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Abstract. We introduce and develop the notion of symmetric monoidal
sketch. Every symmetric monoidal sketch generates a generic model. If
the sketch is commutative and single-sorted, the generic model can be
characterised as a free structure on 1, and the construction sending a
small symmetric monoidal category to the category of models of the
sketch in it can be seen as a right adjoint. We investigate specific cases
generated by the Eckmann-Hilton argument, which allows a simple char-
acterisation of the constructions. This accounts for the various categories
of wiring currently being investigated in modelling concurrency, as well
as providing a basis for understanding the axiomatically generated cate-
gories in axiomatic domain theory and in presheaf models of concurrency.

1 Introduction

In recent years, in the studies of concurrency [11, 12, 3] and denotational
semantics [5], as part of a broad attempt to give an axiomatic account of pro-
gramming language semantics, it has been common to consider a free symmetric
monoidal category with some extra data or some extra axioms on 1. For instance,
Milner’s category of wirings [11, 12] is given by the free symmetric monoidal cat-
egory for which the symmetric monoidal structure is finite product structure
on 1; Fiore et al’s cuboidal sets [5] are defined by considering a free symmetric
monoidal category with a lifting monad, subject to additional axioms, on 1; and
Winskel et al’s work on presheaf models for concurrency [3] requires “path” cat-
egories, which are given by free symmetric monoidal categories with additional
structure on 1. Currently, Plotkin is developing a semantics for CCS, and he
too considers a free symmetric monoidal category, subject to some axioms, on 1
in order to give a wiring category, a different wiring category to that of Milner.
Philippa Gardner, Alex Simpson and others are doing likewise, and it seems
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likely that this trend will continue. So we seek a solid mathematical foundation
to support these endeavours.

A first point to note is that one can characterise all of these constructions in
different terms. For instance, one can construct Milner’s category of wirings as
follows: consider symmetric monoidal structure and take a commutative monoid;
it consists of an object X together with maps j : I −→ X and m : X ⊗

X −→ X subject to the commutativity of four diagrams, one each for left unit,
right unit, associativity, and commutativity. Now consider the free symmetric
monoidal category generated by such a commutative monoid: it is equivalent
to the category Setf of finite sets and functions, which in turn is equivalent to
Milner’s construction.

There is one difficulty with this analysis and that is that formally, it is not
mathematically precise in that we have not said exactly what we mean by “con-
sider symmetric monoidal structure”. So in this paper, we make the idea of the
above definition and construction precise, including examples such as commuta-
tive monoids, commutative comonoids, bimonoids, and relational bimonoids, and
see what results follow in general, rather than having to deal with the specific
examples separately. We restrict our attention to symmetric monoidal structure,
not dealing with the additional structure such as that of a lifting monad, but
our results extend to “pseudo-commutative 2-monads on Cat,” allowing us to
include endofunctors and the like, which we shall do later.

The central definitions we develop here are those of symmetric monoidal
sketch S and the category of strict models Mods(S,C) (in Section 2) of S in any
symmetric monoidal category C. In particular, any symmetric monoidal sketch
S generates a generic model or theory, Th(S). The generic model is characterised
by the property that if C is a small symmetric monoidal category, Mods(S,C) is
isomorphic to the category SMs(Th(S), C) of strict symmetric monoidal functors
from Th(S) to C, and this is natural in C. Such generic models are exactly the
various categories of wirings, etcetera, studied by Milner et al, and, subject to
the addition of a little more structure, by Fiore, Winskel, et al.

We say S is single-sorted (see Section 3 for details) if all the objects of S
are generated by a single base object X : this holds in all our examples, such
as that above for a commutative monoid. We say S is commutative if all the
maps in S commute with each other in a precise sense. If S is both commutative
and single-sorted, it follows that every object of Th(S) has an S-structure on
it, so for instance, every object of Th(CMon), where CMon is the sketch for a
commutative monoid, has a commutative monoid structure. That allows us to
characterise Th(S) as the free category with structure on 1, which is how several
authors have presented their work, e.g., Fiore et al [5] and Milner et al [11, 12].

