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Abstract

Game semantics is an unusual denotational semantics in
that it captures the intensional (or algorithmic) and dy-
namical aspects of the computation. This makes it an ideal
semantical framework in which to seek to unify analyses of
both the qualitative (correctness) as well as the quantita-
tive (efficiency) properties of programming languages. This
paper reports work arising from a recent construction of
an order (or inequationally) fully abstract model for Scott’s
functional programming language PCF based on a kind of
two-person (Player and Opponent) dialogue game of ques-
tions and answers [HO94]. In this model types are inter-
preted as games and terms as innocent strategies. The fully
abstract game model may be said to be canonical for the
semantical analysis of sequential functional languages. Un-
fortunately even for relatively simple PCF-terms, precise de-
scription of their denotations as strategies in [HO94] very
rapidly becomes unwieldy and opaque. What is needed
to remedy the situation is an expressive formal language
which lends itself to a succinct and economical representa-
tion of innocent strategies. In this paper we give just such a
representation in terms of an appropriately sorted polyadic
w-calculus, reading input w-actions as Opponent’s moves,
and output m-actions as Player’s moves. This correspon-
dence captures every essential aspect of the dialogue game
paradigm so precisely that the m-representation may as well
be taken to be the basis for its formal definition. Although
the m-representation of strategies already gives an encoding
of PCF in the m-calculus — indirectly via the fully abstract
denotation of PCF-terms as innocent strategies, we define by
recursion a new encoding of PCF in the w-calculus directly.
The two m-encodings of PCF are weakly bisimilar; if the lat-
ter 1s regarded as a compilation, then the former amounts
to a more efficient version with compile-time optimization.
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1 PCF: observational preorder and full abstraction

The functional language PCF [Sco93, Plo77] is essentially the
simply typed A-calculus augmented by basic arithmetic, con-
ditionals and fixed-point operators at every type. PCF-types,
ranged over by A, A;, B, etc., are defined by the following
grammar in BNF:

A == ¢ | o | A=A

Every pPcr-type A has a unique representation of the form
Al = (A2 = - = (Ap = «a)---) where n > 0 and the
program (or ground) type « is either ¢ or 0. By convention
we write A as (A1, -+, Ap, «). The operational semantics of
PcF (formulated in terms of a Martin-Lof style evaluation
relation “s | n”) is presented in the Appendix. Programs
are closed terms of program type. A denotational model
M[—1] of PcF is said to be order fully abstract if for any
closed terms s and ¢ of the same type,

sEt <= M[s]C M[t]

where £ is the observational preorder defined as follows:
s £ ¢ iff for any (program) context C[X], and for any pro-
gram value n, if C[s] and C[t] are both programs and if
C[s] J n then C[t] |} n. The Full Abstraction Problem for
PCF is concerned with the search for an abstract, syntax-
independent order fully abstract model of PcF. This prob-
lem has been studied intensively for over 15 years [Plo77,
Mil77, Cur93, Ong95].

The next two sections set the scene: we give a racy
overview of the category of arenas and innocent strategies in
section 2, and sketch the fully abstract game interpretation
of PCF in section 3. The reader is directed to [HO94] for a full
account in which proofs of all results cited in the first two
sections can be found. We introduce PCF-sorted polyadic
w-calculus as a language for describing dialogue games in
section 4. Innocent strategies are represented as w-terms in
section 5. The direct encoding of PCF in the w-calculus is
given in section 6.

2 Arenas and innocent strategies

Dialogue games are played by two players called Player (P)
and Opponent (O). There are four kinds of moves:

O’s question [ P’s answer |

P’s question  ( O’s answer )



We use the matching pairs of left and right parentheses “[”
and “]”, and “(” and “)”as meta-variables to represent moves
of the respective kinds. The parenthetic notation reflects the
condition that P-questions can only be answered by O, and
O-questions by P.

Rules of the game

Dialogue games are played according to the following set of
rules:

(r1) A play starts by O raising an opening question, and
ends when it is answered. An opening question may
not be raised more than once in a play.

(r2) Moves are made alternately by P and O, each making
one move at a time.

(r3) Each play has the effect of tracing out a dialogue of
questions and answers observing the following Princi-
ples of Civil Conversation.

Justification A player is only allowed to make a move
provided it is justified: a question is raised only if an
occurrence of its unique justifying question is pending—
already asked but not yet answered; an answer is prof-
fered only if an occurrence of the question expecting
it is pending.

Priority or the “last asked first answered” rule: any
answer offered must be an answer to the last pending
question.

Unlike games which model proofs; there is no question of
winning for either player in dialogue games.

A dialogue game is completely specified by its game tree.
Paths of the tree represent legitimate plays of the game. We
present a game tree in two stages:

e An arena defines the moves (questions and answers)
of the game, which are nodes of the game tree; and
spells out how one move justifies another. These are
data specific to individual games but common to plays
of the same game.

o The collection of paths of the game tree is then defined
to be sequences of moves satisfying the rules (r1), (r2),
(r3) and (r4) (to be introduced later) of the game. We
shall refer to paths of the game tree as legal positions
of the arena in question.

Definition 2.1 An arenais a structure
(Qn(A), <a,Ans(A),qn )

where {Qn(A), <4 ) is an upside down forest' of questions;
roots of the forest are the < a-maximal elements. Questions
of depths 0, 2, 4, etc. are O-questions; those of depths 1,
3, 5, etc. are P-questions. Questions of depth 0 are called
opening moves; they have a special status. We say that a
question g justifies another, say, ¢’ if ¢ is the unique question
immediately above ¢’ in the ordering. Ans(A) is a set of
answers. To each question is associated a set of possible
answers via the map qn, : Ans(4) — Qn(A). For the
sake of uniformity, we say that the question qn ,(a) justifies
the answer a. Moves of the arena are elements of Ans(A4) U

Qn(A).

