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al Statisti
s, University ofCambridge, 16 Mill Lane, Cambridge, CB2 1SB.Abstra
tWe draw attention to a number of 
onstru
tions whi
h lie behind many 
on
retemodels for linear logi
; we develop an abstra
t 
ontext for these and des
ribe theirgeneral theory. Using these 
onstru
tions we give a model of 
lassi
al linear logi
based on an abstra
t notion of game. We derive this not from a 
ategory with built-in 
omputational 
ontent but from the simple 
ategory of sets and relations. Todemonstrate the 
omputational 
ontent of the resulting model we make 
omparisonsat ea
h stage of the 
onstru
tion with a standard very simple notion of game. Ourmodel provides motivation for a less familiar 
ategory of games (played on dire
tedgraphs) whi
h is 
losely re
e
ted by our notion of abstra
t game. We brie
y indi
atea number of variations on this theme and sket
h how the abstra
t 
on
ept of gamemay be re�ned further.
1 Introdu
tionThis paper presents an illustrative example of a 
ategory of abstra
t games.Games models for linear logi
 are now extensively used to model intensionalfeatures of programming languages [5,6,30,34,38,7,8,37℄. The notion of a gameis intuitively 
lear, but mathemati
al representations 
an seem 
ompli
ated:there are positions and moves in a game tree, and strategies have to be 
om-posed by some expli
it parallel 
omposition plus hiding. An abstra
t game isa stru
ture obtained by abstra
ting away from the details of the game tree;typi
ally the stru
ture involves some 
ombination of sets of positions (or out-
omes) and sets of strategies. Many 
ategori
al models of linear logi
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some reading in terms of abstra
t games [9,10,19,33,35,36,22℄, and 
ategoriesfor whi
h this reading seems 
onvin
ing underlie approa
hes to the Geometryof Intera
tion [26,25,27,23,2,4℄.To give a 
omputationally signi�
ant 
ategory of abstra
t games we exploitsome general 
onstru
tions on models of linear logi
. Spe
ial 
ases have beenknown for a long time, but we make pre
ise the general phenomena underlyingthem. We 
onsider the following.Self-dualization. Part of the prehistory of 
ategory theory: the 
onstru
tion ofmultipli
atives was known early to Girard and 
an also be read as a spe
ial
ase of Chu's 
onstru
tion 3 [20℄.Comonoid indexing. We exploit the simple properties of the familiar Kleisli
ategory of (free) 
oalgebras for the 
omonad indu
ed by an internal 
omonoid.Glueing. Again an old idea in 
ategory theory: the novelty is glueing to get self-dual 
ategories. The obvious pre
ursor is Loader's 
ategory of `Linear Logi
alPredi
ates' [36℄, but the 
onstru
tion is also an ingredient in Girard's `PhaseSemanti
s' [24,28℄ and one approa
h to his 
oheren
e spa
es [24,28℄.Orthogonality. This is one of the key ideas of linear logi
: it is the otheringredient in `Phase Semanti
s' and in 
oheren
e spa
es [40℄. It also appearsin Loader's `Totality Spa
es' [35℄.One way of reading mu
h 
urrent work on linear logi
 is this. One starts withsome model of 
omputation (perhaps in the form of a tra
ed monoidal or
ompa
t 
losed 
ategory, perhaps with a less 
lean stru
ture) and uses generalte
hniques from 
ategori
al logi
 to 
onstru
t a ri
h mathemati
al model.Here however we start with a 
omputationally limited model, the 
ategoryof sets and relations, and show that even using it we arrive at models withde�nite 
omputational 
ontent. At ea
h stage of the 
onstru
tion we 
omparethe 
ategory of abstra
t games with a simple 
ategory of standard games.We get 
loser to this familiar 
ategory with ea
h step, and the �nal resulting
ategory of abstra
t games motivates a less familiar notion of 
on
rete game.The multipli
ative stru
ture of the �nite games is exa
tly re
e
ted by ourabstra
t games. There are extensions of our ideas whi
h take things furtherbut we do not have the spa
e here to develop these. Nonetheless we hope themoral lesson that good models do not require mu
h 
omputational input willbe 
lear. (This point is also e�e
tively made in [10℄.)3 We warn however that this is misleading: 
onsideration of the exponentials revealsa better parallel with Diale
ti
a 
ategories.2



2 PreliminariesDe�nition 1 A (
ategori
al) model of intuitionisti
 linear logi
 
onsists ofa 
ategory whi
h is symmetri
 monoidal 
losed, has �nite produ
ts and isequipped with a linear exponential 
omonad.A (
ategori
al) model of 
lassi
al linear logi
 
onsists of a 
ategory whi
his �-autonomous, has �nite produ
ts and (therefore) �nite 
o-produ
ts, andis equipped with a linear exponential 
omonad and (so) a linear exponentialmonad.The 
lassi
al 
ase adds nothing more than the duality; but the duality givesthe dual of any existing stru
ture. The stru
tures involved are des
ribed inthe intuitionisti
 
ase in [14,15℄. For more details and all the required naturaltransformations and 
ommutative diagrams, see [16,17℄.We need to 
onsider fun
tors between models of linear logi
. Sometimes ween
ounter fun
tors whi
h preserve stru
ture, but usually we have a weakernotion.De�nition 2 Let C, D be models for linear logi
. The fun
tor F : C - Dis linearly distributive 4 if and only if F is monoidal (with stru
ture nI; nC;C0)and is equipped with a distributive law in the sense of Be
k [13℄ (see also [39℄)� : !F - F ! respe
ting the 
omonoid stru
ture, in the sense thatI � eF (C) !F (C) dF (C) - !F (C)
!F (C)
F (I)nI ? �F (eC) F (!C)�C? F (dC) - F (!C
!C)n!C;!C Æ (�C 
 �C)?
ommutes.We make pre
ise the sense in whi
h the 
ategories we des
ribe 
an be regardedas 
ategories of abstra
t games by des
ribing linearly distributive fun
torsfrom a 
ategory of games to our 
ategories. We 
arry out the analysis for thevery simple 
ategoryGam of games des
ribed in Se
tion 2 of [31℄ (see also [1℄)though the thrust of the results is pretty insensitive to whi
h 
ategory of gameswe 
onsider.Like other standard games models, Gam is a model for intuitionisti
 linear4 Note that a linearly distributive fun
tor lifts to a fun
tor between the 
artesian
losed Kleisli 
ategories of (
o)free 
oalgebras.3



logi
. By self-dualization (see Se
tion 3) one 
an obtain a 
ategory with dual-ity, formally 
onsidering `positive' and `negative' games; but there is then norelation between the two 
omponents of the generalized game. 5 In 
ontrast,our 
ategories of abstra
t games have a built-in duality. Generally in su
h
ases, an interpretation of the maps as genuinely 
on
urrent pro
esses seemsbest, and there are many examples of these. However the examples we presenthere have a strong 
avour of sequentiality.Our starting point is the 
ategory Rel of sets and relations whi
h is a verydegenerate model of 
lassi
al linear logi
. We take as tensor produ
t the pro-du
t of sets so that Rel is 
ompa
t 
losed; the disjoint union of sets gives abiprodu
t. As linear exponential 
omonad we take the �nite multiset 
omonadW : as explained in Barr [12℄, this is indu
ed by the (
o)free (
o)
ommutative
omonoid fun
tor. A 
on
rete des
ription is as follows:� On obje
ts, W (A) is the set of �nite multisets over A.� For f : A +- B a map in Rel, W (f) : W (A) +- W (B) is de�ned by
onsidering f � A � B and setting x W (f) y i� there is an element zof W (f) � W (A � B) whose �rst and se
ond proje
tions are x and y,respe
tively.� The 
omonad and 
omonoid stru
ture maps are the opposites of the usualstru
ture maps for the �nite multiset monad in Sets. 6We now des
ribe a fun
tor F : Gam - Rel. On obje
ts, F (A) is simplythe set of positions (or states, or stages) in the game A 2 Gam. The a
tionof F on maps is more deli
ate. By a Player position (P-position) in a game Awe mean a position in whi
h Opponent is next to play|the set of all those isdenoted by AP . 7 The remaining positions are Opponent ones (O-positions),
olle
ted in the set AO. Similarly, we o