For any commutative single-sorted sketch S, the functor Mods(S,−) pos-
sesses the structure of a comonad, so the construction that sends a small sym-
metric monoidal category C to the category Mods(S,C) of strict models of S in
C can be characterised as a right adjoint. For many sketches, including those of
primary interest to us, there is an elegant characterisation of the target category,
Mods(S,−)-Coalg, of that right adjoint. We explore the situation in Section 4.



The reason is essentially the Eckmann-Hilton argument [4]: this shows that given
a group in the category of groups, the two group structures must agree and must
be Abelian. This result generalises to all our leading examples, showing that
Mods(S,Mods(S,C)) is coherently isomorphic to Mods(S,C), which in turn
allows us to characterise Mods(S,−)-Coalg. For instance, in our commutative
monoid example, this shows that the forgetful functor from the category of small
categories with finite products to the category of small symmetric monoidal cat-
egories has a right adjoint given by sending a small symmetric monoidal category
C to the category CMon(C) of commutative monoids in C.

The main mathematical technique we use in the course of the paper is the
theory of sketches for an arbitrary finitary 2-monad on Cat as developed in
[10]. The reader does not require knowledge of that work to follow this paper.
For most of the paper, for ease of exposition, we shall gloss over coherence
questions relating to the distinction between preservation and strict preservation
of category theoretic structure: part of the reason that does not create major
difficulty is because every monoidal category is equivalent to a strict monoidal
category, so we shall tend to conflate the two notions: only at one point, where
we define single-sortedness, might that be a little misleadingly simple, but we
have been careful to be correct. We investigate the relevant two-dimensional
issues seriously in Section 5. Ultimately, they may be resolved by reference to
[2] and [9].

While writing this paper, we have also written [7] using some of the mathe-
matical techniques developed here but specifically directed towards generalising
Milner’s wiring category. That paper contains more detailed examples, but it
does not contain any two-dimensional analysis, it has less focus on commutative
sketches, and its only examples are those of wiring categories as developed for
concurrency.

The paper is organised as follows. In Section 2, we define the notion of sym-
metric monoidal sketch, the category Mods(S,C) of strict models of a sketch S
in an arbitrary small symmetric monoidal category C and the notion of generic
model Th(S) of a symmetric monoidal sketch S, and we give our leading ex-
amples. In Section 3, we investigate general conditions under which Th(S) can
be seen as the free category with specified structure generated by 1. This in-
volves defining the notions of single-sortedness and commutativity of a sketch.
In Section 4, we generalise the Eckmann-Hilton argument, for all our leading
examples, to characterise the target category Mods(S,−)-Coalg of the right-
adjoint functor Mods(S,−). Finally, in Section 5, we explain the subtleties that
arise in needing to distinguish between preservation and strict preservation of
category theoretic structure, and how they can be resolved in this context.

2 The definition of a symmetric monoidal sketch

There has long been study of finite product sketches [1]. But one needs some
subtlety in adapting that definition to symmetric monoidal structure: symmetric
monoidal structure does not have cones, but it does have non-identity structural



maps, such as the symmetry maps as in the commutativity diagram for a com-
mutative monoid, that must be respected, and no coherence theorem can avoid
that. So our definition requires care.

We first need to define the notion of a family of diagram types. This is un-
necessary in defining finite product sketches as all the properties of products are
determined by their universal property, and the data required for the universal
property is completely given by universal cones. For symmetric monoidal cate-
gories, that is not the case. Despite this being the first definition of the paper,
it is ultimately a supplementary definition, as we shall soon see.

2.1 Definition A family D of diagram types is a small family of 4-tuples (ci, di, ji: ci →
di, ki: di → Tci), where ci and di are finitely presentable categories, Tci is the
free symmetric monoidal category on ci, and ji and ki are functors, subject to
the condition that the following diagram, dropping the subscripts, commutes:
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where η is the unit of T .

We generally suppress j and k, leaving them implicit in c and d. So we speak
of (c, d). An example follows our definition of sketch.

2.2 Definition A symmetric monoidal sketch S consists of a small category X
together with a a family D of diagram types and a D-indexed family of functors
φi : di −→ X . A map of symmetric monoidal sketches from (X,φi) to (Y, ψi) is
a functor f : X → Y such that fφi = ψi for each i.

