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0. Introduction

An equality relation on the terms of the A-calculus is an equivalence relation
closed under the (syntactical) operations of application and A-abstraction. We may
distinguish between syntactic and semantic ways of introducing equality relations.
p-equality is introduced syntactically; it is the least equality relation satisfying the
equations for ¢~ and f-conversion. For a more subtle way of introducing equality
relations syntactically, consider the relations =, and =, of §5 of this paper. To give
a semantic characterization of an equality relation, we simply take the relation  has
the same value in D', where D is some model for the A-calculus. Of course, no equality
relation is of interest to the intended interpretation of the A-calculus, unless it extends
f-equality. -

An equality rela,tlon is inconsistent if and only if it sets all terms equal; otherwise
it is consistent. It is maximal consistent if and only if it is consistent and has no
consistent proper extensions.

In this paper we counsider a class of continuous lattice models for the A-calculus,
and a particular model, the Graph model. The same equality is induced by all the
continuous lattice models; we shall refer to them as the Scott models (see [3], where
they were first constructed). For the history of the Graph model see [4]. We shall
give, in this paper, syntactic characterizations of the equality induced by the Scott
models, and by the Graph model; and we shall show that the equality induced by the
Scott models is the unique maximal consistent equality relation, extending the relation
= u» which was proved consistent in [1].

We use x, y,z, w ... for variables, and M, N, P ... for terms of the A-calculus
(with subscripts as nccessary) D will refer to Whatever model or models are under
.consideration.

The content of our Theorem 5.4 (a) has been d1scovered mdependently by C. P.
Wadsworth.

1. Preliminaries

First, we collect together those facts that the reader needs to know about the
Scott models. D is a complete lattice; we write < for the partial order, and | ) for the
least upper bound. For each natural number #, there is D, < D, such that

(1) Dn cD n+1s
(2) D is the completion of the union of the D,’s,

(3) for each ne w, de D, there is a maximal ¢ < d, with ¢e D,; we write this c,
as (d),,
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(4) (by the above) d = [ J{(d),| new},

(5) each D,.., can be regarded as the set of continuous maps from D, to D,; so
there is defined a continuous application: D, ;x D, — D,

(6) D can be identified with the set of continuous maps from D to D, where de D
acts as a map by taking ce D to d(c) = | J{d,+, (c)l ne w},

(7) the following equations of Scott are satisfied:
du+1 (C) = dn+1 (Cn = (d(C ))n:

do(e) = do(L) = (d(—i-))o

Here L denotes the bottom element of the lattice D.

Details of the construction are in [3]. There a lattice isomorphic to its function
space is determined by (a) the choice of Dy, and (b) the maps ¢ : Dy — Dy and
W : D, » D,. For our purpose D, may be chosen arbitrarily, but to ensure (7) above
we take ¢(d,) = Ax. dg,W(d,) = d,(L). This determines our class of continuous
lattice models, the Scott models of this paper.

The natural interpretation of a term M in a Scott model D, (called its value, and
written [M7]), is implicitly a value [M],, depending on a valuation p of the free
variables. It is defined by the induction.

[x], = p(x),
[MN], = [MI, (NI,
[Ax. P:|]',J = Ad. I]:P]]p[dfx]!'

where p[d/x] denotes the valuation obtained from p by valuing x as d; the expression
Ad ... (is not a A-term, but) represents a continuous map from D to D and so by (6)
above can be taken as an element of D. 7

Now we describe the Graph model. D consists of all subsets of w. Let us take a
pairing function, defined by (k, m) = 1(k+m) (k+m+1)+m; and if k = 2"4... +2',
with ry < ... <7, let ¢, be the finite set {ry, ..., 7.}. On D, we define application
and A-abstraction as follows; '

c(d) = {m| @ k) (e, = d & (k, m)ec)}
Ax.t(x) = {(k, m)| me t[e/x]}

For our purposes it is sufficient to take z(x) to be a A-term (though the definition is
good whenever 7(x) is continuous in x in the sense of [4]), and then just repeating the
definition we gave for the Scott models, we can define a value [ M], of M in the Graph

- model.
For de D, we define (d), = {m| med & m < n}. Then the facts (1)-(4), above,
hold for the Graph model (now [ } is real union etc.). Observe that

(a) if ke e,, then k < n,
(b) m < (n, m) with equality only if m = n =0,
(c) 1 < (n, m) with equality only if m = 0 and n = 0 or 1.

These enable us to derive by straightforward computation the following basic
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equations to correspond to (7) above;
By 2(6) = dyi2(Cnr ) < ([dCar v oo
dy(c) = dy(co) = (d(co))os
do(6) = do(@) = (d(D))o-

This is all we need to know about the Graph model.