asionally use the abbreviations P-strategy and O-strategy for Player strategies and Opponent strategies. A map� : A - B in Gam is a Player strategy in the game A�ÆB, where the dualof A and B are played in parallel. Re
all that a position in A�ÆB is givenby a sequen
e of moves (a notion we are abstra
ting away from) of A and Bsu
h that the proje
tions onto A and B respe
tively are valid positions in the
onstituent games. Therefore a position r of A�ÆB 
an be proje
ted to onerjA of A and one rjB of B, respe
tively. De�ne F (�) to be the setfhrjA; rjBi : r 2 � is a P-positiong5 A 
ounter instan
e is the important 
ase of games and history-free strate-gies [3,5,6℄; this provides in the �rst pla
e a 
ategory without produ
ts, but stillone 
an dualize. The phenomenon deserves 
loser study.6 In other words, the 
omonad W is the opposite of a monad obtained by liftingthe �nite multiset monad from Sets to Rel.7 So in a P-position, Player has just played, in
luding by 
onvention the initialposition. 4



of pairs of positions arising as the proje
tions of a P-position in �. One ea-sily sees that the 
opy-
at strategy in A�ÆA is mapped by F to the identityrelation.We next 
onsider F applied to a 
omposite  Æ� of two strategies. Re
all thatgiven positions r in A�ÆB and s in B�ÆC su
h that rjB = sjB, we 
an �nd aunique interleaving of r and s, that is a sequen
e t of moves from A, B and C,su
h that the restri
tions tjA;B and tjB;C of t to moves from A�ÆB and B�ÆCare r and s respe
tively. Sin
e(tjA;C)jA = tjA = rjA is a position in Aand (tjA;C)jC = tjC = sjC is a position in Cit follows that tjA;C is a position in A�ÆC. This explains why the 
ompositeof � : A - B and  : B - C in Gam is Æ� = ftjA;C : t sequen
e of moves in A, B and C with tjA;B 2 �; tjB;C 2  g:Now a P-position in the 
omposite  Æ� arises for the �rst time via a t as abovewith both tjA;B and tjB;C P-positions (in A�ÆB and B�ÆC respe
tively). Itfollows that F ( Æ �) is the relational 
omposite F ( ) Æ F (�) so that F isindeed fun
torial.Passing from � to F (�) appears to lose the information of what interleaving ofplay in A and B led to a given position in A�ÆB. However we 
an re
onstru
t� from F (�). For di�erent ways of interleaving plays in the 
onstituent gamesof A�ÆB o

ur by the 
hoi
e of Player and hen
e at P-positions in the game;so these 
hoi
es are 
oded in F (�). It follows that we 
an re
onstru
t � asthe set of all positions r in A�ÆB su
h that for all P-positions r0 � r we havehr0jA; r0jBi 2 F (�). Thus the fun
tor F is faithful.Theorem 3 The fun
tor F : Gam - Rel is faithful and linearly distribu-tive.The monoidal stru
ture is given as follows.� nI is the unique fun
tion from I to I = F (I).� nA;B : F (A)� F (B) +- F (A
 B) is the relationhr; si � t if and only if r = tjA and s = tjB.The distributive map �A : W (F (A)) +- F (!A) is the relation x � � if andonly if x is the multiset of positions arising by proje
ting � into the a
tive 8versions of A involved in it. We leave the details to the reader.8 This means that the initial position in the �rst version of A is a
tive initially, butno initial position is a
tive thereafter. The spe
ial treatment needed to 
ope with5



Little of the 
avour of games is preserved by the fun
tor F : Gam - Rel.In this paper, we aim to develop abstra
t interpretations with a more gametheoreti
 feel.3 Self-dualizationSuppose that we are given a 
ategory C; then Cd = C � Cop is a 
ategorywith duality (negation). We have a fun
tor ( )? : Cd - (Cd)op with(U;X)? = (X;U);and with the obvious a
tion on morphisms; ( )? is a self duality on Cd.It is an important fa
t that if C 
arries enough stru
ture then Cd is a modelof 
lassi
al Linear Logi
. In the presen
e of a terminal obje
t, Cd is a degene-rate form of Chu's 
onstru
tion [20℄, so the result for the multipli
atives andadditives should be well known. 9Proposition 4 If C is a symmetri
 monoidal 
losed 
ategory with �nite pro-du
ts, then Cd is �-autonomous. The tensor produ
t is(U;X)
 (V; Y ) = (U 
 V; U�ÆY � V�ÆX);the unit I = (I; 1).Proposition 5 If C has �nite produ
ts and 
oprodu
ts, then so does Cd. Theprodu
ts are given as (U;X)�(V; Y ) = (U�V;X+Y ), the unit for the produ
tis 1 = (1; 0). Coprodu
ts are formed via (U;X) + (V; Y ) = (U + V;X � Y ),the unit for the 
oprodu
t is 0 = (0; 1).Finally we 
onsider the exponentials. We shall assume that C has a linearexponential 
omonad; this handles the stru
ture in the �rst 
oordinate of Cdstraightforwardly. It is the stru
ture in the se
ond 
oordinate whi
h presentsthe 
hallenge.De�nition 6 Let C be a model for intuitionisti
 linear logi
. We say that Chas well-adapted monoids just when� C is equipped with a monad M whose (free) algebras are naturally 
ommu-tative monoids with respe
t to produ
t andthe initial position will 
ome ba
k to haunt us.9 The situation for the exponentials is in any 
ase quite subtle; we give detailsof our 
onstru
tion and dis
uss its extension to the general Chu and Diale
ti
a
onstru
tions in a 
ompanion paper. 6



