theory as an extension of higher order 
polymorphic lambda calculus is as follows: 

(i) Types are not only indexed over orders but also over types and are closed 
under corresponding products. 

(ii) Orders are not only closed under function space, but can be indexed over 
both types and orders and are closed under the corresponding products. 

Condition (i) can be satisfied by modelling types as an indexed locally Cartesian 
closed category (cf. Seely [25]). Condition (ii) can be satisfied if types are special 
orders and orders are locally Cartesian closed. (In fact sensible assumptions about 
sums will force this.) In the references the distinction types/orders is the 
distinction proposition/types. 

Suppose that C is a small weakly complete full subcategory of a topos 8, which 
is locally Cartesian closed. Suppose also that there is a category s(8) sound for C 
in the sense of 0.2 which is locally Cartesian closed, and which contains (in each 
fibre over an object of s(Q) the essential image of C(-). Given such a situation, 
the categories C(-) and s(8)/- indexed over s(8) can be used to represent types 
and orders. Problems involving substitution and the Beck-Chevalley condition 

have still to be dealt with. There are a number of ways, and I do not know which 

is best. However one way or another one has the following result. 

Theorem. The situation just described provides a model for the theory of 
constructions. 

Corollary. The category p in Eff provides a model for the theory of constructions. 
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