As in 5] we adjoin to the A-calculus a constant term Q, whose value shall be L in
the Scott models, and ¢ in the Graph model. This is a technical and heuristic device,
but it adds nothing to the J-definable elements in either model, as Ax. (xx) (Ax. (xx))
has the same value as Q (this is an immediate consequence of the approximation
theorems of §2). Henceforth, ¢ term > will mean * term of the extended calculus ™.
It is clear how to define the value of an (extended) term.

2. The Approximation T heorems

We say that a term M is in normal form, if it has no B-subredexes, and no Q-
subredexes; an Q-redex is a term of the form QN or 21x.Q. The appropriate notion
of Q-reduction is that any Q-redex reduces to Q. We define a set w(M), the set of
Q-approximants to the term M, by o(M) = {L| L is in normal form and is obtained
from some N with N = ;M by replacing subterms of N by Q}.

The purpose of this section is to show that the value [M] of M in our models is the
limit (i.e. least upper bound or union respectively) of the values of the Q-approximants
of M.

We introduce the notion of an indexed term. An indexed term (M, I), is a term M,
together with a map I from the subterms of M to the natural numbers. The value,
[M]E, of an indexed term (for a given valuation p, of the free variables) is given by

H:x]]£ = (p (x))I(x)a
[Q]F = L or &, in the Scott models or Graph model, respectively,

[MNM = ([[M]]f, ([[N ]]E))I(MN):
[Ax.P ]];{ = (Md.[P ]lr{[d/x])I(lx.P)'

Here, the remarks following the similar definition in §1 apply; subscripts refer to the
taking of the (finite) approximations (d), as defined in §1. Finally, there should be no
confusion caused by our using I both as an index map for MN and as its restriction
to M (say).

LivMMa 2.1. In both models, [M] = | J{IM]"| (M, I) is an indexed term}.

The proof is by a routine structural induction.

Now, adapting a useful idea (unpublished) of Wadsworth’s which serves to
simplify our original proof of (2.5), we introduce the notion of the indexed reduction

of indexed terms. We use superscripts on terms to indicate the index associated with
them (i.e. their value under I).
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Indexed f-reduction

(Ax.PYy"*1 0P reduces to (P[Q% x])}, where b is the minimum of m and n, while a
varies amongst substitution instances of Q and is the minimum of m, p, and the index of
the x for which Q has been substituted;

(Ax. P"°. QP reduces to (P[Q%/x])°.

Indexed Q-reduction
We define what it is for an occurrence of Q to be active in a subterm of a term by
(1) Q is active in itself;
(i) if Q is active in P, then it is active in A x. P and PN,

We remark that if Q is active in L, then a series of Q-reductions will reduce L to Q.
An indexed Q-reduction consists in reducing (in one step) a maximal subterm in
which a given occurrence of Q is active to Q. (Doing all possible Q-reductions for a
given occurrence at once simplifies the proof of (2.2)).

LemmMA 2.2, Some indexed reduction of (M, I) terminates.

Proof. Define u(0) = card ({4] (M, I) A is a subterm of m which may be (indexed)
Q-reduced}),

u(n+1) = card ({4] (M, I) A is a subterm of m, of form (ix.P)".Q}).

u 15 an eventually zero function from  to w. For such functions, # and v, let u < v
if and only if the greatest i € w such that u(7)  v(3) is such that u(i) < »(i). Plainly, < is
a well-ordering on these functions. Also, by reducing from the “ inside-out ”, (M, I)
index reduces to (M', I') with corresponding # and »’ such that ¥’ < u. Hence some
reduction sequence terminates.

LemMa 2.3, (a) In the Scott models, indexed reducrion- preserves the value of an
indexed term.

(b) In the Graph model, if (M,I) index reduces to (M’,I), then we have
[M]' = [MT".

Proof. This is simply a reproof of the fact that - (and Q-) reduction do not alter
the values of terms. One uses equations (7) of §1 (or their counterparts for the Graph
model) to keep track of the indices.

Lemma 2.4. For any (M, I), there is (L, J), with L € o(M), and [M]" < [L]’.

Proof. The proof is by (2.2) and (2.3), since indexed reductions terminate in
Q-approximants. (Of course, < can be replaced by = for the Scott models in (2.4).)

THEOREM 2.5. In both models, [M] = | J{[L][ L € w(M)}.

Proof. If Lew(M), L is obtained from a term with the same value as M, by
replacing subterms by Q, and so [L] = [M]. But by (2 1) and (2.4), we have
[M] = U{IL]| L € o(M)}. Hence the result. .
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COROLLARY. If M has no hnf (see §3), then [M] is L or (&.