� M is equipped with a strength �U;X : !U 
M(X) - M(!U 
X) whi
h re-spe
ts the monad and monoid stru
ture, and further indu
es an a
tion of!-
oalgebras on M-algebras via the linear fun
tion spa
e fun
tor �Æ.Remark 7 If C is 
artesian 
losed with ! the identity fun
tor this 
onditionamounts to the requirement that M be a strong monad whose algebras are nat-urally 
ommutative monoids and whose strength is well-behaved with respe
tto the monoid operations. This 
ase appears in [22℄. Hyland and de Paiva 
on-sidered the general de�nition of the exponential fun
tor and the most obviousstru
ture for it around 1990 but at the time the notion of a linear exponen-tial 
omonad was not formulated. The details of the full stru
ture and theproofs of the axioms in the symmetri
 monoidal 
ase are non-trivial and willbe des
ribed in detail in a 
ompanion paper.Proposition 8 Let C be a model for intuitionisti
 linear logi
 with well-adapted monoids. Then C � Cop has a linear exponential 
omonad where!(U;X) = (!U; !U�ÆM(X)).Putting the above propositions together we have the following.Theorem 9 Let C be a model for intuitionisti
 linear logi
 with �nite 
o-produ
ts and well-adapted monoids. Then Cd is a model for 
lassi
al linearlogi
.As a 
ategory of abstra
t games, Reld improves on Rel by representing someaspe
t of the Player-Opponent di
hotomy. If (RP ; RO) 2 Reld we think ofR = RP + RO as the set of positions of a game, with RP the P-positionsand RO the O-positions. Clearly there is a fun
tor +: Reld - Rel whosea
tion on obje
ts is (RP ; RO) - RP +RO. 10 We explain how the fun
torF : Gam - Rel from the previous se
tion lifts along this to a fun
tor whi
hwe denote again by F : Gam - Reld.For a game A we let F (A) = (AP ; AO), where AP is the set of P-positions andAO is the set of O-positions in A. To give the e�e
t of F on morphisms, we
onsider a P-position in A�ÆB and its proje
tion onto a pair of positions, onein A and one in B. (Be
ause A o

urs 
ontravariantly, the rôles of P-positionsand O-position inter
hange|however, we �nd it simpler not to introdu
e adual `
o-game' A? in whi
h the inter
hange is made expli
it.) In a P-positionin A�ÆB, it is Opponent's turn in pre
isely one of A and B, so su
h a positionproje
ts down to a pair of the type (P; P ) or (O;O). Thus the set of all P-positions in A�ÆB is 
ontained in the disjoint unionAP �BP + AO � BO:10 Spe
ial features of Rel enable one to equip this fun
tor with linearly distributivestru
ture, but this does not appear to be of mu
h importan
e.7



Hen
e for a map � : A - B in Gam, the setfhtjA; tjBi : t 2 � a P-positiongprovides relations AP +- BP and BO +- AO,and we let F (�) be the 
orresponding map (AP ; AO) - (BP ; BO) in Reld.It is easy to see that F : Gam - Reld is fun
torial and that the 
ompositewith +: Reld - Rel from above is the old F : Gam - Rel. Moreoverthe monoidal and linearly distributive stru
ture lift readily.Theorem 10 The fun
tor F : Gam - Reld is faithful and linearly dis-tributive.In this reading Player strategies in a fun
tion spa
e game 
ontain no informa-tion about O-positions of the game. We remedy this in the next se
tion.4 Comonoid indexingAssume that (K; e; d) is a 
omonoid in a monoidal 
ategory C; then tensoringwith K indu
es a 
omonad on C in the standard way. The indu
ed fun
-tor K is K(C) = K 
 C; the 
o-unit e
 idC : K 
 C - I
 C �= C, andthe 
omultipli
ation d
 idC : K 
 C - (K 
K)
 C �= K 
 (K 
 C). We
onsider the (Kleisli) 
ategory CK of (
o)free 
oalgebras for this 
omonad,together with the (
o)free fun
tor C - CK.Obje
ts of CK are obje
ts of C. Morphisms C - D in CK are given bymorphismsK 
 C - D inC. Identities are given by the 
o-unit from above,and 
omposition of f : K 
 C - D and g : K 
D - Z isK 
 C d
idC- K 
K 
 C idK
f- K 
D g- Z:Proposition 11 Let K be a 
ommutative 
omonoid in a symmetri
 monoidal
ategory C.(1) CK is a symmetri
 monoidal 
ategory, and C - CK preserves thestru
ture.(2) If C is also 
losed, then so is CK, andCK - C preserves the stru
ture.(3) If C is �-autonomous then so is C and CK - C preserves the stru
-ture.Proposition 12 Let K be a 
ommutative 
omonoid in a symmetri
 monoidal
ategory C. 8



(1) If C has produ
ts then so has CK, and C - CK preserves them.(2) Suppose C is 
losed. If C has 
oprodu
ts, so has CK, and C - CKpreserves them.De�nition 13 Let C be a model for intuitionisti
 linear logi
, and K a 
om-mutative 
omonoid in C. We say that K is an exponential 
omonoid if K is a
oalgebra for ! and the 
omonoid stru
ture on K is the one 
anoni
ally derivedfrom that the !-
oalgebra stru
ture.Proposition 14 Let C be a model for intuitionisti
 linear logi
 and let K bean exponential 
omonoid in C. Then CK has a linear exponential 
omonad.Theorem 15 Let C be a model for 
lassi
al linear logi
 and K an exponential
omonoid in C. Then CK is a model for 
lassi
al linear logi
.We identify the 
omonoid K = (I; I) in Reld, and de�ne the 
ategory of`restri
ted relations' RRel to be ReldK. So RRel has as obje
ts pairs of sets(RP ; RO); and maps (RP ; RO) - (SP ; SO) in RRel are maps(RP ; RO +RP ) - (SP ; SO)in Reld and so 
an be identi�ed with subsets of(RP � SP ) + (RO � SO) + (RP � SO):Thus a map (RP ; RO) - (SP ; SO) in RRel is a relationR = RP +RO +- SP + SO = S,restri
ted in that no elements of (RO � SP ) appear. This restri
tion mirrorsthe usual swit
hing 
ondition in games. By the above dis
ussion, RRel is amodel for 
lassi
al linear logi
. 11Adopting these 
hanges, we modify the fun
tor F : Gam - Reld of Se
-tion 3 to give G : Gam - RRel. On obje
ts, we have G(A) = (AP ; AO) asbefore. For � : A - B in Gam, the image G(�) : (AP ; AO) - (BP ; BO)in RRel will be represented by a subset G(�) of(AP � BP ) + (AO �BO) + (AP � BO):We let G(�)\ ((AP �BP )+ (AO�BO)) be the proje
tions of P-positions in aplay of � as before; the 
riti
al issue is the de�nition of the set G(�)\(AP�BO)of proje
tions of O-positions. Rather than 
onsidering all O-positions in a playa

ording to �, we take only those to whi
h � has no reply; we 
all these the11 There is a monoidal adjun
tion between RRel and Reld, but we will not dwellon that sin
e we do not exploit the fa
t in this paper.9



�nal O-positions of �, so G(�) \ (AP � BO) is the set of proje
tions of �nalO-positions o

urring in a play of �. 12That this 
hoi
e is fun
torial re
e
ts the following feature of 
omposition ofstrategies. Take � : A - B and  : B - C inGam and let t be a sequen
eof moves over A, B, and C with tjA;B 2 �, tjB;C 2  so that tjA;C 2  Æ �.Suppose that tjA;C is a �nal O-position in  Æ �. Theneither htjA; tBi has the type (P;O) and htjB; tjCi the type (O;O),or htjA; tBi has the type (P; P ) and htjB; tjCi the type (P;O).(Note that this is true even if t involves further 
hattering in B.) Moreover,the (P,O) pair is the proje
tion of a �nal O-position, either of tjA;B �nal in �,or of tjB;C �nal in  . Conversely, given su
h a t, tjA;C is a �nal O-position in Æ �. It is now not diÆ
ult to �ll in the details of the monoidal and linearlydistributive stru
ture for the fun
tor G.Theorem 16 G : Gam - RRel is a faithful linearly distributive fun
tor.Abstra
t strategies now 
ontain information about O-positions as well as in-formation about P-positions, but otherwise re
e
t no stru
ture of a game tree.We get this by 
onstraining the possible strategies.5 GlueingWe des
ribe only the simplest 
ase of a double glueing 
onstru
tion: glueingalong the linear element fun
tor C(I; ) on a �-autonomous 
ategory C.We 
onstru
t a new 
ategory G(C), the `glued 
ategory', as follows. Obje
tsof G(C) are obje
ts R of C together with setsU � C(I; R) and X � C(R;?) �= C(I; R?):Maps in G(C) from (R;U;X) to (S; V; Y ) are maps f : R - S su
h that:� for all I u- R in U , I u- R f- S is in V and� for all S y- ? in Y , R f- S y- ? is in X.12 It is a viable option to 
onsider proje
tions of all O-positions in �. The reason forthe 
hoi
e we make emerges in Se
tion 6: in G(�) we are en
oding the set of �nalpositions whi
h may result from playing �.10