For fixed D, sketches and maps of sketches give a category SymMonD-
Sketch, which is finitarily monadic over Cat◦: in fact, we can enrich it to give a
2-category finitarily monadic over Cat using structure-respecting natural trans-
formations: this observation becomes crucial when we investigate coherence is-
sues in Section 5.

We now turn to the notion of a model of a sketch. A sketch S has models
in a small symmetric monoidal category. We use the term strict model here:
strict models relate to models as functors sending assigned finite products are
to functors that preserve finite products in the usual sense. This has been made
precise in [2] and [9]. The former are easier for writing an abstract account, but
the latter are more natural. So for most of the paper, we restrict attention to
the former, but in Section 5, we shall explain the more refined notion of model
and how a theory of models follows from the theory we present of strict models.

Let C be a small symmetric monoidal category, and let S = (X,φ) be a
symmetric monoidal sketch: we drop the subscripts on the elements of the family
D as they are clear.



2.3 Definition A strict model of (X,φ) in C is a functor f : X −→ C such that
the following diagram commutes:

d
k - Tc

X

φ

?

f
- C

(fφj)∗

?

where (fφj)∗ is given by using freeness of Tc.

For most of the paper, we shall simply refer to these as models rather than
strict models.

For small symmetric monoidal categories B and C, there is a homcategory
SMs(B,C) as usual. For a symmetric monoidal sketch S = (X,φ) and a small
symmetric monoidal category C, we need to make the set of strict models of S
in C into a category.

2.4 Definition The object Mods(S,C) is defined to be the limit in Cat of the
diagram with vertex Cat(X,C) and for each φi, two maps from Cat(X,C) to
Cat(di, C), the first given by composition with φi, the second given by first
precomposing with φiji, then applying ( )∗, then precomposing with ki : di −→

Tci.

The central result of [10] yields

2.5 Theorem For any symmetric monoidal sketch S, there is a small symmet-
ric monoidal category Th(S) and there is a model ι of S in Th(S) such that
composition with ι induces an isomorphism of categories from SMs(Th(S), C)
to Mods(S,C).

We call Th(S) together with ι : S −→ Th(S) the generic model of S.

For examples, we start with something that illustrates how the definitions
work but is not of itself of interest to us. We then proceed with our leading
examples.

2.6 Example Let D consist of one pair (2, 3), with j the (ordered) inclusion of
2 into the first two components of 3, and k the inclusion of 3 into T (2) yielding
that part of T (2) that gives the tensor product of the two base objects. That
it satisfies the condition on a family of diagram types amounts to the assertion
that k sends the first two components of 3 to the respective generating objects
of T (2).

A symmetric monoidal sketch S with D as above is a small category, which
we also denote by S, together with a sequence of three objects (c, d, e). It follows
from our definition of model of a sketch that we could reasonably denote the
object e by c⊗ d.



A model of S in a small symmetric monoidal category C is a functor H :
S −→ C such that H(e) = H(c) ⊗ H(d), This determines a strict symmet-
ric monoidal functor from Th(S) to C. Since it preserves symmetric monoidal
structure strictly and it extends H , it still takes e to H(e) = H(c) ⊗H(d).

2.7 Example Let CMon be the sketch for a commutative monoid. As we men-
tioned before, every monoidal category is equivalent to a strict monoidal cate-
gory, so for general category theoretic reasons [2], it is safe for us to conflate the
two notions. So in describing the sketch here, we shall do that for simplicity.

The underlying category of CMon is that required to express the data and
commutativity axioms for a commutative monoid: so it has four objects X0,
X1, X2, and X3. Its arrows are freely generated by arrows j : X0 −→ X1,
m : X2 −→ X1, ml,mr : X3 −→ X2, s : X2 −→ X2, and jl : X1 −→ X2, subject
to commutativity of the following diagrams:

X3
= - X3 X2
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The family D and the maps φi : di −→ M are those required to force X0

to be sent to the unit in any model, X2 to be sent to the tensor product of the
image of X1 with itself in any model, etcetera. So the sketch has two diagram
types. The first, (c0, d0, j0, k0), has c0 as the category with one object A and no
non-trivial arrows, d0 as the category containing four objects A0, A1, A2, A3 and
with arrows generated by one non-identity arrow c′ : A2 −→ A2. The functor j0
sends A to A1, and the functor k0 sends A0 to I, A1 to A, A2 to A⊗A, and A3

to (A⊗A)⊗A, or equally, as Tc is the free strict symmetric monoidal category
on c, A⊗ (A⊗A). The functor k0 sends c′ to the symmetry A⊗A −→ A⊗A.