LA forest is a partially-ordered set such that the lower-set of each
element is a finite total order.

Figure 1: The forest of questions of A = B.

At any stage of a play, not every move is necessarily
available to the players; however some moves may become
available (or “justified” or “enabled”) as the play unfolds.
The notion of justification is formulated as the partial or-
dering <a over questions. We can now make precise the
informally expressed condition (r3): a sequence s of moves,
each of which (except the opening move) equipped with a
pointer, is said to satisfy (r3) if for every initial subsequence
r - q of s where ¢ is a question, the pointer at ¢ points to
an occurrence of ¢’ in r such that ¢’ justifies ¢ and the oc-
currence pointed to is pending. Similarly for every initial
subsequence 7 - a of s where @ is an answer, the pointer at a
points to an occurrence of ¢’ in r such that the occurrence
is pending and @ is a possible answer of ¢'. We say that the
question ¢ (similarly the answer a) is explicitly justified by
(the appropriate occurrence of) ¢'. A well-formed sequence
is then a sequence of moves equipped with an auxiliary se-
quence of pointers, one for each non-opening move, such
that conditions (r1), (32) and (r3) are satisfied.

Construction of arenas

We can already define product and function space of arenas.
For product we simply take the obvious “disjoint sum” of
the arenas A and B as directed graphs. For function space
A = B, it is simplest to draw a picture as in Figure 1.
(In the picture there is only one opening move in B.) The
opening moves of A = B are those of B and to the tree
“below” each such opening move, we graft onto it a copy of
the forest of questions of A.

This is a good place to consider some examples.

Example 2.2 The natural numbers arena, denoted ¢ (by
abuse of notation), is specified by the following data. The
(singleton) forest of questions consists of the opening O-
question “[”. There are as many (P-) answers as there are
natural numbers: g, ]1, ]2, - which are all possible answers
to the only question “[”. The Boolean arena o is defined
similarly: the (singleton) forest of questions is the opening
O-question“[” whose possible P-answers are “J¢” and “J¢”.
More generally, for any PCcP-type A = (A1, -+, Ay, ), the
forest of questions of the corresponding PCF-arena A (we
shall systematically confuse the PCF-type with its interpre-
tation as an arena) is an inverted finite tree. It is useful to
establish a naming convention for questions of a PCF-arena.
Take A = (((s,¢),¢,¢),¢,¢) say. We draw its tree of ques-
tions as in Figure 2. The questions are identified by a finite
sequence of natural numbers (whose obvious definition we
omit) as shown in the Figure.

Views and legal positions

Intuitively a strategy (for P, say) is a method or rule that
determines P’s move at a position which ends with an O-
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Figure 2: Forest of questions of arena (((¢,¢),¢,¢),¢,¢).

move. A strategy is said to be history-sensitive if the next
move is determined as a function of the history of the play.
We reject history-sensitive strategies in favour of strategies
which operate on the basis of a certain abstraction of the
history of play, called view. Player’s view, or P-view, "p
of a well-formed sequence p of moves is defined recursively.
Let ¢ range over well-formed sequences of moves, and r over
segments of well-formed sequences.

if “[” is an opening move
T¢-(r-[7 PR (<[ if “(” explicitly justifies “[”

q
def
fe)? E )
Cg-[r]? E g0 if “]” explicitly answers “[”
'_q . (—l def rq—l . (

For example the P-view of a well-formed sequence of moves
may have the shape

By construction whenever there is a pattern “(-[” (respec-
tively “(-)”) in a P-view, the O-question “[” (respectively
O-answer “)”) is explicitly justified by the P-question “(”.
There can be no segments of the form “[---]” in a P-view.
This may be read as the following: Player ignores answers
to questions posed by Opponent. There is a dual definition
of the O-view of a well-formed sequence, which we omit.

Recall that legal positions of an arena are the paths of
the associated game tree.

Definition 2.3 A legal position of an arena A is a well-
formed sequence ¢ which satisfies condition (r4) called wvisi-
bility:
For any initial subsequence s - ( of ¢, the O-
question “[” explicitly justifying the P-question
“(” occurs in the P-view of s. Similarly for any
initial subsequence s - [ of ¢, the P-question ex-
plicitly justifying “[” occurs in the O-view of s.

Example 2.4 The sequence s of moves with the associ-
ated pointers in Figure 3 is a legal position of the arena
A = ((s,¢),¢,¢). The question-moves [a, (s, [c and (4 are
occurrences of the questions [, (1, [1.1 and (2 of the arena A
respectively. For example

Innocent strategies

We are interested in deterministic strategies for playing di-
alogue games. Formally a P-strategy o of an arena A is
a non-empty prefix-closed collection of legal positions of A
satisfying the following conditions:

Figure 3: The legal position s.

(s1) Determinacy For any s € o at which Player is to move,
if both s-a and s-b are in o then ¢ = b.

(s2) Contingent completeness For any s € o at which Op-
ponent is to move and for any O-move a, if s-0a is a
legal position then it is in o.

So a P-strategy of arena A corresponds to a subtree of the
game tree that has the following properties: at each node la-
belled by an O-move, there is at most one offspring, namely,
P’s unique response (if there is any). Note that our game
trees are inverted trees.

