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Abstract

We draw attention to a number of constructions which lie behind many concrete
models for linear logic; we develop an abstract context for these and describe their
general theory. Using these constructions we give a model of classical linear logic
based on an abstract notion of game. We derive this not from a category with built-
in computational content but from the simple category of sets and relations. To
demonstrate the computational content of the resulting model we make comparisons
at each stage of the construction with a standard very simple notion of game. Our
model provides motivation for a less familiar category of games (played on directed
graphs) which is closely reflected by our notion of abstract game. We briefly indicate
a number of variations on this theme and sketch how the abstract concept of game
may be refined further.

1 Introduction

This paper presents an illustrative example of a category of abstract games.
Games models for linear logic are now extensively used to model intensional
features of programming languages [5,6,30,34,38,7,8,37]. The notion of a game
is intuitively clear, but mathematical representations can seem complicated:
there are positions and moves in a game tree, and strategies have to be com-
posed by some explicit parallel composition plus hiding. An abstract game is
a structure obtained by abstracting away from the details of the game tree;
typically the structure involves some combination of sets of positions (or out-
comes) and sets of strategies. Many categorical models of linear logic allow
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some reading in terms of abstract games [9,10,19,33,35,36,22], and categories
for which this reading seems convincing underlie approaches to the Geometry
of Interaction [26,25,27,23,2,4].

To give a computationally significant category of abstract games we exploit
some general constructions on models of linear logic. Special cases have been
known for a long time, but we make precise the general phenomena underlying
them. We consider the following.

Self-dualization. Part of the prehistory of category theory: the construction of
multiplicatives was known early to Girard and can also be read as a special
case of Chu’s construction?® [20].

Comonoid indexing. We exploit the simple properties of the familiar Kleisli
category of (free) coalgebras for the comonad induced by an internal comonoid.

Glueing. Again an old idea in category theory: the novelty is glueing to get self-
dual categories. The obvious precursor is Loader’s category of ‘Linear Logical
Predicates’ [36], but the construction is also an ingredient in Girard’s ‘Phase
Semantics’ [24,28] and one approach to his coherence spaces [24,28|.

Orthogonality. This is one of the key ideas of linear logic: it is the other
ingredient in ‘Phase Semantics’ and in coherence spaces [40]. It also appears
in Loader’s ‘Totality Spaces’ [35].

One way of reading much current work on linear logic is this. One starts with
some model of computation (perhaps in the form of a traced monoidal or
compact closed category, perhaps with a less clean structure) and uses general
techniques from categorical logic to construct a rich mathematical model.
Here however we start with a computationally limited model, the category
of sets and relations, and show that even using it we arrive at models with
definite computational content. At each stage of the construction we compare
the category of abstract games with a simple category of standard games.
We get closer to this familiar category with each step, and the final resulting
category of abstract games motivates a less familiar notion of concrete game.
The multiplicative structure of the finite games is exactly reflected by our
abstract games. There are extensions of our ideas which take things further
but we do not have the space here to develop these. Nonetheless we hope the
moral lesson that good models do not require much computational input will
be clear. (This point is also effectively made in [10].)

3 We warn however that this is misleading: consideration of the exponentials reveals
a better parallel with Dialectica categories.



2 Preliminaries

Definition 1 A (categorical) model of intuitionistic linear logic consists of
a category which is symmetric monoidal closed, has finite products and is
equipped with a linear exponential comonad.

A (categorical) model of classical linear logic consists of a category which
is x-autonomous, has finite products and (therefore) finite co-products, and
is equipped with a linear exponential comonad and (so) a linear exponential
monad.

The classical case adds nothing more than the duality; but the duality gives
the dual of any existing structure. The structures involved are described in
the intuitionistic case in [14,15]. For more details and all the required natural
transformations and commutative diagrams, see [16,17].

We need to consider functors between models of linear logic. Sometimes we
encounter functors which preserve structure, but usually we have a weaker
notion.

Definition 2 Let C, D be models for linear logic. The functor F: C —— D
is linearly distributive* if and only if F' is monoidal (with structure ni,nc o)
and is equipped with a distributive law in the sense of Beck [13] (see also [39])
A |F—— F! respecting the comonoid structure, in the sense that
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commutes.

We make precise the sense in which the categories we describe can be regarded
as categories of abstract games by describing linearly distributive functors
from a category of games to our categories. We carry out the analysis for the
very simple category Gam of games described in Section 2 of [31] (see also [1])
though the thrust of the results is pretty insensitive to which category of games
we consider.

Like other standard games models, Gam is a model for intuitionistic linear

4 Note that a linearly distributive functor lifts to a functor between the cartesian
closed Kleisli categories of (co)free coalgebras.



logic. By self-dualization (see Section 3) one can obtain a category with dual-
ity, formally considering ‘positive’ and ‘negative’ games; but there is then no
relation between the two components of the generalized game.® In contrast,
our categories of abstract games have a built-in duality. Generally in such
cases, an interpretation of the maps as genuinely concurrent processes seems
best, and there are many examples of these. However the examples we present
here have a strong flavour of sequentiality.