The second diagram type, (c1, d1, j1, k1), has c1 given by the category with
three objects B0, B1, B2 and non-identity arrows j : B0 −→ B1 and m : B2 −→



B1. We shall describe the category d1 and the functor k1 together by giving a
subcategory of Tc1, with k1 being understood to be the inclusion of the subcat-
egory d1 into Tc1. The category d1 has arrows given by j and m and by m⊗B1,
B1 ⊗m, and j ⊗ B1; taking domains and codomains of these arrows determine
the objects of d1

It remains to define φ0 : d0 −→ CMon and φ1 : d1 −→ CMon. The former
sends Ai to Xi for each i, and sends c′ to s. The latter sends j to j, m to m,
m⊗B1 to ml, B1 ⊗m to mr, and j ⊗B1 to jl.

With these definitions, Th(CMon) is, up to equivalence, the free symmetric
monoidal category on a commutative monoid, and equivalently, Setf . It may
also be characterised as the free category with finite coproducts on 1.

2.8 Example Let CComon be the sketch for a commutative comonoid. This is
just the same as Example 2.7 except that the arrows are all reversed. The generic
model Th(CComon) is equivalent to Setop

f , which may be also be characterised
as the free category with finite products on 1. The construction sending a small
symmetric monoidal category C to the category of commutative comonoids in
C gives the cofree category with finite products on C [6]. It is equivalent to
Milner’s category of wirings.

2.9 Example Let Unit be the sketch for an object X together with a unit j :
I −→ X . So the underlying category of Unit is the arrow category, D = (0, 1),
and the functor φ : 1 −→ Unit sends 1 to I. The generic model Th(Unit) is
given by the category of finite sets and injections.

2.10 Example Let Counit be the sketch for an object X together with a counit
c : X −→ I. This is dual to Example 2.9. The generic model Th(Counit) is
equivalent to the opposite of the category of finite sets and injections.

2.11 Example Let RBimon be the sketch for a relational bimonoid, i.e., an object
X together with both a commutative monoid structure on X and a commutative
comonoid structure on X that commute with each other and for which the
comultiplication followed by the multiplication gives the identity on X . The
generic model Th(RBimon) is then the category of finite sets and relations.

We shall outline a proof for this. Up to equivalence, the objects of Th(RBimon)
are given by natural numbers, as there is one generator and one must freely add
symmetric monoidal structure. For maps, using commutativity of the maps in
RBimon with respect to each other, any map can be seen to be given by a
string of counits and comultiplications, followed by a string of multiplications
and units. So by the (well-known) results for monoids and comonoids, each map
from m to p is given by the inverse of a function from a finite set, followed by a
function. To give an inverse function followed by a function amounts, up to iso-
morphism, i.e., renaming, to giving a matrix. The coherence axiom asserts that
there can be no redundancy, in the sense that there may be at most one possible
route via the inverted function and the function between any two elements, but
that is exactly the condition saying that the pair forms a relation.



Later, we can prove this result by more abstract considerations, but space
prevents us from including the details. The category Th(RBimon) is that Plotkin
proposes to use to model wiring in CCS.

2.12 Example Let Bimon be the same sketch as that for relational bimonoids but
without the condition that the comultiplication followed by the multiplication be
the identity. The generic model Th(Bimon) is given by finite sets and matrices
valued in the free commutative monoid N on 1.

3 The generic model as free on 1

We now have a notion of symmetric monoidal sketch S and we have a notion of
the generic model Th(S) of a symmetric monoidal sketch. Our leading example
has S being the sketch for a commutative monoid, in which case Th(S) is the
category Setf . But Setf is also characterised by being the free category with
finite coproducts on 1. The situation for this sketch is typical, so we investigate
that phenomenon in this section.