Definition 2.5 A P-strategy o is innocent if it is deter-
mined by a partial function of a certain kind, mapping P-
views (of legal positions at which Player is to move) to P-
moves in the following way: for any legal position s € o at
which P is to move, and for any P-move a,

sca€o0 <=  f("s")is defined, and f("s") = a.

We call such a function f a defining partial function for
the innocent strategy o. Clearly innocent strategies may be
specified by such defining functions.

The category CA is defined by the following data: objects
of the category are arenas; maps from arenas A to B are
innocent P-strategies of the arena A = B. Innocent strate-
gles (as maps) are composed in a way reminiscent of the
csp-style [Hoa85] “parallel composition plus hiding”. The
terminal object of the category is the empty game. The
product and function space arenas defined in the preceding
are the corresponding categorical constructions. For any
arena A, the collection of innocent strategies of A ordered
by inclusion forms a dI-domain. A major result of [HO94]
is the following:

Theorem 2.6 The category CA is cartesian closed, and
enriched over dI-domains®. O

For example, innocent strategies of the arena ¢ have the
structure of a flat natural numbers cPO. The least element
is the everywhere undefined strategy. The innocent strategy
denoting n behaves as follows: in response to the opening
question “[”, P returns the answer “],”, and the play con-

cludes.

3 A fully abstract game model of PCF

Any cpo-enriched cartesian closed category (with natural
numbers and Booleans) gives rise to a model of PCF; see
e.g. [1.S86] for the general picture or [HO94, Part I] for an
analysis specific to PCF. Given such a category, the inter-
pretations of A-abstraction, application and the fixed-point
operator are completely (and standardly) determined by the
categorical structure. So the interpretation [s] of any PCF-
term s : A as an innocent strategy of the arena A is well-
defined, and can be worked out based on the information
given so far.

2 A dI-domain is a consistently complete, prime algebraic CPO that
satisfies axiom (I): every compact element dominates only finitely
many elements.
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Figure 4: Trace of F - l-or.

Example 3.1 Consider F' = Af.f(ftQ)(fQt), a type-2 term
of type ((o0,0,0),0). We show in Figure 4 a legal position of
the innocent strategy [ F'] which is the trace of playing F'
against “left-or” l-or = Azy.condzt(condytf).

The main result of [HO94] is the following theorem:

Theorem 3.2 (Hyland-Ong) The observational quotient

CA of the category CA gives rise to an order-extensional,
order fully abstract, universal model of PCF. O

The proof is based on a Strong Definability Theorem:
there is an order-isomorphism between syntax (finite canon-
tcal forms of P, which 1s essentially PCF extended by defini-
tion by (any finite number of ) cases, ordered by Q-matching),
and semantics (compact innocent strategies ordered by in-
clusion). The strong definability result extends to a univer-
sality result for CA: modulo observational equivalence, all
recursive innocent strategies are PCF-definable. The defini-
tion of canonical form is presented in the Appendix.

A problem of representation

Innocent strategies are formally defined as certain collec-
tions of legal positions. We observed that it may also be
specified by defining functions. Even for relatively simple
PCF-terms, precise description of their denotations as inno-
cent strategies in either style very quickly becomes unwieldy
and opaque. It would be highly desirable if an expressive cal-
culus which lent itself to an economical description of such
uniform strategies were available. It is to this question of
representation that we now turn.

4 Polyadic 7-calculus

The m-calculus was introduced by Milner et al. [MPW92] as
an extension of the process algebra ccs in which processes

3Similar results, based on somewhat different games, have been
obtained independently by Abramsky, Jagadeesan and Malacaria
[AJM94], and also by Nickau [Nic94]. Subsequently O’Hearn and
Riecke [OR94] described a construction of the fully abstract model of
PCF by a kind of logical relations.

which have changing structures may be expressed naturally.
The key features of the w-calculus may be brought out in
sharp relief by contrasting and comparing it with the A-
calculus. While the A-calculus is canonical for calculation
with functions, Milner et al. regard the w-calculus as “a
step towards a canonical treatment of concurrent processes”
which gives priority to the concept of names. In the =-
calculus there are no constants and variables: they are sub-
sumed under names. Names are (used to identify) commu-
nication links, and computation is represented purely as the
communication of names across links. The linkage between
component agents of a system may be changed as a result
of a communication (of names) between neighbours. A dis-
tinctive feature of the w-calculus is its ostensibly weak com-
munication capabilities: in contrast to the A-calculus, that
which 1s transmitted or passed in the w-calculus is never
an agent, but rather access to an agent, i.e., names. Re-
markably, as Milner showed in [Mil90], the “parsimonious”
communication constructs of the w-calculus do not make it
any less expressive than the A-calculus.

PCF-sorting

In the following we shall focus on the polyadic w-calculus
(but refer to it simply as the m-calculus) as introduced in
[Mil91]. We presuppose an infinite collection of names which
are ranged over by symbols such as z,2’, 2,, f, a,b, u, v, etc.
Names are sorted as follows. (We shall assume familiarity
with the notion of sort and sorting in [Mil91].) The set S of
subject sorts is defined to be

{ans’ ;ans’ qn’,qn°} U{ A : A is a PCF-type }.