We need a notation for generalized 
omposition. Given h : R
 S - ? andv : I - S, we de�ne (vjh)S : R - ? to beR �= R
 I idR
v- R 
 S h- ?:We extend this in the obvious way to other `
uts'.Proposition 17 If C is �-autonomous, so is G(C), and the forgetful fun
torG(C) - C preserves the stru
ture. The tensor unit is given byI = (I; fidIg;C(I;?))and the tensor produ
t(R;U;X)
 (S; V; Y ) = (R 
 S; U 
 V; Z)where U 
 V = fI �= I
 I u
v- R
 S : u 2 U; v 2 V gand Z = fR
 S z- ? : 8u 2 U: (ujz)R 2 Y and 8v 2 V: (vjz)S 2 Xg:Proposition 18 If C has �nite produ
ts, then so has G(C), and the fun
torG(C) - C preserves them. The terminal obje
t is (1;C(I; 1); ;), and theprodu
t (R;U;X)� (S; V; Y ) = (R� S; U � V;X � Y )where U � V = fhu; vi : I - R� S : u 2 U; v 2 V g andX � Y = fR� S �1- R x- ? : x 2 Xg[ fR�S �2- S y- ? : y 2 Y g:Dually, if C has �nite 
oprodu
ts, then so does G(C) and G(C) - C pre-serves them.Note that the fun
torC(I; ) : C - Sets is monoidal; and as Sets is triviallya model for intuitionisti
 linear logi
 (with the 
artesian 
losed stru
ture tomodel the multipli
atives and the identity 
omonad to take 
are of linearexponentials), we 
an ask for a natural transformation� : C(I; ) - C(I; !( ))making C(I; ) linearly distributive. With this data we 
an �nd linear expo-nential 
omonads in G(C).Proposition 19 Let C be a model for 
lassi
al linear logi
 with a linear dis-tribution � as above.(1) We 
an de�ne an exponential 
omonad on G(C) by!(R;U;X) = (!R; f�R(u) : u 2 Ug;C(!R;?));and then G(C) - C preserves the stru
ture.11



(2) We 
an de�ne an exponential 
omonad on G(C) by!(R;U;X) = (!R; f�R(u) : u 2 Ug; ?X);where ?X is the smallest subset of C(!R;?)� 
ontaining fx Æ �R : x 2 Xg,� 
ontaining f� Æ eR : � : I - ?g,� and su
h that whenever for some h : !R
!R - ?, for all u 2 U both
omposites (�R(u)jh)!R are in ?X, then h Æ dR : !R - ? is in ?X.Again G(C) - C preserves the stru
ture.Loader's 
ategory of Linear Logi
al Predi
ates [36℄ is essentially G(Rel), andthe 
ruder of these 
omonads for the standard power set 
omonad on Rel isdes
ribed in [36℄.Theorem 20 Let C be a model for 
lassi
al linear logi
 equipped with a lineardistribution � as above. Then G(C) is a model for 
lassi
al linear logi
, andG(C) - C preserves all the stru
ture.We now explain how to see G(RRel) as a 
ategory of abstra
t games. Re
all�rst the fun
tor G : Gam - RRel. As G(I) = (I; 0) = I 2 RRel we 
an
onsider for any game A the imageU = G(Gam(I; A)) � RRel(I; G(A))of the Player strategies in A. If u = G(�), where � is a Player strategy in A,then u \ AP is the set of P-positions in �and u \ AO is the set of �nal O-positions in �.Thus U � RRel(I; G(A)) 
onsists of the representations of Player strategies.Clearly if � : A - B inGam and U � RRel(I; G(A)), V � RRel(I; G(B))are the sets of representatives of Player strategies on A and B respe
tively,then 
omposition with G(�) maps U to V .We wish also to 
onsider representatives of Opponent strategies in a game A.These are in bije
tive 
orresponden
e with Player strategies in A�Æ� where� is the one-move (ie. two-position) game. 13 However there is just one posi-tion too many in G(Gam(A;�)) � RRel(G(A); G(�)): the initial position inA�Æ� does not 
orrespond to a position in A. But sin
e G(�) �= K = (I; I),there is a unique non-zero map? = (0; I) - (I; I) = G(�) in RRel and we13 � appears as S in [31℄ and plays the rôle of the obje
t of resumptions in re
entwork of Laird. 12




an 
onsider X � RRel(G(A);?) in the pullba
kX � - RRel(G(A);?)
G(Gam(A;�))�= ? �- RRel(G(A); G(�))?This removes the unwanted position; for x 2 X we have a unique Opponentstrategy � in A withx \ AO is the set of O-positions in �and x \ AP is the set of �nal P-positions in � .Thus X � RRel(G(A);?) 
onsists of representatives of Opponent strategies.It easily follows from our de�nition that if � : A - B is a morphism inGam and X � RRel(G(A);?) and Y � RRel(G(B);?) are the sets ofrepresentatives of Opponent strategies, then 
omposition with G(�) maps Yto X.It now follows that we 
an lift the fun
tor G : Gam - RRel along theforgetful fun
tor G(RRel) - RRel to a fun
tor G : Gam - G(RRel)by setting G(A) = (G(A); U;X)where U � RRel(I; G(A)) andX � RRel(G(A);?) 
onsist of the representa-tives of Player and Opponent strategies in the game A respe
tively. Obviously,the new G is faithful and the linear logi
 stru
ture (no matter whi
h of thetwo exponentials introdu
ed above we 
hoose) lifts readily along the forgetfulfun
tor G(RRel) - RRel.But now more is true: the fun
tor G is full. At an intuitive level, we 
an explainthis as follows. We 
an rea
h every position r in A�ÆB by playing a

ordingto an O-strategy whi
h treats A and B independently (moves in A may notdepend on the history in B and vi
e versa). Su
h a strategy 
an be viewed asarising from a pair of strategies, one in A (but sin
e the rôles of Player andOpponent are ex
hanged in this game as it is played as part of A�ÆB, this willbe a P-strategy) and one in B. So there is an O-strategy (�; �) where � is anO-strategy on B and � a P-strategy on A su
h that r arises when a suitableP-strategy is played against it.Now suppose G(A) = (G(A); U;X) and G(B) = (G(B); V; Y ) as above andsuppose f : G(A) - G(B) given by a setf � (AP �BP ) + (AO � BO) + (AP � BO)13