Our starting point is the category Rel of sets and relations which is a very
degenerate model of classical linear logic. We take as tensor product the pro-
duct of sets so that Rel is compact closed; the disjoint union of sets gives a
biproduct. As linear exponential comonad we take the finite multiset comonad
W: as explained in Barr [12], this is induced by the (co)free (co)commutative
comonoid functor. A concrete description is as follows:

e On objects, W(A) is the set of finite multisets over A.

e For f: A—— B a map in Rel, W(f): W(A) —+ W(B) is defined by
considering f C A x B and setting x W(f) y iff there is an element z
of W(f) € W(A x B) whose first and second projections are x and y,
respectively.

e The comonad and comonoid structure maps are the opposites of the usual
structure maps for the finite multiset monad in Sets.

We now describe a functor F': Gam —— Rel. On objects, F(A) is simply
the set of positions (or states, or stages) in the game A € Gam. The action
of F' on maps is more delicate. By a Player position (P-position) in a game A
we mean a position in which Opponent is next to play the set of all those is
denoted by Ap.” The remaining positions are Opponent ones (O-positions),
collected in the set Ap. Similarly, we occasionally use the abbreviations P-
strategy and O-strategy for Player strategies and Opponent strategies. A map
¢: A—— B in Gam is a Player strategy in the game A-oB, where the dual
of A and B are played in parallel. Recall that a position in A—oB is given
by a sequence of moves (a notion we are abstracting away from) of A and B
such that the projections onto A and B respectively are valid positions in the
constituent games. Therefore a position r of A—oB can be projected to one
r|4 of A and one r|g of B, respectively. Define F'(¢) to be the set

{{r|a,r|B): r € ¢ is a P-position}

® A counter instance is the important case of games and history-free strate-
gies [3,5,6]; this provides in the first place a category without products, but still
one can dualize. The phenomenon deserves closer study.

6 In other words, the comonad W is the opposite of a monad obtained by lifting
the finite multiset monad from Sets to Rel.

7 So in a P-position, Player has just played, including by convention the initial
position.



of pairs of positions arising as the projections of a P-position in ¢. One ea-
sily sees that the copy-cat strategy in A—oA is mapped by F' to the identity
relation.

We next consider F' applied to a composite ¢ o ¢ of two strategies. Recall that
given positions 7 in A—oB and s in B—oC such that r|g = s|g, we can find a
unique interleaving of r and s, that is a sequence ¢ of moves from A, B and C,
such that the restrictions ¢|4 g and t|5 ¢ of t to moves from A—oB and B—oC
are r and s respectively. Since

(t|A7(j)|A == t|A = 7"|A is a pOSitiOIl in A
and (t|ac)lc =tlc = s|c is a position in C

it follows that ¢|4 ¢ is a position in A—oC'. This explains why the composite
of p: A—— B and ¢p: B—— (' in Gam is

Yop = {t|ac : t sequence of moves in A, B and C with t|4 5 € ¢,1

B €V}

Now a P-position in the composite 1yo¢ arises for the first time via a ¢ as above
with both t/4 5 and t|p ¢ P-positions (in A—oB and B—oC' respectively). It
follows that F(¢ o ¢) is the relational composite F'(¢)) o F'(¢) so that F' is
indeed functorial.

Passing from ¢ to F'(¢) appears to lose the information of what interleaving of
play in A and B led to a given position in A—oB. However we can reconstruct
¢ from F(¢). For different ways of interleaving plays in the constituent games
of A—oB occur by the choice of Player and hence at P-positions in the game;
so these choices are coded in F(¢). It follows that we can reconstruct ¢ as
the set of all positions r in A—oB such that for all P-positions ' < r we have
(r'|a,r'|B) € F(¢). Thus the functor F' is faithful.

Theorem 3 The functor F': Gam —— Rel is faithful and linearly distribu-
tive.

The monoidal structure is given as follows.

e 1 is the unique function from I to I = F(I).
e nyp: F'(A) x F(B) —+— F(A® B) is the relation

(r,s) ~t ifand only if r=1t|4 and s = |p.
The distributive map As: W(F(A)) —— F(!A) is the relation x ~ ¢ if and

only if z is the multiset of positions arising by projecting ¢ into the active®
versions of A involved in it. We leave the details to the reader.

8 This means that the initial position in the first version of A is active initially, but
no initial position is active thereafter. The special treatment needed to cope with



Little of the flavour of games is preserved by the functor F': Gam —— Rel.
In this paper, we aim to develop abstract interpretations with a more game
theoretic feel.

3 Self-dualization

Suppose that we are given a category C; then C? = C x C is a category
with duality (negation). We have a functor (_)*: C? —— (C%)° with

U.X)" = (X,U),
and with the obvious action on morphisms; ()" is a self duality on C.

It is an important fact that if C carries enough structure then C?% is a model
of classical Linear Logic. In the presence of a terminal object, C? is a degene-
rate form of Chu’s construction [20], so the result for the multiplicatives and
additives should be well known. ?

Proposition 4 If C is a symmetric monoidal closed category with finite pro-
ducts, then C% is x-autonomous. The tensor product is

(U, X)® (V,Y) = (U V,U oY x V-oX),
the unit T= (I, 1).

Proposition 5 If C has finite products and coproducts, then so does C¢. The
products are given as (U, X)x (V,Y) = (UxV, X+Y), the unit for the product
is 1 = (1,0). Coproducts are formed via (U, X)+ (V,Y)=(U+V,X xY),
the unit for the coproduct is 0 = (0,1).

Finally we consider the exponentials. We shall assume that C has a linear
exponential comonad; this handles the structure in the first coordinate of C¢
straightforwardly. It is the structure in the second coordinate which presents
the challenge.