The sorts gn* and gn° are precisely the sorts of natural
numbers questions and Boolean questions respectively; and
ans’ and ans® are the sorts of natural number answers and
Boolean answers respectively. There are denumerably many
names of each subject sort. In particular the names of sort
ans’ include 0,1,2,etc., and those of sort ans® include t
and f. Recall that object sorts are just finite sequences of
subject sorts, written as (s1,---,$n). A sortingis a partial
function from subject sorts to object sorts; it associates to
each subject sort .S the sort of name-vector which each name
x of sort S, written x : S, can carry or transmit. The PCF-
sorting 1s defined to be the following partial function: for
n>1,

A'—’(ﬂ,"',ﬁ,qw) ifA:(Ala"'aAn,L)
A'_}(&a"'aﬁaqno) ifA:(Ala"'aAn,O)
L (qn*) o+ (qn”)

gn' — (ans') gn® — (ans®).

With reference to PCF-sorting, a name z of sort A where
A= (A1, +,An,t) and n > 0, can carry or transmit name-
vectors of sort (Ay, -+, An,qn’). Note that PcF-sorting is
undefined on ans® and ans®. This has the effect that a name
n : ans', say, cannot appear as the subject of an action.
Such names are in effect (program) values. Thus we shall
call the names 0,1, 2,3, etc. and t and f value-names.

PCF-sorted n-terms

The w-calculus consists of a collection of 7-terms which intu-
itively stand for processes or agents*. We shall use P, @, R,

4We shall use the word agent interchangeably with process in the
sense of [MPW92], as opposed to [Mil91] which defines agents to be
a syntactic subcategory of processes.



etc. to range over the collection II of w-terms. The syntax
of PcF-sorted m-terms is defined by the following grammar
in BNF:

P =0 zero-term
| g¢.P guarded term
| P|P parallel composition
| P replication
| (x1, -, zn)P restriction
| [z=y]P match
|  Alzxi,---,2n] defined agent (by recursion).

Guarded terms g.P are terms that are prefixed by ac-
tions. There are four kinds of actions:

g = T silent action
|  =z(y1,--",Yn,a) input action
|  Z(y1, - -,yn,a) free output action
|  Z(y1,--*,Yn,a) bound output action

where n > 0. In the three non-silent actions, z, of sort A
where A = (A1,---, Ap, ), is known as the subject of the
action; e : gqn’ is called the principal object, and y; : A; a
subsidiary object of the action. In all three cases, z is a free
name; the names y1,---,yn and a are free in the free output
action but bound in the other two. The collection of names,
free names and bound names of a process P, denoted N(P),
FN(P) and BN(P) respectively, are as defined in [MPW92].
The bound output action® may be expressed in terms of the
restriction operation and the (free) output action: T(y).P =
(y)T{y).P. We follow the notational convention of [Mil90];
notably the guarded term g¢.0 is often abbreviated to g.

This then (modulo PcF-sorting) is the m-calculus as pre-
sented in [MPW92], but extended by polyadic features as in-
troduced in [Mil91] and replication in [Mil90]. Note that we
do not need the summation constructor. Details of the defi-
nition (e.g. the meaning of actions) which have been omitted
may be found in these references.

Remark 4.1 We shall have occasion to consider an infini-
tary version of the w-calculus which involves the parallel
composition of an infinite number of processes, all of which
“begin” with a match construct. Further the cases associ-
ated with the match constructs of these infinite compositions
are all mutually exclusive. Typically it has the form

[d=0]P |[d=1]P1] - [[d=n]Pn]--

which we shall abbreviate to H d = m]Pn.

mew[

Labelled transition relation and (late) weak bisimulation

The labelled transition relation —— on 7-terms where o
ranges over actions is defined by induction over the rules in
Table 6 in the Appendix, as adapted from [MPW92]. Fol-
lowing [Mil90] we separate the structural laws which “gov-
ern the neighbourhood relation” among processes, from the
rules which specify their interaction. Following a key insight
of Berry and Boudols” Chemical Abstract Machine [BB90],
the former is defined directly as a congruence relation = on
agents as follows.

5We are aware of the attractive new-name constructor ve.(=)
which is equivalent to the bound output action but we prefer the
latter since it is better suited to our purpose.

Definition 4.2 We define structural congruence, written =,
to be the least congruence over m-terms satisfying the fol-
lowing;:

1. P = Q whenever P is a-convertible to @)
22P10=P, PIQ=Q|P, PI(QIR)=(P|Q)|R
3.1P=P|IP

4. (x1,-+,2,)0 =0, (Z)P = (7)P where §is a permuta-
tion of &

5 (z,)(P|Q) = (§)(P|(x)Q) if z not free in P
6. (z)g.P =0 if z is the subject of the action g.

Note that case (6) above is non-standard. These structural
laws are preserved by the labelled reduction relation by def-
inition, as decreed by rule (struct). We shall write the

relation — (transition by silent action) simply as —, and
write — as the reflexive, transitive closure of —. Finally
we shall assume the definition of weak (late) bisimulation as

given in [MPW92] and [Mil89].

5 Representing innocent strategies

We shall only consider dialogue games in PCF-arenas i.e. are-
nas which are the denotations of PCF-types. For ease of ex-
position we assume that for each Pcr-type A, the names of
sort A include all PcF-variables of type A.

