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The intrinsic recursion theory on the

countable or continuous functionals

J.M,E. Hyland

"§0. Introduction. The collection é = {Cd| o is a tvpe symboll}l of
countable (or continuous) functionals was first considered in the
.;gpioneering papers of Kleene [9]1 and Kreisel [10]. Already in these
57pépers, an intrinsic notion of recursive ccountable functional was
'"ﬂefined., Since that tiﬁe smoother approaches to the subject have
i:been made by Brshov [Z2], [3], Feferman [4] and Hyland [7], [81 and
a natural "intrinsic recursion theory" has begun to be studied.
f .The purpose of this paper is to describe the present state of know-
f'ledge and the major unsclved problems il this area.
What I call the intrinsic recursion theory on the cocuntable
functionals is an attractive area to study for the following reasons.
{i) It arises naturally out of the various definitions (Ershbv
r23, [31, Eyland {71, [61.) of & ; and & is itself the natural
collection of continuous objects of higher type defined over the
 ,natural numbers (hHyland [81).
(ii) It has pleasing applications Eo questions of constructivity
{Kreisel [40].
(iii) As is sensible for recursion on Objecté given by a countable
amount of information, every countable functional is recursive in a
function (from natural numbers to natural numbers).
(iv) Klementary arguments about weaker notions of recursion turned
cut to be arguments about the intrinsic recursion theory (see §2).
(v) It provides an instructive challenge to generalized recursion
theory as that subject has been developed over the last ten years
(see especially‘§4); note that this challenge is already implicit in

Kreisel [10].
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Of course & is also a suitable domain for Kleene's general-

ized recursion theory via the schemes 51-59, and a survey of that

area,'computability on @‘; is in Gandy and Hyland [5]. Indeed,
despite (iv) above, it has proved eagier to obtain results about
computability. In particular, since the writing of [51, work on
l-sections (initiated By Wainer) and on Z-envelopes (initiated by
Bergstra) has been carried to a very satisfactory conclusion by
Norman [1l]. This work directly contradicts what seemed plausible
at the time I wrote my thesis [7]. I discuss the relation between
it and what we know about the intrinsic recursion theory in §3.
Work on computabilitv is indirectly related to the main out-
standing <question concerning the countable functionals: whether the
intrinsic recursion theory can be characterized by one of the appro-
aches of éeneralized recursion theory (most blausibly by inductive
definitions see Feferman [4]). This question enables one to look
critically at generalized recursion theory. A negative answer, in-
dicating the iimitations of the “generalizationsﬁ of ordinary recur-
sion theory, would have considerable philosophical interest. How-
ever as Feferman [4] observed, it is hard to imagine how to obtain
a proof oif this kind of impossibility. In §4, I give a vague out-
line of what appears to be the only natural possibility of an induc-
tive_definability approach to the intrinsic recursion theory on the
countable functionals., My view is that if this fails, there can he

no sensible positive answer to the fundamental questioll.

§i. Basic definitions. Various definitions of partial recursive

functional on 6 have been proposed. That given here is from Hy-

land {77.

For countable functionals Gl,...,Gn and ¥, {E}C(Gl’"°°’Gn) = F

iff for all associates Opreessa, for GlraeasGy Ax.{e}(ul,.na,an,x)

is an associate for F.
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The partial functilonals {e}c, are the partial recursive countakle

functionals. That this definition is equivalent to others in the
literature (Ershov [3], Feferman [4]) follows readily from work in
Hyvland [8]. {In this definition I have omitted codings for the
types of the arguments and prospective value of the functional, but
never mind). A clear discussion of the relation of this notlon to

the notion of partial computable functional (i.e. partial S1-59

recursive) can be found in Feferman [41.
The partial recursive countable functionals give rise to a

notion of countablv recursive in: ¥ 1s countably recursive in G iff

‘there is a partial recursive countable functional mapping G to F.{cf.