Definition 6 Let C be a model for intuitionistic linear logic. We say that C
has well-adapted monoids just when

e C is equipped with a monad M whose (free) algebras are naturally commu-
tative monoids with respect to product and

the initial position will come back to haunt us.

9 The situation for the exponentials is in any case quite subtle; we give details
of our construction and discuss its extension to the general Chu and Dialectica
constructions in a companion paper.



o M is equipped with a strength 7y x : \U @ M(X) — M (U ® X) which re-
spects the monad and monoid structure, and further induces an action of
I-coalgebras on M-algebras via the linear function space functor —o.

Remark 7 If C is cartesian closed with | the identity functor this condition
amounts to the requirement that M be a strong monad whose algebras are nat-
urally commutative monoids and whose strength is well-behaved with respect
to the monoid operations. This case appears in [22]. Hyland and de Paiva con-
sidered the general definition of the exponential functor and the most obvious
structure for it around 1990 but at the time the notion of a linear exponen-
tial comonad was not formulated. The details of the full structure and the
proofs of the axioms in the symmetric monoidal case are non-trivial and will
be described in detail in a companion paper.

Proposition 8 Let C be a model for intuitionistic linear logic with well-
adapted monoids. Then C x C has a linear exponential comonad where

U, X) = (\U,'U-oM(X)).
Putting the above propositions together we have the following.

Theorem 9 Let C be a model for intuitionistic linear logic with finite co-
products and well-adapted monoids. Then C% is a model for classical linear
logic.

As a category of abstract games, Rel? improves on Rel by representing some
aspect of the Player-Opponent dichotomy. If (Rp, Rp) € Rel? we think of
R = Rp + Rp as the set of positions of a game, with Rp the P-positions
and Ro the O-positions. Clearly there is a functor +: Rel? —— Rel whose
action on objects is (Rp, Ro) —— Rp + Ro.'™ We explain how the functor
F: Gam —— Rel from the previous section lifts along this to a functor which
we denote again by F': Gam —— Rel“.

For a game A we let F'(A) = (Ap, Ap), where Ap is the set of P-positions and
Ap is the set of O-positions in A. To give the effect of F' on morphisms, we
consider a P-position in A—oB and its projection onto a pair of positions, one
in A and one in B. (Because A occurs contravariantly, the roles of P-positions
and O-position interchange however, we find it simpler not to introduce a
dual ‘co-game’ A" in which the interchange is made explicit.) In a P-position
in A—oB, it is Opponent’s turn in precisely one of A and B, so such a position
projects down to a pair of the type (P, P) or (O,0O). Thus the set of all P-
positions in A—oB is contained in the disjoint union

APXBP+AOXBo.

10 Special features of Rel enable one to equip this functor with linearly distributive
structure, but this does not appear to be of much importance.



Hence for a map ¢: A —— B in Gam, the set
{(t|a,t|B): t € ¢ a P-position}
provides relations

AP —t— BP and BO —t Ao,

and we let F'(¢) be the corresponding map (Ap, Ap) (Bp, By) in Rel”.
It is easy to see that F': Gam —— Rel? is functorial and that the composite
with +: Rel* —— Rel from above is the old F: Gam — Rel. Moreover
the monoidal and linearly distributive structure lift readily.

Theorem 10 The functor F: Gam —— Rel? is faithful and linearly dis-
tributive.

In this reading Player strategies in a function space game contain no informa-
tion about O-positions of the game. We remedy this in the next section.

4 Comonoid indexing

Assume that (K e, d) is a comonoid in a monoidal category C; then tensoring
with K induces a comonad on C in the standard way. The induced func-
tor K is K(C) = K ® C; the co-unit e®ide: K @ C —1I® C = (', and
the comultiplication d® ide: K@ C — (K K)C =2 K ® (K ®C). We
consider the (Kleisli) category Cg of (co)free coalgebras for this comonad,
together with the (co)free functor C —— Cy.

Objects of Ck are objects of C. Morphisms C' —— D in Cy are given by
morphisms K ® C' —— D in C. Identities are given by the co-unit from above,
and composition of f: K®C —— D and g: K@ D — 7 is

Ko KkeKeC ™ koD 2. 7
Proposition 11 Let K be a commutative comonoid in a symmetric monoidal
category C.

(1) Ck is a symmetric monoidal category, and C —— Cg preserves the
structure.

(2) If C is also closed, then so is Ck, and Cx —— C preserves the structure.

(3) If C is x-autonomous then so is C and Cx —— C preserves the struc-
ture.

Proposition 12 Let K be a commutative comonoid in a symmetric monoidal
category C.



(1) If C has products then so has Ck, and C —— Cy preserves them.
(2) Suppose C is closed. If C has coproducts, so has Cy, and C —— Cy
preserves them.

Definition 13 Let C be a model for intuitionistic linear logic, and K a com-
mutative comonoid in C. We say that K is an exponential comonoid if K is a
coalgebra for ! and the comonoid structure on K is the one canonically derived
from that the !-coalgebra structure.

Proposition 14 Let C be a model for intuitionistic linear logic and let K be
an exponential comonoid in C. Then Cg has a linear exponential comonad.

Theorem 15 Let C be a model for classical linear logic and K an exponential
comonotid in C. Then Cg is a model for classical linear logic.