is a map in G(RRel), that is [u℄f 2 V and f [y℄ 2 X. Arguing indu
tively we
an re
onstru
t a P-strategy � in A�ÆB, that is a map A - B in Gam,with G(�) = f .The initial stages of the indu
tion are roughly as follows. We start by 
onside-ring f applied to ?Y , where ?Y is the (representative of the) least O-strategyin B (the one where Opponent refuses to do anything at all). It 
an be shownthat f [?Y ℄ = ?X , the (representative of the) least O-strategy in A. Thenfor an initial O-move b in B we 
onsider on the one hand f [yb℄, where yb isthe (representative of the) O-strategy generated by the move b, and on theother hand [?U ℄f where ?U is the (representative of the) least P-strategy inA. Then either [?U ℄f 
ontains a reply to b,or f [yb℄ 
ontains an opening move in A,or neither of these.In the �rst 
ase � replies to b in B, in the se
ond, � replies to b in A, while inthe third, � has no reply to b. The details of the indu
tive argument will begiven in the extended paper.Theorem 21 G : Gam - G(RRel) is full and faithful and linearly dis-tributive.We have made progress in 
onne
ting the 
on
rete 
ategory of games with a
ategory of abstra
t games. Now the last feature whi
h we wish to in
orporateis some 
onne
tion between abstra
t strategies for Player and for Opponent.We treat this issue in the next se
tion.6 OrthogonalityIn this se
tion we introdu
e ma
hinery motivated by the following 
onsidera-tions. A Player strategy in a tensor game A 
 B 
an use information aboutwhat has happened inB to guide play in A and vi
e versa: 14 so there are manymore strategies than are given by tensoring a strategy for A and one for B.The simple abstra
t 
ategories of games do not allow this and our response isto 
onsider the tight orthogonality 
ategories introdu
ed below. The intuitionthat we are trying to 
apture is that in a game the Player and Opponentstrategies determine ea
h other; and then the multipli
ative stru
ture is de-termined by the maps in the 
ategory (that is, by Player strategies in fun
tion14 Of 
ourse this is what visibility is designed to prevent in [29℄ and [38℄.14



spa
es). Thus the Player strategies in A
B are as varied as they 
an be giventhe Opponent strategies (that is, the Player strategies in A�ÆB? �= B�ÆA?).We identify two full sub
ategories of G(C) by using the additional stru
tureof an orthogonality on C.De�nition 22 Let C be a �-autonomous 
ategory. An orthogonality on C isa family of relations ?C between maps I - C and C - ? satisfying thefollowing:(1) (Isomorphisms) If f : C - D is an isomorphism, then for all mapsu : I - C and all maps x : C - ?, we haveu ?C x i� f Æ u ?D x Æ f�1(2) (Symmetry) For all I u- C and all C x- ?,u ?C x i� x? ?C? u?:(3) (Tensor) Given I u- C, I v- D together with C 
D h- ?, thenu ?C (vjh)D and v ?D (ujh)C implies u
 v ?C
D h:(4) (Identity) For all I u- C and all C y- I,u ?C y implies idI ?I y Æ u = (ujy)C:The se
ond 
ondition enables us to regard ? in lots of di�erent ways. Forexample, we 
an 
onsider u : I - C orthogonal to x? : I - C? withoutambiguity.Given U � C(I; R), we setU? = fx : R - ? : 8u 2 U: u ?R xg � C(R;?):Similarly we de�ne X? = fu : I - R : 8x 2 X: u ?R xg for X � C(R;?).Note that if U = X?, then U?? = X??? = X? = U . We 
all su
h sets 
losed.De�nition 23 An orthogonality is pre
ise just when the 
ondition (iii) is anequivalen
e, that is, u ?C (vjh) and v ?D (ujh) i� u
 v ?C
D h. (Note thatthe pre
ise form of (iii) implies (iv).)An orthogonality is stable if it is pre
ise and in addition satis�es the 
ondition(U?? 
 V ??)? = (U?? 
 V )?:15



In a pre
ise orthogonality, we have u ?C x i� u
 x? ?C
C? evC . In 
ase C is
ompa
t 
losed this means that the pre
ise orthogonality is determined by afamily of subsets of End(C) indexed over the obje
ts C of C.De�nition 24 The loose (orthogonality) sub
ategory G(?)(C) is the full sub-
ategory ofG(C) whi
h 
ontains those obje
ts (R;U;X) su
h that for all u 2 Uand for all x 2 X we have u ?R x. In other words, U � X? and X � U?.The tight (orthogonality) sub
ategory G?(C) is the full sub
ategory of G(C)whi
h 
omprises those (R;U;X) for whi
h U = X? and X = U?.Note that if U � C(I; R) is 
losed, then (R;U; U?) is an obje
t of the tightsub
ategory. Dual 
onsiderations apply to X � C(R;?).Proposition 25 If C is a �-autonomous 
ategory with an orthogonality thenso is G(?)(C): it is 
losed under negation and tensor and has the tensor unit(I; fidIg; fidIg?).If the orthogonality is stable then G?(C) is �-autonomous; it is 
losed undernegation, tensor produ
t is given by (R 
 S; (U 
 V )??; (U 
 V )?), and thenew unit is (I; fidIg??; fidIg?).ForG?(C) note that (U
V )? is, in fa
t, the 
orresponding 
omponent of thetensor produ
t in G(C), so all we are 
hanging is the se
ond 
omponent, by`
losing' it. From now on, we will ta
itly assume that C has an orthogonality,but state so expli
itly if we assume it to be stable.To handle the rest of the linear logi
 stru
ture we need 
ontrol of the stru
turemaps.De�nition 26 We say that f : C - D is 
entral with respe
t to the ortho-gonality ? if for all u : I - C and all y : D - ? we have f Æ u ?D y i�u ?C y Æ f , that is, (ujf)C ?D y i� u ?C (f jy)D. The 
olle
tion of all 
entralmaps is the 
entre of the orthogonality.Remark 27 An orthogonality is fo
ussed if and only if there is a set F ofmorphisms from I to? su
h that u ?C x if and only if (ujx)C = xÆu 2 F . Su
horthogonalities are 
ommon, for example the original phase spa
e semanti
s forLinear Logi
 is based expli
itly on a fo
ussed orthogonality [24,28℄. Clearly, inthis 
ase, all maps are 
entral. Conversely, if we have a 
entral orthogonality,then by setting F = f� : I - ? : idI ?I �g we obtain u ?C x i� u Æ idI ?C xi� idI ?I x Æ u i� x Æ u 2 F , so the orthogonality is fo
ussed.Proposition 28 Assume that C has produ
ts and proje
tion maps are 
en-tral. Then the loose sub
ategory G(?)(C) of G(C) is 
losed under produ
ts.16



If additionally the orthogonality on C is stable then the tight sub
ategoryG?(C) of G(C) has produ
ts, given by(R;U;X)� (S; V; Y ) = (R� S; U � V; (U � V )?):In fa
t, U � V = (X � Y )? is 
losed. Dual results holds for 
oprodu
ts.De�nition 29 We say that an exponential 
omonad on C is 
entral withrespe
t to the orthogonality ? if and only if all the stru
ture maps �, Æ, e, dare 
entral and exponentials !f : !R - !S of maps f : R - S are 
entral.We note that the exponential 
omonad ! is 
entral if and only if all maps inthe 
ategory of !-
oalgebras are 
entral.Proposition 30 Suppose that the stru
ture maps �, e and d are 
entral. We
an de�ne an exponential 
omonad on G(?)(C) by!(R;U;X) = (!R; f�R(u) : u 2 Ug; ?X);where ?X is as in Proposition 19, but the se
ond 
lause is repla
ed byf� Æ ea : idI ?I �g �?X:Suppose that the exponential 
omonad on C is 
entral. We 
an de�ne an ex-ponential 
omonad on G?(C) by!(R;U;X) = (!R; (�R[U ℄)??; (�R[U ℄)?):Theorem 31 Suppose G(C) is obtained from C as in Theorem 20. If theexponential 
omonad on C is 
entral, then both the loose 
ategory G(?)(C)and the tight 
ategory G?(C) are models for 
lassi
al linear logi
.Generally a 
ategory will admit many orthogonalities. We re
all two of par-ti
ular importan
e in the 
ase of Rel. One is Loader's total orthogonality: foru : I - R and x : R - I in Rel we setu ?R x if and only if ju \ xj = 1.Loader's Totality Spa
es [35,36℄ are essentially G?(Rel) for this orthogona-lity. The other orthogonality is the partial orthogonality: for u : I - R andx : R - I we haveu ?R x if and only if ju \ xj � 1.Girard's Coheren
e spa
es [24,28℄ are essentially G?(Rel) for this orthogona-17