3. Head normal forms
We define which terms, M, are head normal forms (we write, “ M is hnf ), by:
(a) all variables are hnf; |
(b) if X4, ..., X are terms and x is a variable, then xX,...X, is haf;
(c) if P is hnf, then Ax. P is hnf. |

‘M has hnf if and only if there is N =, M and N is hof. Otherwise, M has no hnf.
An hnf has the form, Ax4...x;.2X...X;, and z is the head variable. A non-hnf has the
form, Ax,...x;.(Ay. P) X1...X;; the head redex is (y.P)X,, and the (possibly infinite)
reduction of a term, obtained by always reducing the head redex if any, is the sead
reduction. By the Standardization Theorem, M has hnfif and only if its head reduction
terminates; and hence the set of terms with no hnf has strong closure properties
(see [S]). A term has hnf if and only if its closure is soluble in the sense of Barendregt
[1].
Let Axy...x,.zX ... Xy and Ay;...y,.wY;... ¥}, be two hnfs, We may assume that
(say) # < m, and then by o-conversion, that each y; is x;. The hnfs are similar if and
~only if z is w and (m—k) = (n—1). The point of this definition is that when two hnfs
are not similar, then we can find a context which reduces them to distinct variables (see
- §4 for elucidation). Thus two dissimilar hnfs can never be set equal consistently with
f-equality.
Now we define, for k > 1, (a) M and N have the same k-normal form (written
M = .N), and (b) the set of k-pairs of (M, N), as follows. If both M and N have no
hnf, then M = (N, and there are no 1-pairs. Otherwise, M = (N if and only if they
have similar hafs; then let M’ and N’ be the hafs obtained by head reduction; M’ is
Axg.. Xy 2X . Xeand N'is Ayy...y, . wYq... Y;; making the same assumptions as above,
we write M'xy...x%, = 3zX;..X; and N'xq..x,=gwl... Y X, 1. %, which is
Y,’... Y/, say; then the 1-pairs of (M, M) are the (X,, ¥;') for i < k. Now for the
induction step of the definition, we set M =, ,; N if and only if M =, N and for any
1-pairs of (M, N), (X, Y¥) say, we have X =, Y; the k+1-pairs of (M, N) are the
k-pairs of its 1-pairs.

Remarks:
(1) In the induction we could interchange the role of 1 and £.-
@) If k > 1, then (M, N) can have k-pairs, without M =, N.

(3) M =,N means roughly that M and N are similar down to depth & (with the
agreement that non-hnfs are similar).

We now introduce relations <;%, k = 1, and <%, k > 1. The superscripts s and g
indicate that the relations are useful for the Scott and Graph models, respectively.
We set M <,°N if and only if either M =N or M has no hnf (ie. M =, Q);

and by induction, M <}, N if and only if M <,°N and for any 1-pairs (X, Y) we
have X <;°Y.
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Remarks:
(1) Plainly M =, N if and only if M <N and N <" M.

(2) Roughly, M <, N means that M and N are similar down to depth k, except
 at subterms of M which have no hnf”’.

We set M <N if and only if either M has no hnf or M =, N and if we obtain
by head reduction M =4 Ax;...x,,.zX .. X, and N =4 Ax;...x,.zY;... Y, then m < n
(i.e. M is essentially less functorial than N); again by induction, M <%, N if and
only if M <,* N and for any 1-pairs (X, Y), we have X <;2 Y.

These relations seem the right ones with which to attempt to approximate < in the
models, because (a) they take into account that terms with no hnf have value L, or &J
and (b) they look deeper and deeper into the terms as k increases; the definition of
<,;* takes into account the fact that #-expansion increases the value of a term in the
Graph model. The ensuing results make this clearer. (For the rest of this section, <,
refers to the relation appropriate to the model considered).

LemMmA 3.1. If L is a normal form, and for all k, L <N, then [L] < [N].

Proof. The proof is by induction on the structure of normal forms. We shall not
need to distinguish between the models until the very end.

(D) L is Q, and the result is trivial.

(i) L i3 x; we are assuming x <, N for all k, so in particular N =41y,...y,.xY;... Y3
by (2.5), it is sufficient to show that for any index I, for x, [x]' < [N]; we do this
by induction:

Case I(x) = 0; then [x]" = ([xDo = ([Ay1...¥s- (¥)o Q...Q])g, by the usual basic
equations; thus x]' = [N]. '

Case I(x) = n+1 (the induction step); using superscripts to indicate indices again,
we have [ '] < [Aye...7,- " ()" ()" " 1], by the usual equations; (in the
Scott model case we would have equality here); now for all &, y; <, ¥}, and so by
induction hypothesis, [(y)"] = [ Y], --- [(7)" "] = [ ¥]; hence [x]* < [N].