We identify the comonoid K = (I,I) in Rel’, and define the category of
‘restricted relations’ RRel to be Reli]’{. So RRel has as objects pairs of sets
(Rp, Ro); and maps (Rp, Ro) — (Sp, So) in RRel are maps

(Rp,Ro + Rp) — (Sp, So)
in Rel? and so can be identified with subsets of
(Rp x Sp) + (Ro x So) + (Rp x So).
Thus a map (Rp, Ro) — (Sp, So) in RRel is a relation
R=Rp+ Ro —— Sp+So=25,

restricted in that no elements of (Rp x Sp) appear. This restriction mirrors
the usual switching condition in games. By the above discussion, RRel is a
model for classical linear logic.

Adopting these changes, we modify the functor F: Gam — Rel” of Sec-
tion 3 to give G: Gam —— RRel. On objects, we have G(A) = (Ap, Ap) as
before. For ¢: A —— B in Gam, the image G(¢): (Ap, Ag) — (Bp, Bo)
in RRel will be represented by a subset G(¢) of

(Ap x Bp) 4+ (Ao x Bo) + (Ap X Bp).

We let G(¢)N((Ap x Bp)+ (Ao X Bp)) be the projections of P-positions in a
play of ¢ as before; the critical issue is the definition of the set G(¢)N(Apx Bp)
of projections of O-positions. Rather than considering all O-positions in a play
according to ¢, we take only those to which ¢ has no reply; we call these the

" There is a monoidal adjunction between RRel and Rel?, but we will not dwell
on that since we do not exploit the fact in this paper.



final O-positions of ¢, so G(¢) N (Ap x Bp) is the set of projections of final
O-positions occurring in a play of ¢. '?

That this choice is functorial reflects the following feature of composition of
strategies. Take p: A —— Band¢: B —— C in Gam and let ¢ be a sequence
of moves over A, B, and C with t{4 5 € ¢, t|pc € ¢ so that t{ac € 1 0 ¢.
Suppose that ¢4 ¢ is a final O-position in ¢ o ¢. Then

either (t|4,tp) has the type (P,0) and (t|p,t|c) the type (O,0),
or (t|a,tp) has the type (P, P) and (t|g,t|c¢) the type (P, O).

(Note that this is true even if ¢ involves further chattering in B.) Moreover,
the (P,O) pair is the projection of a final O-position, either of |4 s final in ¢,
or of t|p ¢ final in ¢». Conversely, given such a ¢, /4 ¢ is a final O-position in
1 o ¢. It is now not difficult to fill in the details of the monoidal and linearly
distributive structure for the functor G.

Theorem 16 G: Gam —— RRel s a faithful linearly distributive functor.
Abstract strategies now contain information about O-positions as well as in-

formation about P-positions, but otherwise reflect no structure of a game tree.
We get this by constraining the possible strategies.

5 Glueing
We describe only the simplest case of a double glueing construction: glueing
along the linear element functor C(I,_) on a x-autonomous category C.

We construct a new category G(C), the ‘glued category’, as follows. Objects
of G(C) are objects R of C together with sets

UCC(I,R) and X C C(R, L) = C(I, RH).
Maps in G(C) from (R,U, X) to (S,V,Y) are maps f: R — S such that:

o forallT—+ RinU,T—+R -1+ SisinV and
eforall S —Y+ 1inY,R—2+5 Y+ lisin X.

121t is a viable option to consider projections of all O-positions in ¢. The reason for
the choice we make emerges in Section 6: in G(¢) we are encoding the set of final
positions which may result from playing ¢.

10



We need a notation for generalized composition. Given h: R® S —— L and
v: I —— S, we define (v|h)s: R —— L to be

R¥RI VN Ros "t 1.

We extend this in the obvious way to other ‘cuts’.

Proposition 17 If C is x-autonomous, so is G(C), and the forgetful functor
G(C) —— C preserves the structure. The tensor unit is given by

I=(I,{idt},C(I, L))
and the tensor product

(RUX)® (S, V.Y)=(RS,URV,Z)

whereU@V:{I%I(XJILm»R@S:uEU,UEV}

and Z={R®S —— L:YueU. (ulz)g €Y and Vv € V. (v]z)s € X}.

Proposition 18 If C has finite products, then so has G(C), and the functor
G(C) —— C preserves them. The terminal object is (1,C(I,1),0), and the

product
(R,UX)x (S,V,Y)=(Rx S, UxV,X®Y)

where U x V = {(u,v): 1 RxS:ueUweV} and
XoVY={RxS~R—2+1:2e¢X}U{RxS 252 1:yeV}

Dually, if C has finite coproducts, then so does G(C) and G(C) —— C pre-
serves them.

Note that the functor C(I,_): C —— Sets is monoidal; and as Sets is trivially
a model for intuitionistic linear logic (with the cartesian closed structure to
model the multiplicatives and the identity comonad to take care of linear
exponentials), we can ask for a natural transformation

A C(1,.) —— C(L1()

making C(I, _) linearly distributive. With this data we can find linear expo-
nential comonads in G(C).

Proposition 19 Let C be a model for classical linear logic with a linear dis-
tribution \ as above.

(1) We can define an exponential comonad on G(C) by
(R, U X)=(R,{\g(u): ue U},C('R, 1)),

and then G(C) —— C preserves the structure.

11



(2) We can define an exponential comonad on G(C) by
(R, U,X) = (IR, { g(u): ue U},7X),

where ?7X is the smallest subset of C(!R, L)

e containing {roegr: r € X},

e containing {xy oer: x: I —— L},

e and such that whenever for some h: |RQIR —— L, for allu € U both
composites (Ar(u)|h)ig are in 7X, then hodr: 'R —— L is in 7X.