3.1 Definition A single-sorted sketch consists of a sketch S together with an
identity on objects strict symmetric monoidal functor ι : Th(1) −→ Th(S),
where 1 is the sketch given by the unit category and with no diagram types.

We usually suppress the functor ι in referring to a single-sorted sketch. The
single-sortedness condition trivially holds of all our leading examples. Th(1) can
be described explicitly; up to equivalence, it is given by the category P whose
objects are natural numbers and whose maps are permutations. The condition is
essentially the same as that in the formal definition of Lawvere theory with the
routine generalisation from finite products to symmetric monoidal structure.

Given a single-sorted sketch S, for any small symmetric monoidal category C,
composition with ι induces a forgetful functor for which we give the suggestive
notation ev1 : Mods(S,C) −→ C.

Observe that for every small symmetric monoidal category C, and for every
single-sorted symmetric monoidal sketch S, the category Mods(S,C) possesses
a symmetric monoidal structure: it is not quite given pointwise. Given h and h′

in Mods(S,C), define (h⊗h′)(1) = h1⊗h′1. Now extend the definition of h⊗h′

to arbitrary objects of S by induction on the complexity of the tensor product
description. Finally, define h⊗ h′ on arrows by conjugation using the canonical
isomorphisms induced by induction between (h⊗ h′)(n) and h(n) ⊗ h′(n).

It follows that Mods(S,−) is an endofunctor on the category SymMons of
small symmetric monoidal categories and strict symmetric monoidal functors.
Moreover, ev1, i.e., composition with ι : Th(1) −→ Th(S) is a natural trans-
formation. So Mods(S,−) together with ev1 form a copointed endofunctor on
SymMons.



3.2 Definition Let Mods(S,−)-Coalg denote the category of coalgebras for the
copointed endofunctor (Mods(S,−), ev1). So an object of Mods(S,−)-Coalg is a
small symmetric monoidal category C together with a strict symmetric monoidal
functor φ : C −→Mods(S,C) such that ev1 · φ = id, and a map in Mods(S,−)-
Coalg is a strict structure preserving functor.

For an example, in the case that S is the symmetric monoidal sketch CMon

for a commutative monoid, the category Mods(S,−)-Coalg is the category of
small categories with finite coproducts: an object of Mods(CMon,−)-Coalg is a
small symmetric monoidal category C together with, for each object x, a monoid
structure on x that respects the symmetric monoidal structure of C, but that
is exactly to give a diagonal and a counit, which is exactly equivalent to giving
coproduct structure for reasons we shall explain in the next section.

The endofunctor Mods(S,−) is an accessible functor, and SymMons is a lo-
cally presentable category. So a right adjoint to the forgetful functorMods(S,−)-
Coalg −→ SymMons necessarily exists [8]: it is given by taking a typically
transfinite limit. Later, we shall study the situation more carefully. In greatest
generality, the limit is complicated. But here, our primary interest is in charac-
terising a left adjoint.

The copointed endofunctor Mods(S,−) is very special: for that particular
copointed endofunctor, the category Mods(S,−)-Coalg is finitarily 2-monadic
over Cat. So it follows from general category theory that the forgetful functor
to Cat must have a left adjoint [9]: the main point of this section is to find
conditions under which we can characterise the value of that left adjoint on 1 by
Th(S).

To do that, we need to add a commutativity condition on single-sorted
sketches that holds of all our leading examples. When we say “need”, we mean
something very specific. We know how to deal with non-commutative sketches,
and we intend to deal with them in further work, extending our analysis here to
incorporate Frobenius and separable sketches for example. But the techniques
and results are different, with the notion of coalgebra playing a less substantial
role. Here we characterise Th(S) in a particular way, and for this particular way,
we require commutativity of S.

The commutativity condition amounts to the assertion that every arrow of
the sketch commutes, in a precise sense, with every other arrow of the sketch.
Recall that Th(S) has the same objects as Th(1), which is equivalent to P . So
for natural numbers m and p, we denote by m × p, the tensor product of m
copies of p. So m×− is functorial in Th(S).

3.3 Definition A single-sorted sketch S is commutative if for all maps f : m −→ n

and g : p −→ q in S, the two maps from m× p to q × n, one given by

m× p
m× g- m× q - q ×m

q × f- q × n,

with the other dual, where the unlabelled maps are given by canonical isomor-
phisms in P , agree.