(iii) Let L be Ax,...x,.xX,...X,, where the X; are normal forms for which we
already have our result. 'We take our models separately.

The Scott model case: we-can take
N=p,rAxl...xm+s.xX1...X,+s, and L =ﬁnﬁ.xl...x,;,ﬂ.xXl...X,._,.s

(whereif s > 0, X, ,is x,,, , and so on); for all k, X; <, Y;and so [X;] « [Y;]; hence
[L] = [N]. This completes the proof in the Scott model case.

The Graph model case: we have N =, Ax;...%,,45.XY;... Y, by the basic equa-
tions, we have [L] < [Ax;...%,+5.%X ... X, 4 ]; now we can argue as in the Scott
model case. This completes the proof of Lemma (3.1).

THEOREM 3.2. If, for all k, M < N, then [M] < [N].
Proof. If not [M] < [N], then by (2.5) there is L e w(M) with not [L].< [N].

But by the Church-Rosser theorem, we find that if L € w(M), then for all k, L <, M.
Then by obvious transitivity, L <, N for all k, which will contradict (3.1).
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4, Two technical lemmas

A context C[ ] gives for every term M a term C[M], which is the result of sub-
stituting M for the blank in C[ 1; in this process free variables of M may get bound
(i.e. no attempt is made to prevent this). In other words C[M] and C[N] are obtained
from M and N by the same series of applications and A-abstractions. Equality relations
as defined in §0 are closed under context substitution. The following lemmas exploit
this fact to give conditions which guarantee that terms M and N cannot be set equal.
They are the essential content of [2].

Levma 4.1. Given M and N, with (X, Y) k-pairs of (M, N), there is a context
C[ 1, such that CIM]=;X(R/x,...), some substitution instance of X, while
CIN] =; Y(R/x, ...), the same substitution instance of Y; the terms substituted are all
of the form Ax,...%,. %y Xy...X5_y, for h sufficiently large; R, will denote this term.

Proof. We give the induction step on k, which also establishes the case k == 1.
- Suppose (X, Y) are 1-pairs of (U, V) which are (k— 1)-pairs of (M, N), and we have
the lemma for (k—1). Thus we have a context C;[ ], such that

Ci[M] =,U(...) =4 (Axy. X244 4,) (.,
and
Ci[Nl1=,V(..)= (Axy...%,.2B(...Bg) (...),

where m > n say, and where (...) will continue to denote some substitutions about
which we have no need to be explicit. Now,
Cy[M]xy... Xy =p24y...A,(...), and C4[N]x (... =,4zB,...B/(...), and (X, Y)
is (4, By), for some i.
We separate into cases:

(a) Suppose that z is not free in X or ¥, and that (...) does not substitute anything
for z; set C[M] to be |

(Az.CyIMIxy.. .60 (AY1---Ye¥i) =5 X(..),
and then C[N] =, Y(...).

(b) Suppose that z is free in X or in ¥, but (...) does not substitute anything for z;
then set C[M] to be

(((AZ-C1 [M]xi'"xm)Rh) Wr+1"'wh—1) (Axq...xp_1-%y) =pX(...) (Ry/2),

and then C[N]=; Y(...) (Ry/z). The primary intention of this manoeuvre is 1o
prevent our substituting (Ax;...x,.x;) into X or ¥; so we must take i >r.

(c) Suppose that (...) does substitute for z; we may assume that R, was substituted
forz, where b > r; thenset C[M]tobe (Cy (MW, s 1. Wy—1) (Axg... 4 x) =5X(.),
and then C[N] =, Y(...). This completes the proof.

The point of (4.1) is that if M and N are to be set equal (together with S-equality),
then (substitution instances of) k-pairs of (M, N) must be set equal. We now prove a
lemma which shows what terms can never be set equal (consistently with f-equality).

LeMMa 4.2. If not M <,°N, and M’ and N' are substitution instances of M and N
of the form mentioned in (4.1), then either (a) both M and N have hnf (but these are not
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similar), and then there is a context C{ |, such that C[M'] =g x and C[N'] =,y where
x and y are distinct variables, or (b) M has hnf but N =, Q, and there is a context
Cl 1, such that CIM'] = x and C[N'] = Q.