Again G(C) —— C preserves the structure.

Loader’s category of Linear Logical Predicates [36] is essentially G(Rel), and
the cruder of these comonads for the standard power set comonad on Rel is
described in [36].

Theorem 20 Let C be a model for classical linear logic equipped with a linear
distribution A as above. Then G(C) is a model for classical linear logic, and
G(C) —— C preserves all the structure.

We now explain how to see G(RRel) as a category of abstract games. Recall
first the functor G: Gam —— RRel. As G(I) = (I,0) = I € RRel we can
consider for any game A the image

U = G(Gam(L A)) C RRel(L, G(A))

of the Player strategies in A. If u = G(¢), where ¢ is a Player strategy in A,
then

uN Ap is the set of P-positions in ¢

and uN Ag is the set of final O-positions in ¢.

Thus U C RRel(I, G(A)) consists of the representations of Player strategies.
Clearly if ¢: A ——~ B in Gam and U C RRel(L, G(A)), V C RRel(L, G(B))
are the sets of representatives of Player strategies on A and B respectively,
then composition with G(¢) maps U to V.

We wish also to consider representatives of Opponent strategies in a game A.
These are in bijective correspondence with Player strategies in A—oY where
¥ is the one-move (ie. two-position) game.'> However there is just one posi-
tion too many in G(Gam(A, X)) C RRel(G(A), G(X)): the initial position in

A—o¥ does not correspond to a position in A. But since G(X) = K = (I, 1),
there is a unique non-zero map L = (0,I) — (I,I) = G(X) in RRel and we

1337 appears as S in [31] and plays the role of the object of resumptions in recent
work of Laird.

12



can consider X C RRel(G(A), L) in the pullback

X

RRel(G(A), L)
_]

12

G(Gam(A,Y)) <~ RRel(G(A),G(T))

This removes the unwanted position; for z € X we have a unique Opponent
strategy 7 in A with

xr N Ap s the set of O-positions in 7

and x N Ap is the set of final P-positions in 7.

Thus X C RRel(G(A), L) consists of representatives of Opponent strategies.
It easily follows from our definition that if ¢: A —— B is a morphism in
Gam and X C RRel(G(A), L) and Y C RRel(G(B), L) are the sets of
representatives of Opponent strategies, then composition with G(¢) maps Y
to X.

It now follows that we can lift the functor G: Gam —— RRel along the
forgetful functor G(RRel) —— RRel to a functor G: Gam —— G(RRel)
by setting

G(A) = (G(A),U, X)

where U C RRel(I,G(A)) and X C RRel(G(A), L) consist of the representa-
tives of Player and Opponent strategies in the game A respectively. Obviously,
the new G is faithful and the linear logic structure (no matter which of the

two exponentials introduced above we choose) lifts readily along the forgetful
functor G(RRel) — RRel.

But now more is true: the functor G is full. At an intuitive level, we can explain
this as follows. We can reach every position r in A—oB by playing according
to an O-strategy which treats A and B independently (moves in A may not
depend on the history in B and vice versa). Such a strategy can be viewed as
arising from a pair of strategies, one in A (but since the réles of Player and
Opponent are exchanged in this game as it is played as part of A—oB, this will
be a P-strategy) and one in B. So there is an O-strategy (o, 7) where 7 is an
O-strategy on B and o a P-strategy on A such that r arises when a suitable
P-strategy is played against it.

Now suppose G(A) = (G(A),U, X) and G(B) = (G(B),V,Y) as above and
suppose f: G(A) — G(B) given by a set

fg (AP XBP)+(AO XBo)—l-(AP X Bo)

13



is a map in G(RRel), that is [u]f € V and f[y] € X. Arguing inductively we
can reconstruct a P-strategy ¢ in A—oB, that is a map A —— B in Gam,

with G(¢) = f.

The initial stages of the induction are roughly as follows. We start by conside-
ring f applied to Ly, where Ly is the (representative of the) least O-strategy
in B (the one where Opponent refuses to do anything at all). It can be shown
that f[Ly] = Lx, the (representative of the) least O-strategy in A. Then
for an initial O-move b in B we consider on the one hand f[y], where yj, is
the (representative of the) O-strategy generated by the move b, and on the
other hand [Ly]f where Ly is the (representative of the) least P-strategy in
A. Then

either [L;]f contains a reply to b,
or flys) contains an opening move in A,

or neither of these.

In the first case ¢ replies to b in B, in the second, ¢ replies to b in A, while in
the third, ¢ has no reply to b. The details of the inductive argument will be
given in the extended paper.

Theorem 21 G: Gam —— G(RRel) is full and faithful and linearly dis-
tributive.

We have made progress in connecting the concrete category of games with a
category of abstract games. Now the last feature which we wish to incorporate
is some connection between abstract strategies for Player and for Opponent.
We treat this issue in the next section.

6 Orthogonality

In this section we introduce machinery motivated by the following considera-
tions. A Player strategy in a tensor game A ® B can use information about
what has happened in B to guide play in A and vice versa: '* so there are many
more strategies than are given by tensoring a strategy for A and one for B.
The simple abstract categories of games do not allow this and our response is
to consider the tight orthogonality categories introduced below. The intuition
that we are trying to capture is that in a game the Player and Opponent
strategies determine each other; and then the multiplicative structure is de-
termined by the maps in the category (that is, by Player strategies in function

1 Of course this is what visibility is designed to prevent in [29] and [38].
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spaces). Thus the Player strategies in A® B are as varied as they can be given
the Opponent strategies (that is, the Player strategies in A—oB* =~ B—oA"').