Game reading of w-actions

Recall that a legal position is a sequence of moves equipped
with an auxiliary sequence of pointers satisfying conditions
(r1) to (r4). We shall refer to a move together with infor-
mation concerning justification pointers that emanate from
or point to it as an explicit move. The representation of
dialogue games in the w-calculus is based on a simple asso-
clation:

explicit O-moves input actions

explicit P-moves output actions.
o An O-question a of type A = (A1, -+, An,t) corre-
sponds to the input action

u(fla"'afnaa)
where w : A, and so, f; : A; for each ¢, and @ : qn*. The

m-action encodes the following information: the (non-
opening) O-question « is explicitly justified by the ex-
plicit P-question whose corresponding w-action con-
tains w as a subsidiary object. (The subject v marks
the source of the justification pointer emanating from
a.) Each subsidiary object f; marks the target of the
justification pointer of some P-question (which comes
after and) explicitly justified by a.

o A P-answer v of an O-question a is represented by a
free output action of the form

a(v)

where the name v is of sort ans* or ans®. The subject a
of the action is the O-question to which v is a possible
answer. Observe that the occurrence of a in the action
marks the source of the justification pointer emanating
from the P-answer.
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Table 1: w-translation of the legal position s.

o A P-question b of type B = (B1, -, B, t) is repre-
sented by a bound output action

f(gl,"',gm,b)

where f: B, and so, g; : B; and b : gqn*. The subject
f indicates that the P-question is explicitly justified
by the explicit O-question which has f as one of its
subsidiary objects.

e An O-answer d of the P-question b is represented by
an input action of the form

b(d)
where d is of sort ans’ or ans®.

Example 5.1 There is already enough information to give
the m-representation of legal positions. To illustrate we con-
sider the legal position s of the arena A = ((¢,¢),¢,¢) (see
Example 2.4). In Table 1, s and its w-representation are
shown; the m-action corresponding to each move is directly
above the move in the picture. Note that the question “[.”,
say, is explicitly justified by “(3”, and “),,” is an answer
specific to the question “(;”. In the former case, the justi-
fication pointer from “[.” to “(3” is represented by marking
the source of the arrow ¢ as the subject of the input ac-
tion corresponding to “[.”, and by marking the target of
the arrow as a subsidiary object of the output action corre-
sponding to “(;”. The justification pointer of the latter case
is similarly represented; note that the target of the arrow is
the principal object of the output action corresponding to
Cﬁ(b”.

The game reading of 7-actions as questions and answers
gives rise to a completely adequate (and accurate) repre-
sentation of legal positions. An important feature of the
representation is the unique identification of each question
move (of a legal position) by a new and private name. This
name is the principal object of the w-action representing the
question move. In the case of s in Example 5.1, observe
that the first four questions in order are uniquely identified
by names a, b, ¢ and d respectively. This scheme may be ex-
tended to represent innocent strategies. We first give an in-
formal explanation of how the capabilities of the w-calculus
are employed to give expression to the salient features of
innocent strategies.

1. Generation of new, private links. Since a question (ex-
cept the opening question) may be asked repeatedly in
an innocent strategy, new names are generated dynam-
tcally so that each name is unique to a specific instance
of the question.

2. Match. Just as strategies may respond to moves ac-
cording to a case analysis, so agents representing them
are defined by cases. We use the match constructs
in conjunction with parallel composition to implement
this facility.

3. Replication. Since an innocent strategy may raise a
question repeatedly, (the corresponding part of) a re-
sponding strategy may need to be played several times
during a computation. Such repetitive agents are con-
structed by using the replicate construct !— of the n-
calculus.

4. Parallel composition. The composition of strategies
(qua maps of the category CA) corresponds to “par-
allel composition plus hiding (with replication)”.

An exact representation of strategies

We are now in a position to spell out an exact represen-
tation of innocent strategies in (infinitary) w-calculus. An
innocent strategy o : (A1,---, An, ) corresponds exactly to
a (possibly) infinitary canonical form Af1--- fn.$5; see The-
orem A.3. For each innocent strategy o of type A, and for
any name u of sort A, we define a 7-term [o],, which corre-
sponds exactly to ¢ in a sense to be made precise.

Definition 5.2 More generally for a strategy o of type
A:(Ala"',Ak,Ak+1,"',Ak+l,L)

we define a translation

[a-]uyfly"'yfk’

with indicated free names u, f1, -, fx, of the form

U(fk+1a Tty fk+la a)'(a)flwwfk.;.z,a'

We define the translation ¢ — [6]u s ,...,5, by recursion on
the structure of s € CF(f1 : A1, -+, fuqs : Agqs) where
so is the canonical form corresponding precisely to o (see
Definition A.2). The three cases of the definition

o (equivalently s;) +—  [0]u gy, 5y

are presented in Table 2.
Note that [o]u,f,,...,f, corresponds to
friAn, - e An b o(fi, o fro) s (Arar, o5 Aty b).

This translation is necessarily into infinitary w-calculus. But
compact strategies correspond to finite canonical forms (see
[HO94, Part II]), and for these we get a translation into
w-calculus proper.

Admissible traces

A trace of an agent is a sequence of actions which the agent
can perform in succession. The behaviour of an agent may
be described in terms of traces. Formally let P and P’ range
over w-terms. A trace of P is a sequence of actions defined
inductively as follows:



For sc € CF(f1: A1y, fn: An):

(1) sois Q: define [6]u,p, ..., to be w(frg1, -+, frt1,a).0.

(2) s is n for some program value n: define [0]u,f, .. 5 to be w(frg1, -, fryi, a).@(n).

(3) s- is case fi(Agi.t1)--- ()\gfr.tr)[nmew rm] where A; = (C,---
further for some innocent strategy 7; of type (Z,fD\;,L), tj = sr; (ie t; € CF(f~: Z,y?