lity. These identi�
ations 15 are exploited in [40℄.Our orthogonalities on Rel indu
e orthogonalities on RRel, sin
e morphismsu : I - (RP ; RO) and x : (RP ; RO) - I in RRel 
orrespond to subsetsu � R = RP +RO and x � R = RP +RO. We have the total orthogonality onRRel u ?R x if and only if ju \ xj = 1and partial orthogonality on RRelu ?R x if and only if ju \ xj � 1.Both these orthogonalities are stable with 
entral exponential 
omonad andso we �nd that both the loose 
ategory G(?)(RRel) and the tight 
ategoryG?(RRel) are models for 
lassi
al linear logi
.We return now to our fun
tor G : Gam - G(RRel). Take A 2 Gam withG(A) = ((AP ; AO); U;X), so that we 
an identify U and X with the sets ofPlayer and Opponent strategies in A, respe
tively. For u 2 U and x 2 X thereare two possibilities for the play of u against x:either the play terminates in a position r and u \ x = frgor the play is in�nite and u \ x = ;.It follows that G : Gam - G(RRel) fa
tors through G(?)(RRel) when? is the partial orthogonality. (That is the largest of the sub
ategories ofG(RRel) whi
h we have identi�ed.) When we pass from G(RRel) to theloose 
ategory G(?)(RRel) the 
lassi
al linear logi
 stru
ture 
hanges, but westill have the following.Theorem 32 For the partial orthogonality ?, G : Gam - G(?)(RRel) isfull, faithful and linearly distributive.To 
apture the liberal nature of Player strategies in a tensor produ
t whi
h wedis
ussed at the beginning of this se
tion, we need to use tight 
ategories. 16Using the partial orthogonality 
ategory, our 
oding does not lead to a sub
a-tegory of the tight 
ategory G?(RRel): The problem is that the zero (empty)map will be in any 
losed U or X; but (be
ause we make the initial posi-15 The very slight mismat
h in the 
ase of Totality Spa
es need not detain us here,we 
ome ba
k to it in Se
tion 7.16 We re
all that for the total orthogonality on Rel (the 
ase of Loader's TotalitySpa
es) restri
ting to the tight 
ategory has no e�e
t on the tensor produ
t; butthis is rare. 18



tion expli
it) our 
oding does not identify that with any strategy. From thispoint of view the total orthogonality is more promising; but we have there theproblem of in�nite plays for whi
h we have given no expli
it representation.However, if we are prepared to forego the exponentials we 
an restri
t to thesub
ategory Gam�n of �nite games. The fun
tor G : Gam�n - G(RRel)fa
tors through G(?)(RRel) for the total orthogonality as now there are noin�nite plays. And now we 
an make good our motivating intuition as theimage lies in G?(RRel) and we have the followingProposition 33 For the total orthogonality, G : Gam�n - G?(RRel) isa full, faithful, and monoidal fun
tor.While the fun
tor G : Gam�n - G?(RRel) does not quite preserve themultipli
ative stru
ture, we have made an advan
e. For simple 
al
ulationsshow that in a tensor produ
t((RP ; RO); U;X)
 ((SP ; SO); V; Y )in G?(RRel), the set (U 
 V )?? (whi
h 
an be read as the representationof Player strategies) is substantially larger than U 
 V . So a pro
ess readingof the 
ategory seems plausible, and we now give an indi
ation of what thismight be.7 A 
on
rete 
ategory of gamesIn this �nal se
tion we des
ribe a new 
ategory of games and relate it to a
ategory of abstra
t games whi
h we arrived at in the last se
tion.De�nition 34 A graph game A is given by� a set A = AP + AO of positions together with an initial position �A 2 AP ;AP is the set of Player positions (where Opponent is to move) and AO isthe set of Opponent positions (where Player is to move);� the stru
ture a - a0 on A of an a
y
li
 dire
ted (AP ; AO)-bipartite graph(so if a - a0 then a 2 AP if and only if a0 2 AO); if a - a0 then thereis a move from a to a0; and for any a 2 A the length of paths from �A to ais bounded. 17We think of a game A as being played from �A with Opponent making the�rst move: positions whi
h are not rea
hable from �A play no part in the gameand 
ould be deleted.17 In fa
t a well-foundedness 
ondition suÆ
es.19



Prima fa
ie the notion of a Player (or Opponent) strategy in a graph gameseems 
lear enough. A Player strategy � in A will map (some) Opponent po-sitions a 2 AO to Player positions a0 2 AP where a - a0 is the Player movea

ording to �. However the possibilities of arriving at the same position bydi�erent paths means that we should 
onsider only 
on
i
t-free 18 strategies.A Player strategy � is 
on
i
t-free if and only if whenever a00 is rea
hable froma 2 AO, and both are positions o

urring in plays a

ording to � then � hasa response a - a0 to a and a00 is rea
hable from a0. Hen
eforth by strategywe mean 
on
i
t-free strategy.In order to des
ribe the 
ategory GGam of graph games we des
ribe themultipli
ative stru
ture.� The tensor unit I is the game with just one (initial) position �I.� The tensor A
B is the game with� P-positions AP � BP� O-positions (AP �BO) + (AO � BP ).The initial position is (�A; �B) and there are moves (a; b) - (a0; b0) justwhen either a - a0 and b = b0or a = a0 and b - b0� The linear fun
tion spa
e A�ÆB is the game with� P-positions (AP � BP ) + (AO � BO)� O-positions AP �BO.The initial position is (�A; �B) and there are moves (a; b) - (a0; b0) justwhen either a - a0 and b = b0or a = a0 and b - b0Now we 
an de�ne the maps � : A - B in the 
ategory GGam of graphgames to be the 
on
i
t-free Player strategies in A�ÆB. Just as with morefamiliar games these strategies 
ompose asso
iatively and there is an identity(
opy-
at) strategy A - A.Proposition 35 GGam is a symmetri
 monoidal 
losed 
ategory.The additive stru
ture on GGam is obvious.� The terminal obje
t 1 is (again) the game I with just one (initial) position �I.� The produ
t A � B is the game with positions A _ B the `
oales
ed sum'of the positions of A and B, identifying �A with �B to give the new initial18 The terminology hints at a 
onne
tion with 
on
rete data stru
tures [32℄ andevent stru
tures [41℄, see also [21℄. 20