gandy and Hvland [5] §3.8). This gives rise to the countable deg-

rees as follows. The degree of a countable functional F,

deg(F) = {G| G is countably recursive in F}.
These form the countable degrees B0, , ordered by inclusion. A degree
is of type n iff it is of form deg(F) with F of type n; D, denotes
the collection of degrees of type n. Clearly,

p=Uio,] n= 1l

A functional of type n is said to be irreducible (with respect to
countable recursioﬁ) iff it does not have the same degree as a
functional of type less than n.

we define the countable k-secticn of F to he

ct-k~sc(F) = {G] G of type k and countably recursive in F}.
Partial recursive countahle functionals with numerical values
define a notion of semi-recursive (s.r) or recursively enumerable
set. The subsets of Cy Bs%s in F are those of the form
{6] ¢ of type k and {e}_{F,C} = 0}, r

for some index e. The countabler(k+l)-envelogg of F is defined to be

ct=(k+l)~env(F) = {A c ¢, | A s.x. in F}.
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§2. The countable degrees. In thisseotion we survevy what little

is known about the countakle degrees. Many open proklems remain and
we discuss a few of these,

The proofs of some simple results can be easily derived from
the iiterature. |
Theorem 2.1. There is a type 1 degree minimal amongst all the count-
able degrees.

Proocf:- By an easy adaptation of &pector [12].

Coroliary 2.2. (answering a question in Hinman [6]) T is not dense

in Dl; whence the type 2 Kleene degrees of countable functionals are
not dense in U, (ordinary degrees).

{2.1) has some content beyond Spector's result in view of the next
result,

Thecrem 2.3. There are lrreducible type 2Z objects,

Proof:- It is this result which is really proved in Hinman [6].
Remark (2.3} can be strengthened in various wavs:

1) (Folklbre?) One can obtain an irreducible ¥ whose Kleene one
section is the recursive functions.

2) With difficulty one can obtain an irreducible F with ct-l-sc(F) =
the recursive functions and (Harrington) with F not the continuous
extension of an effective operation.

3) sSince Hinman's proof involves a simple spoiling argument, one can
modify elementary degree theory constructions to get irreducible
type 2 objects in place Of type 1 objects.

& k-section which is not the k~section of any type k object is

called topless., Bergstra {[1] showed the existence of topless sections

for Kleene computations (81-89); a different approach to this result
is provided by Norman [1l]. Bergstra's method adapts with difficulty
to countable recursion; we only get a result at the very first level.
Theorem 2.4, There exists F of type 2 such that ct-l-sc(F) is top-

less.
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A basic problem in the theory of the countable degrees would bhe
to determine the relation hetween the familiar structure Di of the
ordinary degrees, and the Dn“s and ? which include Dl. The diffi-
culties are indicated by the following long-standing question
{which also shows the iimitations of 3) of the ébove remark) .

OPEN PROBLEM Are there minimal degrees which are irreducible of

type 2°

Though by (2.3}, we know that 92 properly includes ¥, nothing
is known of the corresponding result for higher levels of the type
structure.

OPEN PROBLEM Yor n z 4, does T

tl properly inciude D 7
Remarks 1) A formulation of this guestion for Kleene's computations
on & was answered (by Bergstra [1]) in the‘aﬁfirmative. For com=-
putability, the relation between the degree structures at different
types is complicated by the existence of elements (e.g. the fan func-
tional - see Gandy and Hyland [51) at type 3, which are not l=-ocbhtain-
able (i.e. computable from a functionj.

2) It seems most likely tha£ the answer is "yes". For the Cn's

become more complicated as n increases in the. sense of the

Proposition If m > n, then there is no continuous onto map from Ch

to Cmu
This is essentially Cantor's Theorem (together with type-changing
manipulations). As observed by Norman [11], the proposition can -
alsc be obtained from (3.2}).

3) Results on countable sections, or extensionsg of (2.4) might
be contributions to the solution of this problem, But neither possi-

bility seems vVery easy.

§3, Associates and envelopes. The aim of thissection is to determine
what are the countable 2=envelopes of countable functionals. The re-

sult will be in marked contrast to what is known about Kleene 2=
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envelcpes (Norman [11]}. It is clear from- the definitions that we
will needto know something about associates.

Write Ass(F) for the set of associates (the details of the
definition will be of no significance) for a countable functional F,
and set

ass, = U {ass(F)| F e C ).