,Cryt); foreach 1 < j <, C5 = (Dja,--+, Dypyit),
: fD\;) is the associated

oF of 7j); for each m € w, for some innocent strategy p, of type A with r,, = s,,. Define [6]us,....s, to be
u(frtt1, - 'afk+l’a)'(a)f1,~~~,fk+l,a which is
u(fk+1a ) fk-l-la a)'ﬁ(gla s g b)~![7-1]91,f1,"',fk+1 | e |![T7"]gr7f17"'7fk+l |b(d) H[d = m](pm)f1,~~~,fk+l,a'
m

Table 2: Definition of the encoding o (equivalently so) — [0]u 1, f5-

o ¢ (the empty sequence) is a trace of the zero agent

e if 5is a trace of P’ and if P -2 P’ then a - is a trace

of P.

Not every trace of a 7-term (encoding an innocent strategy)
is of interest to us. To begin with we should disregard silent
actions which may be thought of as compile-time optimiza-
tion (about which more anon). Our intention is to capture
(traces describing) the behaviour of a agent only when it in-
teracts with an environment (of agents) behaving in accord
with PCF-computation.

Definition 5.3 An observable trace of an agent P is defined
to be the subsequence of non-silent actions that is obtained
from a trace of P by deleting all 7-actions. An observable
trace o is said to be admissible if it satisfies the following
conditions:

e o is a sequence of strictly alternating input and output
actions

e whenever (the m-action translate of) an O-answer ap-
pears in o, it answers the (m-action translate of the)
last pending P-question.

Theorem 5.4 The tree of legal positions corresponding to
the innocent strategy o is isomorphic to the tree of admissible
traces of [o]u, in a way which is faithful to the correspon-
dence between moves and actions (as explained at the start
of section 5). O

Generalized composition of strategies

Suppose that o : 47 x --- x Ay = A’ and that =, : By %
-x By = A; for 1 < ¢ < k. Then we have a generalized
composite of strategies

o(r, -, 1) By x--x By => A

This is easily seen to be well-defined by appealing to the
cartesian closed structure of the category CA.

Theorem 5.5 The result of “parallel composition plus hid-
ing” (with replication) on the respective translates of o, 1,
<o TR, namely

(fl’ M) fk)[a-]uyfly"'yfk | ’/[Tl]flygly”'ygl | T | ’/[Tk]fkygly”'ygl

is weakly bisimilar to [o(m1, -, Tk )] u,g1,,g - |

Now consider a special case with o : (Ay, -+, A, ¢) and

7+ A;. Then

(fro o Flodupryo e Ll Lo 1 7wl s

is weakly bisimilar to
o u(a).@(n)in case o(m, -, 7k) is “output n”
o u(a).0 in case o(71, -, 7%) is “undefined”.

We introduce a notation: for m-terms P and P’, we write
P | Q to mean that P — @ and -[AR.Q — R & RZ Q).
Note that the silent reduction — preserves the structural
congruence =. We can rewrite the previous special case as
the following.

Corollary 5.6 The composite strategy o(m1, -, Tk) is the
imnocent strategy n in the arena ¢ if and only if

(w, A)otu g [l |- Hmelg [w(a)) La(n).

6 Encoding PCF in the 7-calculus

The 7-representation of innocent strategies already gives a
translation of PCF into the w-calculus: given a PCPF-term
s, take its denotation as an innocent strategy [s] = o,
then translate it into the w-calculus ie. [o.].. We shall call
this the compact translation. Any translation of PCF into
the 7w-calculus amounts to a kind of compilation, for the
w-calculus may be regarded as the description language of
a system of name-passing processes whose structures may
evolve dynamically. The snag of the compact encoding is
that the m-encoding of PCF-terms is given in terms of fi-
nite agents only for terms which denote compact innocent
strategies. (The advantage as we shall see shortly is that it
corresponds to a more efficient compilation.) In this section
we give a direct encoding of PCF in the w-calculus.

Take a PCF-term s of type A = (A1, -+, Apn,¢). For any
name u : A, we define by recursion a w-term [s]" which has
the general form

u(fr,-- ~,fn,a).|:|.ﬁ<v>.

By definition of the PcF-sorting, the names f1,---, fn and «
have sorts Ay, -+, An and qn* respectively; and v is of sort
ans’.



c gy ) LAT - [ fa] 0 [b(d)-a( )

froeees Jas @) (0) (@ fa, -+, faya) | [5]7)

oo fry @) (v, )@ fry- oo fasa) | [8T7 111617

c frs @) F(g5 9155 gy DAY SIS - 1 ]9 16(d)-T( ).

Table 3: Definition of the direct 7-encoding s — [s]*.

[((Az.2)2]* =  wu(a).(v,2)(@(z,a)|v(z',a").a'(b).b(d).a’{d) | lx(a").a"(2)).

Table 4: The encoding of (Az.z)2.

The agent [s]* interacts with the environment by first
communicating via the opening port u. It expects to receive
an (n+1)-vector of names which will be bound to fi1,---, fxr
and a respectively. Note that this is the only action [s]*
can engage at the beginning. Suppose at some point after
interacting with the environment, the name a has been in-
stantiated to a’. The final action of the agent is to send the
value-name v (or the name to which v has been instantiated,
if v is a bound name) along the link a'.