We identify two full subcategories of G(C) by using the additional structure
of an orthogonality on C.

Definition 22 Let C be a x-autonomous category. An orthogonality on C is
a family of relations 1, between maps I —— C and C —— L satisfying the
following:

(1) (Isomorphisms) If f: C —— D is an isomorphism, then for all maps
u: I —— C and all maps v: C —— L, we have

wlexiff foul,xof™!

(2) (Symmetry) For all 1 —— C' and all C —— 1,

wlexiff o Lo ut.

v

(3) (Tensor) Given I —— C, 1 D together with C ® D LN L, then

u Lo (v|h)p and v L, (ulh)e implies u @ v Legp h.

(4) (Identity) For all 1T —— C and all C —2~1,
u Loy implies idy Ly you= (uly)c.
The second condition enables us to regard L in lots of different ways. For
example, we can consider u: I —— O orthogonal to z*: I —— O+ without
ambiguity.
Given U C C(I, R), we set
Ut ={2:R—— L:YuecUwuly,z} CC(R,L).

Similarly we define X+ = {u: I R:Vz e X.u Lz} for X CC(R,1).
Note that if U = X+, then U+ = X4+ = X+ = U. We call such sets closed.

Definition 23 An orthogonality is precise just when the condition (iii) is an
equivalence, that is, v Lo (v|h) and v L, (ulh) iff u®v Legpy h. (Note that
the precise form of (iii) implies (iv).)

An orthogonality is stable if it is precise and in addition satisfies the condition

(UJ_J_ ® VJ_J_)J_ — (UJ_J_ ® V)J_
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In a precise orthogonality, we have u L, z iff u ® 2~ 1 .1 eve. In case C is
compact closed this means that the precise orthogonality is determined by a
family of subsets of End(C') indexed over the objects C' of C.

Definition 24 The loose (orthogonality) subcategory G (C) is the full sub-
category of G(C) which contains those objects (R, U, X') such that for allu € U
and for all x € X we have u 1, x. In other words, U C X+ and X CU"*.

The tight (orthogonality) subcategory G*(C) is the full subcategory of G(C)
which comprises those (R, U, X) for which U = X+ and X = U+,

Note that if U C C(I, R) is closed, then (R,U,U") is an object of the tight
subcategory. Dual considerations apply to X C C(R, L).

Proposition 25 If C is a *-autonomous category with an orthogonality then
50 is G (C): it is closed under negation and tensor and has the tensor unit

(L, {id;}, {id} ).

If the orthogonality is stable then GL(C) is x-autonomous; it is closed under
negation, tensor product is given by (R® S, (U ®@ V)L (U ® V)1), and the
new unit is (L, {idg} -, {idi} ).

For G*(C) note that (U® V)" is, in fact, the corresponding component of the
tensor product in G(C), so all we are changing is the second component, by
‘closing’ it. From now on, we will tacitly assume that C has an orthogonality,
but state so explicitly if we assume it to be stable.

To handle the rest of the linear logic structure we need control of the structure
maps.

Definition 26 We say that f: C'—— D is central with respect to the ortho-
gonality L if for allu: I —— C and all y: D —— 1 we have fou L,y iff
u loyof, that is, (ulf)e Loy iff u Lo (fly)p. The collection of all central
maps is the centre of the orthogonality.

Remark 27 An orthogonality is focussed if and only if there is a set F of
morphisms from 1 to L such that u 1. x if and only if (u|x)c = zou € F. Such
orthogonalities are common, for example the original phase space semantics for
Linear Logic is based explicitly on a focussed orthogonality [24,28]. Clearly, in
this case, all maps are central. Conversely, if we have a central orthogonality,
then by setting FF = {x: I —— L:idy L, x} we obtain u L, = iff uoidy L. x
iff idi Lyxow iff tou € F, so the orthogonality is focussed.

Proposition 28 Assume that C has products and projection maps are cen-
tral. Then the loose subcategory G (C) of G(C) is closed under products.
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If additionally the orthogonality on C is stable then the tight subcategory
G (C) of G(C) has products, given by

(R,U,X) x (S,V,Y)=(Rx S,UxV,(UxV)").
In fact, U x V = (X @ Y)" is closed. Dual results holds for coproducts.

Definition 29 We say that an exponential comonad on C is central with
respect to the orthogonality L if and only if all the structure maps €, 0, e, d
are central and exponentials |f: |R —— 1S of maps f: R —— S are central.

We note that the exponential comonad ! is central if and only if all maps in
the category of !-coalgebras are central.

Proposition 30 Suppose that the structure maps €, e and d are central. We
can define an exponential comonad on G (C) by

(R, U X)= (IR, {\r(u): ue U}, ?7X),
where 7X is as in Proposition 19, but the second clause is replaced by
{xoe,:id; 1; x} C7?X.
Suppose that the exponential comonad on C is central. We can define an ex-
ponential comonad on G*-(C) by
(R.U,X) = (IR, AelU) ", (A&lU]) ).

Theorem 31 Suppose G(C) is obtained from C as in Theorem 20. If the
exponential comonad on C is central, then both the loose category G (C)
and the tight category G*(C) are models for classical linear logic.