3.4 Proposition For any commutative single-sorted sketch S, there is a canonical
strict symmetric monoidal functor σ : Th(S) −→ Mods(S, Th(S)) that splits
ev1, i.e., the diagram

Th(S)
σ- Mods(S, Th(S))

@
@

@
@

@
id

R
Th(S)

ev1

?

commutes.

Proof It follows from the definition that σ(1) = ι : S −→ Th(S). So σ(n) is
determined by preservation of monoidal structure. The commutativity condition
is only required to prove that the evident construction of σ on a map gives a
map in Mods(S, Th(S)).

We shall use the Proposition to characterise Th(S) as the free category with
specified structure on 1.

We have already observed that, using σ, one can regard Th(S) as an object
of Mods(S,−)-Coalg.

3.5 Theorem If S is a commutative single-sorted symmetric monoidal sketch,
the pair (Th(S), σ) is the free Mods(S,−)-coalgebra on 1.

Proof Let (C, φ) be a Mods(S,−)-coalgebra. To give a functor from 1 to C is
equivalent to giving an object of C, which in turn is equivalent to giving an object
f : S −→ C of Mods(S,C) such that φ(f1) = f . But to give such an f : S −→ C

is equivalent to giving a strict symmetric monoidal functor f̄ : Th(S) −→ C and
the condition is equivalent to preservation of coalgebra structure: the forward
direction is a routine verification, and the reverse is given by considering the
commuting square required of a coalgebra map applied to 1.

This result routinely extends to 2-categorical structure. The only reason we
needed the commutativity condition was in order to make (Th(S), σ) into an
object of the category Mods(S,−)-Coalg.

Commutativity buys us more than this as it allows considerable simplifica-
tion of the description of the right adjoint to the forgetful functor Mods(S,−)-
Coalg −→ SymMons.

First, the forgotten, trivial, part of the Eckmann-Hilton argument, which we
analyse more thoroughly in the next section, says essentially

3.6 Lemma If S is a commutative single-sorted sketch, there is a natural trans-
formation with C-component δC : Mods(S,C) −→Mods(Mods(S,C)) such that
Mods(S,−) together with ev1 and δ form a comonad on the category SymMons.



3.7 Lemma For commutative single-sorted S, the pair of strict symmetric monoidal
functors,Mods(ev1) and (ev1)Mods(S,C), fromMods(Mods(S,C)) toMods(S,C)
are jointly monomorphic in the category SymMons.

The two lemmas immediately yield

3.8 Proposition If S is a commutative single-sorted sketch, then the category
of coalgebras for the copointed endofunctor (Mods(S,−), ev1) is equal to the
category of coalgebras for the comonad (Mods(S,−), ev1, δ)

This implies that for commutative single-sorted sketches, the right adjoint to
the forgetful functor from Mods(S,−)-Coalg to SymMons is given simply by
Mods(S,−). This is a vast simplification of the situation for an arbitrary single-
sorted sketch. In the next section, we characterise the category Mods(S,−)-
Coalg for a class of examples including all our leading examples.

4 The Eckmann-Hilton argument

The Eckmann-Hilton [4] argument asserts that to give a group in the category
of groups is equivalent to giving an Abelian group. The argument restricts to
monoids, and it goes as follows.

4.1 Theorem (Eckmann-Hilton) [4] A monoid in the category Mon of monoids
is exactly a commutative monoid.

Proof Let (M, ◦, e) and (M, ◦′, e′) be monoids whose operations commute with
each other. Observe that e = e′ because the map e : 1 −→ M respects the
units of 1 and (M, ◦′, e′), and the unit of 1 is the identity. Next observe that
commutativity of ◦ with ◦′, together with the equality of the two units, implies
that x ◦ y = y ◦′ x. Finally, use the same commutativity again but with units in
different places to deduce that x ◦ y = x ◦′ y. Putting this together, we are done.

None of this argument is special to the situation of monoids in Set. It all holds
with Set generalised to an arbitrary symmetric monoidal category. Moreover, the
argument regarding units does not require even the existence of the compositions;
and the argument, holding for an arbitrary symmetric monoidal category C, also
holds for Cop, so one has the dual.