position. Player and Opponent positions and moves are all inherited fromA and B.In a similar way one gets produ
ts for arbitrary families.Proposition 36 GGam has all produ
ts.We 
an de�ne an exponential 
omonad 19 on GGam as follows. The expo-nential !A is the game with� P-positions �nite multisets in AP � f�Ag,� O-positions �nite multisets in A�f�Ag 
ontaining just one element from AO.The initial position is the empty multiset and there are moves m - m0 justwhen either m = n+ a, a - a0 in A and m0 = n + a0or m0 = m+ a and �A - a in A.We leave the des
ription of 
omonad and 
omonoid stru
ture for ! to thereader|it parallels that in Gam.Proposition 37 GGam is a model for intuitionisti
 linear logi
.We note in passing relations between the 
ategory GGam and the more fami-liar 
ategory Gam. Every game with game tree is a graph game, and we get alinearly distributive fun
tor Q : Gam - GGam embedding Gam as a fullsub
ategory of GGam. On the other hand by taking paths we 
an derive agame tree from a graph game; there is a fun
tor P : GGam - Gam whi
hpreserves the stru
ture (for models of intuitionisti
 linear logi
).We brie
y indi
ate some relations between GGam and 
ategories of abstra
tgames of the form G(?)(RRel) and G?(RRel). We restri
t attention to thetotal orthogonality. The fun
tor G : Gam - G?(RRel) extends mutatismutandis to a linearly distributive fun
tor G : GGam - G(RRel). For �-nite graph games this will fa
tor through G(?)(RRel) but not (generally)through G?(RRel). However we 
an �nd a submodel of GGam whose �nitemembers do get mapped into G?(RRel). We say that a graph game is regu-lated if and only if whenever paths diverge at a P-position (O-position) then ifthey 
onverge again they do so for the �rst time at a P-position (O-position).Let RGam be the full sub
ategory of GGam with obje
ts the regulatedgames.Proposition 38 RGam is a model for intuitionisti
 linear logi
.19 Experien
e with sequential algorithms suggests a more sophisti
ated alternative.21



We have rea
hed our aim sin
e G : GGam - G(RRel) does restri
t to afun
tor G : RGam�n - G?(RRel) and the 
onne
tion between these 
on-
rete and abstra
t games is very 
lose.To make this pre
ise we need to modify G?(RRel) along familiar lines [12℄.Given an obje
t ((RP ; RO); U;X) in G?(RRel) it may well be the 
ase thatSU and SX are stri
tly 
ontained in R = RP +RO; then 
ertainlyR0 = [fu \ x j u 2 U; x 2 Xgwhi
h represents the set of results of plays is stri
tly 
ontained in R. We wishto 
onsider only ((RP ; RO); U;X) with R = R0. Let� Gl(RRel) be the full sub
ategory 
onsisting of obje
ts ((RP ; RO); U;X)with R = SX;� Gr(RRel) be the full sub
ategory 
onsisting of obje
ts ((RP ; RO); U;X)with R = SU ;� G℄(RRel) be the full sub
ategory 
onsisting of obje
ts ((RP ; RO); U;X)with R = SU = SX = R0. 20There is a left adjoint L : G?(RRel) - Gl(RRel) to the in
lusion fun
-tor Gl(RRel) - G?(RRel) and dually R : G?(RRel) - Gr(RRel), aright adjoint to the in
lusionGr(RRel) - G?(RRel); and we get the 
om-posite T �= LR �= RL : G?(RRel) - G℄(RRel). One 
he
ks readily that ifA = ((RP ; RO); U;X) and B = ((SP ; SO); V; Y ) are in Gr(RRel) then so isA
 B. It follows by routine 
onsiderations that G℄(RRel) is �-autonomous.Now we 
an state the pre
ise 
onne
tion between 
on
rete and abstra
t games.Theorem 39 G : RGam�n - G℄(RRel) is fully, faithful and preservesthe symmetri
 monoidal 
losed stru
ture.Thus we have shown that the multipli
ative stru
ture of a 
ategory RGam�nof 
on
rete games is exa
tly represented as a symmetri
 monoidal 
losed 
at-egory within the abstra
t model G℄(RRel). But G℄(RRel) is �-autonomousand so 
ontains by duality representations of the 
ogames 21 dual to the gamesof RGam�n. Hen
e it is natural to ask how G℄(RRel) handles the problemof 
omposition of strategies when one has both games and 
ogames together.What happens is that if for example A is a 
ogame and B is a game then (in
ontrast with the Blass 
onventions [18℄) there is no map in G℄(RRel) fromG(A) to G(B).20 The analogous sub
ategory of G?(Rel) is exa
tly Loader's 
ategory of TotalitySpa
es [35℄.21 A 
ogame is just a game in whi
h Player starts.22



8 Further dire
tionsThe thrust of this paper is that one 
an arrive at 
omputational models usingabstra
t 
ategori
al ma
hinery. We mention some further developments alongthese lines.1) Our best results are restri
ted to �nite graph games. One 
an do better bymeans of more sophisti
ated use of orthogonality.2) The fun
tor G : RGam�n - G℄(RRel) does not (quite) manage to pre-serve additives. Intuitively, the reason for this is 
lear: we have not takendue noti
e of the initial position in our abstra
t games. (This issue is alreadyaddressed in [10℄.)3) One should explore how to arrive at exa
tly the usual simple 
ategory ofgames and also how to en
apsulate more subtle notions of game (and strategy).4) There are 
onne
tions with sequential algorithms. In parti
ular more so-phisti
ated exponentials 
an be studied in an abstra
t setting.5) Abstra
t games lend themselves to 
lean 
on
eptual proofs of full abstra
-tion and full 
ompleteness results.A
knowledgementsIt will be 
lear that we have been in
uen
ed in a general way by 
olleagueswho have worked on models for linear logi
. Many have given readings of theirmodels as abstra
t games. However, we would like to mention that a spe
i�
pre
ursor of the work des
ribed here is a joint proje
t with Robin Co
kett onthe analysis of sequentiality in the 
ontext of yet other 
ategories of abstra
tgames. We hope to report on this in the fullness of time.Referen
es[1℄ S. Abramsky. Semanti
s of intera
tion: an introdu
tion to game semanti
s. InA.M. Pitts and P. Dybjer, editors, Semanti
s and Logi
s of Computation, pages1{31. CUP, 1997.[2℄ S. Abramsky and R. Jagadeesan. New foundations for the geometry ofintera
tion. In Pro
eedings, Seventh Annual IEEE Symposium on Logi
 inComputer S
ien
e 1992, pages 211{222. IEEE Computer S
ien
e Press, SilverSpring, MD., 1992. 23