Proofs. We only do (a), as (b) is similar but easier because of the strong closure
properties of non-hnfs. Cases where substitutions have been made for the head
variable of the hafs of M and N can be reduced to those we consider, by the methods
of (4.1); so this leaves us with the following two cases:

Case (i): Head variables distinct; so M =, Ax;...%,.2X .. X, N =g Ax;.. 0, . wY; ... ¥,
z is not w and n = n, say. Since to get M’ and N’, nothing has been substituted for
z or w, set C[M'] to be (Azw. M’ x(...x,, x¥) (Aay...0415.014 1) (ADy...D,.D,), where
r=[+m—n+2. Then C[M'] =;x, and C[N'] =,y.

Case (ii): Héad variables the same;
M =5Ax..%2X 1. Xy N =pidx;..x,.2Y,...Y, and (m—k)# @n-1);
m > n, say; theﬁ
M'xy.. %y =pzX,".. Xy, and N'x4...x,, = gz ¥;"... 7/,

where r = m-+-I1—n; take s> [r—k| and set C'[M'] to be (Az. M'x{...x, ¥1... YRy,
where £ = min (r, k)+s; then C'[M'] and C'[N'] are suitable for applying the techni-
que of case (i). So the proof is completed for this case also.

5. The main results
First we define (syntactically) some equality relations:

(i) M <, N if and only if for all contéx_ts C[ ], CIM]<,*C[N]; M =, N if and
only if M <, N and N <, M.

(i) M <, N if and only if for all contexts C[ ], C[M] <,* C[N]; M =, N if and
onlyif M <N and N <, M.

(i) let =y be the equality generated by the axioms for f-equality, together with
M = N whenever both M and N have no hnf.

Remarks:
(1) By (4.2), M <, N if and only if whenever C[M] has hnf, then so has C[N].

(2) The main result of [2] is that if M and N are distinct fn-normal forms (of the
pure calculus), then there is a context C[ ] such that C[M]=,x, while
C[N] =,y (x and y distinct variables). Thus the consistency of =, and = is
assured. We prove much more below.

(3) The consistency of =, was proved in [1].
Levma 5.1. (@) If [X] < [Y] in the Scott models, then X <° Y.
(0)If [X] <= [Y] in the Graph model, then X <,® Y.
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Proof. For (a): by (4.2), if not X <,* ¥, there is context C[ ] with C[X]=;x,
while C[Y] =,y or Q. Thus [C[X]] is not less than [[CY]], so not [X] = [Y].
For (b): if not X <,# Y, either not X <,° ¥ and we apply the argument for (a), or we_
have X =;%;...Xp4p XX1... Xpsp and ¥ = Ax...%,.xY;.. Y with r> 0. In
this latter case, set X' to be Xxy...x, =g Axp41.. Xpir - XX ... Xj4p, and Y’ to be
Yxy..x, =5 xY;... Y. Now set p(x) = {0}, and then [Y'] = {0}, while [X'] is an
infinite set. Again not [X] = [Y].

Lemma 5.2. (a) If [M] <= [N] in the Scott models, then M <, N.
(b) If [M] < [N] in the Graph model, then M < ; N.

Proof. In either case, if the right hand side does not hold, we have a context
C[ 1, and we apply (5.1) to C[M] and C[N].

LemMmA 5.3, (@) If M < N, then, for all k, M <;°N.
(b) If M <N, then, for all k, M <,*N.

Proof. The cases are identical, so we write <, without superscript. If there is k
with not M <, N, then there are k-pairs (X, ¥) of (M, N) withnot X <, Y. By (4.1),
we have a context C[ ], and C[M] =,X(...), C[N] =4 Y(...), where (...) denotes
various substitutions. But it is easy to see (cf. the proof of (4.2)) that X(...) <; Y{(...)
cannot hold. Hence not M <, N.

THEOREM 5.4. (2) For the Scott models [M] < [N] if and only if M <, N if and
only if, for all k, M <, N.

(b) For the Graph model [M] < [N] if and only if M <N if and only if, for all
k, M <gN.

Proof. The proof is by (3.2), (5.2) and (5.3).

COROLLARY. (a) For the Scott models [M] = [N]if and only if M =, N.
(b) For z‘he Graph model [M] = [N] if and only if M =

This corollary presents our syntactic characterization of the equalities in our
models. We prove in conclusion a remarkable further characterization of the equality
in the Scott models.

THEOREM 5.5. =, (and hence the equality in the Scott models) is the unique maximal
consistent equality extending =g.

Proof. Consistency is clear. It remains to show that if not M =, N, then adding
M = N to the axioms for = produces an inconsistency. But if, say, not M <, N
then there is a context C[ ] such that C[M] has hnf while C[N] has no hnf. Then (in
the standard combinators) C[N] =, Y(K). But a lemma of [1] shows how to derive
inconsistency from the equality of any hnf with Y (K). This completes the proof.
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