The heart of the result asserts that taking Mon to be the sketch for not
necessarily commutative monoids, the category Mods(Mon,Mods(Mon,C) is
coherently isomorphic to the category Mods(CMon,C), where CMon is the
sketch for commutative monoids that we have already introduced. We do not
address the full generality of that here, as we are restricting attention to com-
mutative sketches. In that restricted situation, we can rephrase the result as
saying that δ, the comultiplication for the comonad Mods(CMon,−), is an iso-
morphism. That is to say that Mods(CMon,−) is an “idempotent” comonad.

The significance of being an idempotent comonad is that each object C of
SymMons has at most one coalgebra structure on it. That suggests that the



coalgebra structure is probably given by a universal property, and indeed that
is the case in our leading examples. In particular, it means that Th(S) has a
description in terms of a universal property.

We shall spell all this out in detail in order to capture our examples. For any
small symmetric monoidal category C, write Unit(C) for Mods(Unit, C), where
the sketch Unit is as we defined it earlier. So an object of Unit(C) consists of
an object X of C together with a map e : I −→ X , and an arrow is a map in C
that respects the units.

4.2 Proposition The forgetful functor Unit(Unit(C)) −→ Unit(C) that forgets
the inner structure is an isomorphism of categories.

Proof To give an object of Unit(Unit(C)) is to give an object (X, j : e −→ X)
of Unit(C) together with a map e′ : I −→ X such that e′ ◦ id = e. Trivially,
e = e′.

Here, Mods(Unit,−)-Coalg is the category of small symmetric monoidal
categories for which the unit is the initial object. So we may conclude that
Unit(C) is the cofree small symmetric monoidal category for which the unit is
the initial object on C, and Th(Unit) is the free such on 1.

By considering the symmetric monoidal category Cop, the same result holds
for Mods(Counit,−). So Counit(C) is the cofree small symmetric monoidal
category for which the unit is the terminal object on C, and Th(Counit) is the
free such on 1.

Similarly, denote Mods(CMon,C) by CMon(C) for any small symmetric
monoidal category C. It is the category of commutative monoids in C.

4.3 Proposition The forgetful functor CMon(CMon(C)) −→ CMon(C) forget-
ting the inner structure is an isomorphism of categories.

Proof This is the Eckmann-Hilton argument for a symmetric monoidal category
C.

So Mods(CMon,−), which agrees with CMon(−), is right adjoint to the
forgetful functor from the category of small categories with finite coproducts
to the category of small symmetric monoidal categories, and Th(CMon) is the
free category with finite coproducts on 1. Taking a dual, CComon(−) is right
adjoint to the forgetful functor from the category of small categories with finite
products to that of small symmetric monoidal categories, and Th(CComon) is
the free category with finite products on 1.

Putting Proposition 4.3 together with its dual, the right adjoint statements
immediately extend to bimonoids and relational bimonoids. So Bimon(−), with
the evident definition, is right adjoint to the forgetful functor from the category
of small categories with finite biproducts to the category of small symmetric
monoidal categories, and Th(Bimon) is the free category with finite biproducts
on 1.

Similarly, RBimon(−), again with the evident definition, is the right adjoint
to the forgetful functor from the category of small categories with relational



finite biproducts to the category of small symmetric monoidal categories, and
Th(RBimon) is the free category with relational finite biproducts on 1, i.e., the
category of finite sets and binary relations Relf as studied by Plotkin.

5 Two-dimensional issues

Until now, we have restricted our attention to strict models. Here, we extend
our analysis to models. The problem with strict models is illustrated by the
following. One could write a symmetric monoidal sketch for a monoid identifying
the base object m with m⊗ 1, for instance by taking a fragment of the Lawvere
theory for a monoid. But in Set, a set X is not equal to X×1 in general, but only
isomorphic to it. So although the models of the sketch are monoids as expected,
there are no strict models of this sketch. A similar concern was central to [2].