[3℄ S. Abramsky and R. Jagadeesan. Games and full 
ompleteness for multipli
ativelinear logi
. J. Symboli
 Logi
, 59:543{574, 1994.[4℄ S. Abramsky and R. Jagadeesan. New foundations for the geometry ofintera
tion. Inf. and Comp., 111(1):53{120, 1994.[5℄ S. Abramsky, R. Jagadeesan, and P. Mala
aria. Games and full abstra
tion forPCF. Information and Computation. To appear.[6℄ S. Abramsky, R. Jagadeesan, and P. Mala
aria. Full abstra
tion for PCF(extended abstra
t). In Theoreti
al Aspe
ts of Computer Software: TACS '94,Sendai, Japan, volume 789 of LNCS, pages 1{15, 1994.[7℄ S. Abramsky and G. M
Cusker. Games and full abstra
tion for the lazy �-
al
ulus. In Pro
eedings, Tenth Annual IEEE Symposium on Logi
 in ComputerS
ien
e, pages 234{243. IEEE Computer So
iety Press, 1995.[8℄ S. Abramsky and G. M
Cusker. Linearity, sharing and state: a fully abstra
tgame semanti
s for Idealized Algol with a
tive expressions. In P. W. O'Hearnand R. D. Tennent, editors, Algol-like languages. Birkh�auser, 1997.[9℄ P. Baillot, V. Danos, T. Ehrhard, and L. Regnier. Believe it or not, AJM'sgames model is a model of 
lassi
al linear logi
. In Pro
eedings of the TwelfthAnnual Symposium on Logi
 in Computer S
ien
e 1997, pages 68{75. IEEEComputer So
iety Press, 1997.[10℄ P. Baillot, V. Danos, T. Ehrhard, and L. Regnier. Timeless games. InPro
eedings of the tenth Workshop on Computer S
ien
e Logi
, volume 1414of LNCS. Springer Verlag, 1998.[11℄ M. Barr. �-Autonomous 
ategories. Number 752 in Le
ture Notes inMathemati
s. Springer-Verlag, 1979.[12℄ M. Barr. �-Autonomous 
ategories and linear logi
. Mathemati
al Stru
turesin Computer S
ien
e, 1(2):159{178, July 1991.[13℄ J.M. Be
k. Triples, Algebras, and Cohomology. PhD thesis, ColumbiaUniversity, 1967.[14℄ N. Benton, G. Bierman, V. de Paiva, and M. Hyland. Linear lambda-
al
ulusand 
ategori
al models revisited. In Pro
eedings of the Sixth Workshop onComputer S
ien
e Logi
, volume 702 of LNCS, pages 61{84. Springer Verlag,1993.[15℄ N. Benton, G. Bierman, V. de Paiva, and M. Hyland. A term 
al
ulus forintuitionisti
 linear logi
,. In M. Bezem and J.F. Groote, editors, Pro
eedingsof the International Conferen
e on Typed Lambda Cal
uli and Appli
ations,TLCA'93, Utre
ht, The Netherlands, 16{18 Mar
h 1993,, volume 664 of LNCS,pages 75{90. Springer Verlag, 1993.[16℄ G.M. Bierman. On intuitionisti
 linear logi
. Te
hni
al Report 346, Universityof Cambridge Computer Laboratory, August 1994.24



[17℄ G. M. Bierman. What is a 
ategori
al model of intuitionisti
 linear logi
? InPro
eedings of the Se
ond International Conferen
e on Typed Lambda Cal
ulus,volume 902 of LNCS, pages 73{93, 1995.[18℄ A. Blass. A game semanti
s for linear logi
. Annals of Pure and Applied Logi
,56:183{220, 1992.[19℄ A. Blass. Questions and answers|a 
ategory arising in linear logi
, 
omplexitytheory and set theory. In J.Y. Girard, Y. Lafont, and L. Regnier, editors,Advan
es in Linear Logi
, pages 61{81. CUP, 1995.[20℄ P.-H. Chu. �-Autonomous 
ategories, 
hapter Constru
ting �-autonomous
ategories. In Le
ture Notes in Mathemati
s [11℄, 1979. (Appendix).[21℄ P.-L. Curien. Categori
al Combinators, Sequential Algorithms and Fun
tionalProgramming. Birkh�auser, 2nd edn. edition, 1993.[22℄ V.C.V. de Paiva. A diale
ti
a-like model of linear logi
. In D.H. Pitt, D.E.Rydeheard, P. Dybjer, A.M. Pitts, and A. Poign�e, editors, Category Theoryand Computer S
ien
e, volume 389 of Le
ture Notes in Computer S
ien
e, pages341{356. Springer, 1989.[23℄ J.-Y. Girard. Geometry of intera
tion 3: A

ommodating the additives. ftpfrom ftp://iml.univ-mrs.fr/pub/girard/ as GOI3.ps.gz.[24℄ J.-Y. Girard. Linear logi
. Theoreti
al Computer S
ien
e, 50:1{102, 1987.[25℄ J.-Y. Girard. Geometry of intera
tion 2: Deadlo
k-free algorithms. In P. Martin-L�of and G. Mints, editors, International Conferen
e on Computer Logi
,COLOG88, volume 417 of LNCS, pages 76{93. Springer Verlag, 1988.[26℄ J.-Y. Girard. Geometry of intera
tion 1: Interpretation of System F. In R. Ferroet al., editor, Logi
 Colloquium 88. North Holland, 1989.[27℄ J.-Y. Girard. Towards a geometry of intera
tion. In J.W. Gray and A. S
edrov,editors, Categories in Computer S
ien
e and Logi
, volume 92 of ContemporaryMathemati
s, pages 69{108. AMS, 1989.[28℄ J.-Y. Girard. Linear logi
: its syntax and semanti
s. In J.-Y. Girard, Y. Lafont,and L. Regnier, editors, Advan
es in linear logi
. London Mathemati
al So
ietyLe
ture Note Series, Cambridge University Press, 1995. Available by anonymousftp from lmd.univ-mrs.fr as /pub/girard/Synsem.ps.Z.[29℄ J.M.E. Hyland and C.-H.L. Ong. On Full Abstra
tion for PCF: I, II and III.Information and Computation. To appear.[30℄ J.M.E. Hyland and C.-H.L. Ong. Fair games and full 
ompleteness formultipli
ative linear logi
 without the mix-rule. ftp from ftp.
omlab.ox.a
.ukas f
omplete.ps.gz in /pub/Do
uments/te
hpapers/Luke.Ong, 1993.[31℄ M. Hyland. Game semanti
s. In A.M. Pitts and P. Dybjer, editors, Semanti
sand Logi
s of Computation, pages 131{194. CUP, 1997.25



[32℄ G. Kahn and G.D. Plotkin. Con
rete domains. Theoreti
al Computer S
ien
e,121(1{2):187{277, 1993.[33℄ Y. Lafont and T. Strei
her. Games semanti
s for linear logi
. In Pro
. Logi
in Computer S
ien
e 1991. IEEE Computer S
ien
e Press, Silver Spring, MD.,1991.[34℄ J.G. Laird. Full abstra
tion for fun
tional languages with 
ontrol. In Pro
.Logi
 in Computer S
ien
e 1997, pages 58{64. IEEE Computer S
ien
e Press,Silver Spring, MD., 1997.[35℄ R. Loader. Linear logi
, totality, and full 
ompleteness. In Pro
. Logi
 inComputer S
ien
e 1994. IEEE Computer S
ien
e Press, Silver Spring, MD.,1994.[36℄ R. Loader. Models of lambda 
al
uli and linear logi
: Stru
tural, equationaland proof-theoreti
 
hara
terisations. PhD thesis, St. Hugh's College, Oxford,Mi
haelmas 1994.[37℄ G. M
Cusker. Games and full abstra
tion for FPC. In Pro
eedings, EleventhAnnual IEEE Symposium on Logi
 in Computer S
ien
e, pages 174{183. IEEEComputer So
iety Press, 1996.[38℄ H. Ni
kau. Hereditarily sequential fun
tionals. In Pro
eedings of the Symposiumof Logi
al Foundations of Computer S
ien
e, volume 813 of LNCS, pages 253{264. Springer Verlag, 1994.[39℄ R. Street. The formal theory of monads. Journal of Pure and Applied Algebra,2:149{168, 1972.[40℄ A.M. Tan. Full 
ompleteness for models of linear logi
. PhD thesis, Universityof Cambridge, 1997.[41℄ G. Winskel. Event stru
tures. In Petri Nets: Appli
ations and Relationshipsto Other Models of Con
urren
y, Advan
es in Petri Nets 1986, volume 255 ofLNCS, pages 325{392. Springer Verlag, 1986.

26