It seems to be a matter of folklore that for n =z 2, Assn is a com=-
plete Hi_l set of functions, but as I do not know a published proof,
I sketch the simple basis for this result here.
Lemma 3.1, The sets of the form

X (Vo) (o e ASS, —> P(X,0) )},
where P is Zg, X denotes a sequence of variables of types 0 and 1
and n =z 1, are closed under universal qualification (effectively in
an index for P).
Proofs~ This follows immediately from the fact that there exist re-
cursive (indeed elementary) maps from Ass, onto |N]N x ASS .
{Observe that for anvy g, Cs is isomcrphic to chcc' So forn =1
Ch is isomorphic to C,xC, which easily maps onto C;%C,« The map so

constructed will be onto at the level of associates).

Proposition 3.2. For n = £, Assn is a complete Hi_l set.
Prootf:~ The case n = 2, the basis for an induction, is easy., Suppose

result true for n. Then an arbhitrary Zi set is cf the form

{Z] (3 o) 2(k,a) ¢ Ass },
for some recursive functional &, i.e. of the form

(X] (388 ¢ ass, & (Fa)(B = o(X,a))) .
Thus an arbitraty Hi set A is of the form

%] (Ya) (VB (B € Ass ——> 8 # 0(%,0)) 1,
g0 using (3.1) of the form

{x] (VB)(B « ass, —> (Iy)r|e, X0v)s F(}

™

for a suitable T-predicate.
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Now define ¥ by

e () = {o if not (3 vew)Tle, ¥ (1hn (v), ¥)

Ll otherwise.

Then ; e A 1ff W{§)s Assn+ln Since Ass is clearly Hi, we have

n+l
completed the induction step.
There are some immediate corollaries of the above result and

- 1 . .
proof. Let "0 be the everywhere zero functional of type 1.

Corcllary 3,3, For n =z 2, Ass(no) is a complete H;_ set.

1
] - . -+ n
Procf:~ By the above argument, x e¢ A 1ff ¥(x) ¢ Ass(0).
Corollarv 3,4. For n z 2, ct—2~env(n0) = Hio
Proof:- ct-Z-env(nO) consists of all sets of the form

{%1 (¥ o) {a ¢ ass(M0) > pP(%,0))}, where P is Zi.

So clearly ct—2—env{no) < Hi and is cloged underx substitution of
fecursive functionals. It remains to show that ct—z—env(no) con-—
tains a complete Hi set. But this follows by the first part of the
argument for (3.2}. (The existence of a recursive onto map from
ass ("0} to NN v Ass(’C) is much as in the ﬁroof of {3.1) - though
it lacks the structural motivation of that result).

The gengraliiations of (3.3) and (3.4) to arbiﬁrary F (of uype
n > 2), involves ugly coding problems; my proofs rely on equivalences
from Hyland [8] so I do not give them here, but simply state the
results. Suppose ¥ is of type n, n =z 2 and let hF give the value
of ¥ on some recursive dense sequence in C__-.

Theorem 3.5; (a) Ass(F) is a complete H;_l(hF) gset

(b) ct=2-env(F) = I (hy). |
Remarks‘l) (3.5) (a) is proved in full detail from a completely differ-
ent point of view in Norman [113; (3.5) (b} could alsc bhe obtained
using his methods. |
2)Y {(3.5) (h) should be contrasted with the result of Norman
[1i], that in the sense of Kleene (81-S59) recursion, Z-env(F) =
1

Hn—z(hF) {(F of type 3 or m‘ore)_n
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(3} The most significant feature of Norman [1i] is his ability
to handle l-sections (see his Thecrem 3). At the moment there is

nothing corresponding for countable l-sections (cf. Remark 3 of §2).