One can avoid such a problem in an ad hoc way by simply not writing sketches
like that, but being careful in writing a sketch specifically not to identify two
objects that one wants to allow to be distinct in models. For instance, one could
write a sketch for monoids without identifying m with m ⊗ 1. We have done
something a little more subtle than that in our definition of single-sorted sketch,
as our precise definition of single-sortedness implies that m and m ⊗ 1 must
be kept separate. But traditionally, sketches such as that outlined for monoids
above have been considered as reasonable, and the notion of model has been
defined to allow them. So we follow suit.

We solve the problem in general by extending our definition of model to agree
with the usual one in our examples, then proving that for any sketch S, there is
a sketch S′ such that the category of models of S is isomorphic to the category
of strict models of S′. Thus we extend our main theorem, Theorem 2.5, from
strict models to models.

For an elegant account of this, we must first extend our definition of map of
SymMonD-sketches.

5.1 Definition A pseudo-map of SymMonD-sketches from (X,φi) to (Y, ψi) is
a functor f : X −→ Y together with, for every i, an invertible natural transfor-
mation f̄i : ψi ⇒ fφi such that f̄iji = id.

SymMonD-sketches and pseudo-maps form a category SymMonD-Sketchp.
In fact, both SymMonD-Sketch and SymMonD-Sketchp form 2-categories.
There is an evident inclusion J : SymMonD-Sketch −→ SymMonD-Sketchp,
and we have

5.2 Proposition The inclusion J : SymMonD-Sketch −→ SymMonD-Sketchp

has a left adjoint (−)′.

Proof This is essentially an example of the main result of [2], and we use the
notation of [2] freely. Given (X,φi), first take the pseudo-colimit λi : piφi ⇒ qi :
d −→ X ′′

i of each φi. Then take the coidentifier ri : X ′′

i −→ X ′

i of λiji to ensure



that the equation is satisfied for each i. Finally, take the colimit X ′ =
∐

X X ′

i of
ripi’s with injections si.

In fact, one can prove, as in [2], that every sketch S is equivalent, in the
2-category SymMonD-Sketchp, to S′. To define a model, let C be a small sym-
metric monoidal category, and let S = (X,φi) be a SymMonD-sketch. For ease
of notation, we shall henceforth leave the subscripts on the elements of D im-
plicit.

5.3 Definition A model of (X,φ) in C is a functor f : X −→ C together with an
isomorphism

d
k - Tc

⇓f̄

X

φ

?

f
- C

(fφj)∗

?

such that f̄ j = id.

It is routine to modify the definition of Mods(S, C) to define the category
Mod(S, C). We need to analyse that category.

5.4 Proposition Given a SymMonD-sketch (X,φ), for every model of (X,φ)
in a small symmetric monoidal category C, there exists a unique D-structure
on C such that the data for the model is exactly that for a pseudo-map of
SymMonD-sketches, and the axioms hold.

Proof Existence is immediate from the definitions of model and pseudo-map
of SymMonD-sketches. Unicity follows directly from the coherence condition.

5.5 Corollary For every SymMonD-sketch S, there exists a SymMonD-sketch
S′ and a pseudo-map j : S −→ S′ of SymMonD-sketches such that composition
with j yields an isomorphism of categories from Mods(S

′, C) to Mod(S, C) for
every small symmetric monoidal category C.

This result solves our problem, as it may be combined with Theorem 2.5 to
yield

5.6 Corollary For every SymMonD-sketch S, composition with ιj : S −→

Th(S′) yields an isomorphism of categories from SMs(Th(S
′), C) to Mod(S, C)

for any small symmetric monoidal category C.

One can go a little further than this. If one wants to restrict attention to
strong symmetric monoidal functors, i.e., functors that only preserve structure



up to coherent isomorphism rather than strictly, then we can adopt the theory
of [2] directly. If one extends SymMons to SymMon, the 2-category with the
same objects as SymMons, but with strong symmetric monoidal functors as
1-cells, then it follows as a consequence of the main theorem of [2] (see [10] for
more detail of this) that we have

5.7 Theorem For every SymMonD-sketch S, composition with ιj : S −→ Th(S ′)
yields an equivalence of categories from SM(Th(S′), C) to Mod(S, C) for any
small symmetric monoidal category C.

Now we have these results, it follows that Mod(S,−) gives a functor from
SymMon to Cat and hence to SymMon as explained before.
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