Generally a category will admit many orthogonalities. We recall two of par-
ticular importance in the case of Rel. One is Loader’s total orthogonality: for

u: I —— R and z: R —— 1 in Rel we set

u Lz ifand onlyif |unz|=1.
Loader’s Totality Spaces [35,36] are essentially G*(Rel) for this orthogona-
lity. The other orthogonality is the partial orthogonality: for u: I —— R and

z: R —— 1 we have

ulpx ifandonlyif |unz| <1.

Girard’s Coherence spaces [24,28] are essentially G+ (Rel) for this orthogona-
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lity. These identifications '® are exploited in [40].

Our orthogonalities on Rel induce orthogonalities on RRel, since morphisms
u: I —— (Rp,Rp) and z: (Rp, Ro) I in RRel correspond to subsets
uC R=Rp+ Rop and © C R = Rp + Rop. We have the total orthogonality on
RRel

u L,z ifandonlyif |[unz|=1

and partial orthogonality on RRel

u lyx ifand only if |unz| <1.

Both these orthogonalities are stable with central exponential comonad and
so we find that both the loose category G- (RRel) and the tight category
G*(RRel) are models for classical linear logic.

We return now to our functor G: Gam —— G(RRel). Take A € Gam with
G(A) = ((Ap, A0),U, X), so that we can identify U and X with the sets of
Player and Opponent strategies in A, respectively. For v € U and x € X there
are two possibilities for the play of u against x:

either the play terminates in a position r and u Nz = {r}

or the play is infinite and u Nz = 0.

It follows that G: Gam —— G(RRel) factors through G“)(RRel) when
1 is the partial orthogonality. (That is the largest of the subcategories of
G(RRel) which we have identified.) When we pass from G(RRel) to the
loose category G(+)(RRel) the classical linear logic structure changes, but we
still have the following.

Theorem 32 For the partial orthogonality 1, G: Gam —— G(Y)(RRel) is
full, faithful and linearly distributive.

To capture the liberal nature of Player strategies in a tensor product which we
discussed at the beginning of this section, we need to use tight categories. '
Using the partial orthogonality category, our coding does not lead to a subca-
tegory of the tight category G (RRel): The problem is that the zero (empty)
map will be in any closed U or X; but (because we make the initial posi-

15 The very slight mismatch in the case of Totality Spaces need not detain us here,
we come back to it in Section 7.

16 We recall that for the total orthogonality on Rel (the case of Loader’s Totality
Spaces) restricting to the tight category has no effect on the tensor product; but
this is rare.
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tion explicit) our coding does not identify that with any strategy. From this
point of view the total orthogonality is more promising; but we have there the
problem of infinite plays for which we have given no explicit representation.
However, if we are prepared to forego the exponentials we can restrict to the
subcategory Gamg, of finite games. The functor G: Gamg, — G(RRel)
factors through G)(RRel) for the total orthogonality as now there are no
infinite plays. And now we can make good our motivating intuition as the
image lies in G*(RRel) and we have the following

Proposition 33 For the total orthogonality, G: Gamg, — G*(RRel) is
a full, faithful, and monoidal functor.

While the functor G: Gamg, — G*(RRel) does not quite preserve the
multiplicative structure, we have made an advance. For simple calculations
show that in a tensor product

((RPv RO)a U’X) ® ((SPa SO)a V, Y)

in G*(RRel), the set (U ® V) (which can be read as the representation
of Player strategies) is substantially larger than U ® V. So a process reading
of the category seems plausible, and we now give an indication of what this
might be.

7 A concrete category of games

In this final section we describe a new category of games and relate it to a
category of abstract games which we arrived at in the last section.

Definition 34 A graph game A is given by

e aset A= Ap+ Ao of positions together with an initial position x4 € Ap;
Ap is the set of Player positions (where Opponent is to move) and Ao is
the set of Opponent positions (where Player is to move);

e the structure a — a' on A of an acyclic directed (Ap, Ap)-bipartite graph
(so if a — a' then a € Ap if and only if a' € Ap); if a —— a' then there
is a move from a to a'; and for any a € A the length of paths from x4 to a
is bounded. "

We think of a game A as being played from %, with Opponent making the
first move: positions which are not reachable from %4 play no part in the game
and could be deleted.

17Tn fact a well-foundedness condition suffices.
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Prima facie the notion of a Player (or Opponent) strategy in a graph game
seems clear enough. A Player strategy o in A will map (some) Opponent po-
sitions a € Ap to Player positions @’ € Ap where a — ' is the Player move
according to o. However the possibilities of arriving at the same position by
different paths means that we should consider only conflict-free !* strategies.
A Player strategy o is conflict-free if and only if whenever a” is reachable from
a € Ap, and both are positions occurring in plays according to o then ¢ has
a response a — a' to a and a” is reachable from a'. Henceforth by strategy
we mean conflict-free strategy.

In order to describe the category GGam of graph games we describe the
multiplicative structure.

e The tensor unit I is the game with just one (initial) position .

e The tensor A ® B is the game with
- P-positions Ap x Bp
- O-positions (Ap X Bg) + (Ap x Bp).
The initial position is (%4, *xg) and there are moves (a,b) — (d/, V') just
when
either a — d' and b=V

or a=da and b — b

e The linear function space A-oB is the game with
- P-positions (Ap x Bp) + (Ap X Bp)
- O-positions Ap x Bg.
The initial position is (%4, *xg) and there are moves (a,b) — (d’, V') just
when
either a —— o' and b=V

or a=a and b — b

Now we can define the maps ¢: A —— B in the category GGam of graph
games to be the conflict-free Player strategies in A—oB. Just as with more
familiar games these strategies compose associatively and there is an identity
(copy-cat) strategy A — A.