§4, Definitions bv recursion on the inductive definition of C2°

The cutstanding question concerning the countable functionals is
whether one can obtain the intrinsic recursion theory by applying
the usual ideas of geheralized recursion theory, This problem was
raiéed in embryonic form by Kreisel [10]., It was considered in
Hyland [7], but the tentatively negative conclusicn reached there
was based in part on conjectures which have since been disproved.
It ig discussed in detail in Feferman [4]1, where a positive answer
to the corresponding cquestion for the partial centinucus functionals
is indicated. At first sight the problem seems to be one of finding
the "richt structure" to put on 4 {cf. the final section of Fefer-
man [4]1). However § doesn't seem to have any structure in the
senge of model theory apart from the usual structure on Cor the nat-
ural numbers, and the type structure (essentially, evaluation and
A—abstraction); and this much gives rise to Kleene's computations
(81-89) on % . One would appear to search in vain for further
natural inductive scheméta, while there must exist suitable unnatu-
ral ones S;nce the partial recursive countable functionals can clear-
ly be enumerated. This is the impasse reached by Feferman (4. In
this section, I sketch the lines of what seems to be the only plau-
sible way out.

My suggestion is based on two observations.
1) Once we have Cor C1 and C2, the rest of @ is determined by de-
manding closure under explicit definition (i.e. avoiding 2E)o
2} (A point made to me by Gandy). The natural numbers are induc-
tively defined and thereby carry a good recursgion theorv; but Co is

also inductively defined (Brouwer, Konig) and should carry a good
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recursion theory in virtue of this fact.
Since there is no problem with the recursion theory on Cq and Cqv
it would seem that the inductive definition ot Cy is the one ele-
ment of the structure of & missing from what is described above.
If we can add an appropriate process 0f definition by recursion over
the inductive definition of Cyr we ought to get the natural recur-
sion theory on T from the point of view of computation schemes or
inductive definitions., If this doeg not coincide with the intrinsic
recursion theory, one could conclude that the intrinsic recursion
theory on the countable functicnais falls cutside the scope of the
main developments of generalized recursion theory.

¥or F in C2 and u a sequence (number) definé Fu by

r,(B) = F(u*g),

where * denotes concatenation. Both the fan functional and Gandy's
functional T of [5], can be defined as functicnals A for appropriate
{primitive recursive} F, in the following simple way:

a (k)

A(;\Brkrm)

If

A(F,a) F(F,Au # < >°A(Fu§a),u),
But the fact that such a definition uniquely determines A, depends
on the fact that for the corresponding F, -
alk) = F{AB.k, M1 # < >ea(k), 0.
In other words we must take account of the fact that
(*) is not decidable (countably recursive) whether of not an
element of C, is a member of the basis for the inductive
definition of C, (viz. the constant functionals).
It is not hard to give a formulation of a "computation scheme"
5I (with which cne could augment 8i-59) which would define function-
als as above.
I£ {e} (Af.ks Au # < >.a(k) = a(k) then {e'}(AB.k,a) = a(k).

(sT1)
Tf for all n # < >, {e”}(Fu,a) is defined, then

[5
.
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Ii

{e’3(r,a) = {e}(F;2u # < >{e"HF sa)}.

(Here e' is the new index which codes up e together with other
appropriate information}., It seems clear that (SI) will not close
the gap indicated in §3 hetween countable and S51-59 semi-recursion
{2 envelopes). However I have been able to obtain nc evidence
against the following conjecture.

CONJECTURE. S1-89 + 8I suffice to generate the recursive countable
functionals of type 3.

{0f course, SI may not be quite right for the Job).

The augmentétion of Kleene's schemes by 5I 1s rather crude. It
would be more satisfactorv (both for general reasons and particularly
since we are trying to use the inductive definition ot Cz) to use
the appreoach of inductive schemata as described in Feferman rdj.
However from this point of view it is not at all cbkbvicus how to take
account of (¥*) abcvé, One seems to get involved either with non-
monotone schemata, or with "partial" schemata, and I have not been
able to devise a convincing formulaticon with either. There seems to
be a genuine conceptual prioblem heres

What inductive schemata encapsulate the idea of definition by

recursion on the inductive definitjon of Cye

I hope that I have said enough in this section to show that the
problem whether or not there is a natural inductive definability
apprecach to the intrinsic recursion theory on the countabhle function-
als is an accessible one. While I am optimistic about the specific

conjecture above, I feel that the overall answer is likely to be "no",
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