Definition 6.1 The recursive definition s — [s]" is pre-
sented in Table 3. Fix the opening port as u and let A =
(A1,--, An,t). Some explanatory remarks in connection
with the definition are in order. Note that we shall some-
times (e.g. in the definition of [Y]*) represent a variable f
occurring in a PCF-term s and a name f appearing in the
n-translate [s]* by the same letter; this should not cause
any confusion.

o The agent [n]* interacts with the environment via the
port u : 1 upon receipt of a link name, say, a’, the
agent sends out the value-name n along a’ and becomes
inactive i.e. the zero agent.

o Successor, predecessor (omitted) and test for zero are
“infinite” objects: they are not compact as innocent
strategies.

e The m-encoding of a PCF-variable © : A is defined by
recursion over the type A of x. Note that for each ¢,
fi and g; are of sort A;. In effect the encoding of z is
performed on its full n-expansion.

e In the case of the A-abstraction, the body s has type
(A2, -+, An,¢), with each fi: Ai.

o We assume that the application st has type
(A2, -+, Ap,t)
with s: A and ¢: A;.

o Finally we take the fiz-point constant Y of type (A =
A) = A; and so, the name f is of sort B where B =
(A, Ay, -+, An, 1), with each f; : A;. Note that this is

the only place where an agent is defined by recursion.

The “f” in the subterm [Y f]¢ occurring in the defi-
nition of [Y]* is a PCF-variable; the translate [Y f1¢
of the application Y f is (well-)defined by recursion.

Remark 6.2 The s — [s]* encoding takes PCF into infini-
tary w-calculus. There are two ways by which the encoding
can be modified to one which maps into w-calculus proper.
The first replaces the constants succ, pred and zero? by their
obvious compact approximants succ,,, pred, and zero?,, re-
spectively for each m € w. For example succ,,,n evaluates to
n 4+ 1 provided n < m. The other way is to change the way
natural numbers (program values) are encoded. There are
various possibilities, some of which are discussed in [Mil91].
However such a change would destroy the correspondence
between w-actions and game moves, which is the main theme
of this work.

The free names of an agent represents its current knowledge
of, or linkage to, other agents. An agent that has no free
name can only possibly perform silent action. Take a PCF-
term s : A with opening port w, it is easy to see by recursion

that
FN([s]") = {u}UFV(s).

So if s is a program, after performing the action u(a), the
agent [s]" can only perform silent action.

Example 6.3 As an example we encode ¢t = (Azx.z)2 : o
Note that the encoding [¢]*, which is shown in Table 4,
begins with an input action u(a). Now consider the (silent)
reduction of (u)([¢]*|w(c)), for some name ¢ : gn* which
serves as a kind of buffer. This easily reduces to

!

(2)(F(b)-b(d).2(d) | ta(a").a7( 2))
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Figure 5: Trace of G.

which is = to
o

(2)(T(b).b(d).2(d) | 2(a”).a”(2) [ ta(a").a"(2))

which reduces to

(2, 0)(b(d).T(d) [ B(2) |tz (a”).a"(2))

and so to
1

(2)((2) [tz (a").a"(2))

which is = to

e(2) [ (z)(tz(a").a"(2)).
By (6) and (2) of Definition 4.2, corresponding to “garbage
collection”, the last agent is = to ¢(2). Hence

(W([Az.2)2]" [w(e)) L #(2).

Example 6.4 Consider the type-3 functional
G = Ag.g(Qz.g(Ay.x)) : (((s,4),0),0).

A legal position of the innocent strategy denotation of G
corresponding to playing G against, say, Af.f1: ((¢,¢),¢) is
shown in in Figure 5. This trace should be compared with
the m-term |G|* as shown in Table 5 which is weakly bisim-
ilar to the direct encoding [G|". (We omit the definition
of h — |h]™" for h ranging over head normal forms of PCF.)
Observe that the correspondence between moves and actions
extends to one between a strategy and its w-translate.

Soundness of the 7m-encoding

What are the good properties of the translation? We sum-
marize our results in the following. The first concerns the
soundness of the encoding relative to the innocent strategy
interpretation, or the compact translation.

Theorem 6.5 Take any closed PCF-term s : A. Write the
innocent strategy interpretation [s] of s as os.

(i) The tree of admissible traces of [s|" is isomorphic to
the tree of admissible traces of [05]u.

(ii) [s]* is weakly bisimilar to [o:]u. O

It is a standard result that the following “cut-rule” is
valid in pcF: if
iAo fui A B os: A and
g1:B1, 00 Bl Bt A

for each 1 < ¢ < k, then

g1 :B1,~~~,gl:Bll—s[ti/fi]:A/.

There 1s a corresponding result in the w-translation:

o

Proposition 6.6 [s[t;/f:]]" is weakly bisimilar to

(i ) ([ LR ] ] ).
(I
Since substitution in PCF is modelled by generalized com-
position, this is a consequence of Theorem 5.5 and Theo-
rem 6.5(ii).

A 7m-term P is said to be deterministic if whenever P —

Q and also @ — Q' and Q — Q" then Q' = Q.

Theorem 6.7 For any PCF-program s,

(w)([s]* |w(a)) Lain)

(ii) the agent (u)([s]* |u(a)) is deterministic. |

(i) sn

Part (i) of the theorem is a corollary of Theorem 6.5 and the
computational adequacy of the dialogue game interpretation
of pcF. Part (ii) can be proved by a case analysis of the
syntactic shape of s.

The PCF evaluation relation s | n follows a left-most,
weak (i.e. no reduction “under a A”) reduction strategy.
However our direct encoding of PCF into the w-calculus ac-
tually reflects a head reduction strategy in PCF. This means
that reductions may take place “under a A” if the head re-
dex happens to be a subterm of a A-abstraction. Note that
for terms of program type, the two reduction strategies co-
incide.