Proposition 35 GGam is a symmetric monoidal closed category.
The additive structure on GGam is obvious.

e The terminal object 1 is (again) the game I with just one (initial) position xj.
e The product A x B is the game with positions A V B the ‘coalesced sum’
of the positions of A and B, identifying %, with %z to give the new initial

18 The terminology hints at a connection with concrete data structures [32] and
event structures [41], see also [21].
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position. Player and Opponent positions and moves are all inherited from
A and B.

In a similar way one gets products for arbitrary families.
Proposition 36 GGam has all products.

We can define an exponential comonad ' on GGam as follows. The expo-
nential !A is the game with

e P-positions finite multisets in Ap — {x4},
e O-positions finite multisets in A— {4} containing just one element from Ag.

The initial position is the empty multiset and there are moves m —— m' just
when

eitherr m=n+a,a —a' in A and m' =n + d

or m' =m+aand x4 — a in A.

We leave the description of comonad and comonoid structure for ! to the
reader it parallels that in Gam.

Proposition 37 GGam is a model for intuitionistic linear logic.

We note in passing relations between the category GGam and the more fami-
liar category Gam. Every game with game tree is a graph game, and we get a
linearly distributive functor (: Gam —— GGam embedding Gam as a full
subcategory of GGam. On the other hand by taking paths we can derive a
game tree from a graph game; there is a functor P: GGam —— Gam which
preserves the structure (for models of intuitionistic linear logic).

We briefly indicate some relations between GGam and categories of abstract
games of the form G(Y)(RRel) and G*(RRel). We restrict attention to the
total orthogonality. The functor G: Gam — G*'(RRel) extends mutatis
mutandis to a linearly distributive functor G: GGam — G(RRel). For fi-
nite graph games this will factor through G™)(RRel) but not (generally)
through G*(RRel). However we can find a submodel of GGam whose finite
members do get mapped into G'(RRel). We say that a graph game is requ-
lated if and only if whenever paths diverge at a P-position (O-position) then if
they converge again they do so for the first time at a P-position (O-position).
Let RGam be the full subcategory of GGam with objects the regulated
games.

Proposition 38 RGam is a model for intuitionistic linear logic.

19 Experience with sequential algorithms suggests a more sophisticated alternative.
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We have reached our aim since G: GGam —— G(RRel) does restrict to a
functor G: RGamg, — G'(RRel) and the connection between these con-
crete and abstract games is very close.

To make this precise we need to modify G*(RRel) along familiar lines [12].
Given an object ((Rp, Ro),U, X) in G1(RRel) it may well be the case that
UU and J X are strictly contained in R = Rp + Rp; then certainly

R=J{unz|uelUuzxeX}

which represents the set of results of plays is strictly contained in R. We wish
to consider only ((Rp, Ro),U, X) with R = R'. Let

e G'(RRel) be the full subcategory consisting of objects ((Rp, Ro),U, X)
with R = X;

e G'(RRel) be the full subcategory consisting of objects ((Rp, Ro),U, X)
with R = U;

e G!(RRel) be the full subcategory consisting of objects ((Rp, Ro),U, X)
with R=UU=UX =R.%

There is a left adjoint L: Gt(RRel) — G!(RRel) to the inclusion func-
tor G'(RRel) — G'(RRel) and dually R: G'(RRel) — G"(RRel), a
right adjoint to the inclusion G'(RRel) —— G (RRel); and we get the com-
posite T = LR = RL: G'(RRel) — G*(RRel). One checks readily that if
A = ((Rp,R0),U,X) and B = ((Sp,Sp),V,Y) are in G'(RRel) then so is
A ® B. It follows by routine considerations that G*(RRel) is *-autonomous.

Now we can state the precise connection between concrete and abstract games.

Theorem 39 G: RGamg, — G*(RRel) is fully, faithful and preserves
the symmetric monoidal closed structure.

Thus we have shown that the multiplicative structure of a category RGamyg,,
of concrete games is exactly represented as a symmetric monoidal closed cat-
egory within the abstract model G*(RRel). But Gf(RRel) is *-autonomous
and so contains by duality representations of the cogames?' dual to the games
of RGamy,. Hence it is natural to ask how G*(RRel) handles the problem
of composition of strategies when one has both games and cogames together.
What happens is that if for example A is a cogame and B is a game then (in
contrast with the Blass conventions [18]) there is no map in G¥(RRel) from

G(A) to G(B).

20 The analogous subcategory of G (Rel) is exactly Loader’s category of Totality
Spaces [35].
21 A cogame is just a game in which Player starts.
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8 Further directions

The thrust of this paper is that one can arrive at computational models using
abstract categorical machinery. We mention some further developments along
these lines.

1) Our best results are restricted to finite graph games. One can do better by
means of more sophisticated use of orthogonality.

2) The functor G: RGamg, — G*(RRel) does not (quite) manage to pre-
serve additives. Intuitively, the reason for this is clear: we have not taken
due notice of the initial position in our abstract games. (This issue is already
addressed in [10].)

3) One should explore how to arrive at exactly the usual simple category of
games and also how to encapsulate more subtle notions of game (and strategy).

4) There are connections with sequential algorithms. In particular more so-
phisticated exponentials can be studied in an abstract setting.

5) Abstract games lend themselves to clean conceptual proofs of full abstrac-
tion and full completeness results.
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