7 Conclusion and further directions

Our 7-encoding of PCF is not the first of its kind: Milner
first studied the encoding of the pure, untyped A-calculus in
the m-calculus in [Mil90]. He considered translations of the
lazy A-calculus [AO93] and Plotkin’s call-by-value A-calculus
[Plo75] into the 7-calculus. Comparing the appropriate dia-
logue game m-encoding of the lazy A-calculus with Milner’s
encoding, it is clear that the two are conceptually quite un-
related, apart from the idea of the m-representation of A-
calculus substitution by “parallel composition with hiding
and replication” which is common to both. Also Milner’s
encoding seems much simpler, and corresponds to a more
efficient implementation. The novelty of our encoding lies
in the facility it provides for an accurate representation of
the innocent strategy denotation of the A-calculus in terms
of the w-calculus.

There are various ways by which the work described in
the paper can be extended. Both the dialogue game model
and the corresponding w-representation can be modified to
give an interpretation for call-by-value and for lazy PCF.
The same programme can also be carried out for the un-
typed A-calculi; for example, the lazy A-calculus and the



u(g, a).g(h, b)M[h(y, c).g(k, d).A[k(z, €) F(f)-F(0).&(v)]|d(v").2( v )b(v") a(")

Table 5: The encoding of G optimized.

call-by-value A-calculus. In a somewhat different direction,
we have only just begun to explore ways of representing
strategies. Although we have achieved a representation that
is in complete accord with the dialogue game paradigm and
respects the correspondence between actions and moves, it
is still not optimized for capturing the uniform® or paramet-
ric nature of (innocent) strategies which are denotations of
A-terms. Here we have in mind the various kinds of “tit-for-
tat” strategies in which P simply copies O-moves from one
“component” of the play to the other. Strategies of such
nature occur also in various game models of linear logic; see
e.g. [Bla92, AJ94, HO93]. Tt would be very useful to have a
generic calculus capable of capturing a general class of such
schematic strategies. It has been suggested to us that a cal-
culus along the lines of Sangiorgi’s higher-order w-calculus
[San93] may well fit our requirements, but we have not yet
investigated the matter.

In this paper we have presented the polyadic w-calculus
as a formal language for representing innocent strategies
which have recently been used to construct a fully abstract
game model of PCF. Our results show that the representa-
tion is so precise that it may as well be taken to be the basis
for a formal definition of innocent strategies. We have also
given a direct encoding of PCF into the w-calculus which is
sound, and agrees with the fully abstract innocent strategy
interpretation.
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A Appendix

A.1 PCF

Definition A.1 The definition of the language PCF may be
found in various places, see e.g. [Plo77] or [Ong95]. The op-
erational semantics of PCF may be defined by induction over
the following rules: v ranges over values which are constants
and A-abstractions; we read s |} v as “s reduces to value v”

ult/z] v sv vt
Az.u)t Yo st o'
st wlv s f u Yo

cond? suu’ U

v v

cond® suu’ U

sin syn+1 s{0
succs yn+1 preds | n preds |} 0
50 syn+1 sYA(s)Uv
zero?s || t zero?s | f YA(S) Yo

A.2 Canonical forms

Definition A.2 We define the infinitary language P which
is PCF augmented by an infinitary definition by cases con-
struct. For ease of presentation we assume that ¢ is the only
program type. The typing rule governing the case construct
is:
I Tom 10 M E W
case S[Hmew Tm] it

The operational semantics of P is defined by the following
rule scheme, in addition to those that define the operational
semantics of PCF:

sUji e
case s[[[,,c, Tm] ¥ n
For any pPCP-types Ai,---, A, where n > 0, we define
the collection
CF(f1 : A1,~~~,fn M An)

of canonical forms (cFs) of P with free variables appearing
in the list fi,---, f, as follows.

e The ground-type Q and program values n > 0 are in

CF(f: A).

e For any f~: A= fi v Ao fn e

1 <1< n where

A, and for any

A;
C]

and where

(Cr,--,Cry0)
(Dy1,-++,Djp;,0) foreach 1 <j <

if ron € CF(f~: Z) for each m € w and if
t; € CF(f~: g,y? : Dj)
for each 1 < 57 < r, then

case fi(Agi-t1) -+ (g t)[ [ ] ] € CF(F+ A).

mew

Note that a CF is by definition of program type; and it is

either €, or a number n, or a definition-by-cases construct.
A finite canonical form (FCF) is a canonical form in which

all occurrences of the case construct have finite branches.

Theorem A.3 For eachPCF-type A = (A1, -, Ap, ), there
18 an order-isomorphism between innocent strategies o : A
ordered by inclusion, and canonical forms

s n s An)

ordered by the Q-match ordering. O

s« € CF(f1: Ax,---

We omit the definition of the order-ismorphism o +— s, :

CF(f: A).



(in)

(par)

(close)

(res)

(match)

o(7).P 22 p

(out) g7).P L p

vy ’ Z(T) 2(Z)
PP nnen(@ =2 (com) L Q—0
PlQ—P|Q PlQ— P QTj/7]
pip QU gy pDp

ETENEP, (open) Wlfﬂﬁéy
PlQ — (@)P'|Q (Hp 22 p!

Yy ' —_ ' r ' /:
%if‘y%N(v) (struct) @=0Q @ = P r=p
(y)P — (y)P Q—P

p . p

[t =¢].P = P

Table 6: Definition of the labelled transition relation —-.




