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1 PCF: observational preorder and full abstractionThe functional language pcf [Sco93, Plo77] is essentially thesimply typed �-calculus augmented by basic arithmetic, con-ditionals and �xed-point operators at every type. pcf-types,ranged over by A;Ai;B, etc., are de�ned by the followinggrammar in bnf:A ::= � j o j A) A:Every pcf-type A has a unique representation of the formA1 ) (A2 ) � � � ) (An ) �) � � �) where n > 0 and theprogram (or ground) type � is either � or o. By conventionwe write A as (A1; � � � ;An; �). The operational semantics ofpcf (formulated in terms of a Martin-L�of style evaluationrelation \s + n") is presented in the Appendix. Programsare closed terms of program type. A denotational modelM[[� ]] of pcf is said to be order fully abstract if for anyclosed terms s and t of the same type,s @� t () M[[s ]] vM[[ t ]]where @� is the observational preorder de�ned as follows:s @� t i� for any (program) context C[X], and for any pro-gram value n, if C[s] and C[t] are both programs and ifC[s] + n then C[t] + n. The Full Abstraction Problem forpcf is concerned with the search for an abstract, syntax-independent order fully abstract model of pcf. This prob-lem has been studied intensively for over 15 years [Plo77,Mil77, Cur93, Ong95].The next two sections set the scene: we give a racyoverview of the category of arenas and innocent strategies insection 2, and sketch the fully abstract game interpretationof pcf in section 3. The reader is directed to [HO94] for a fullaccount in which proofs of all results cited in the �rst twosections can be found. We introduce pcf-sorted polyadic�-calculus as a language for describing dialogue games insection 4. Innocent strategies are represented as �-terms insection 5. The direct encoding of pcf in the �-calculus isgiven in section 6.2 Arenas and innocent strategiesDialogue games are played by two players called Player (P)and Opponent (O). There are four kinds of moves:O's question [ P's answer ]P's question ( O's answer )



We use the matching pairs of left and right parentheses \["and \]", and \(" and \)"as meta-variables to represent movesof the respective kinds. The parenthetic notation re
ects thecondition that P-questions can only be answered by O, andO-questions by P.Rules of the gameDialogue games are played according to the following set ofrules:(r1) A play starts by O raising an opening question, andends when it is answered. An opening question maynot be raised more than once in a play.(r2) Moves are made alternately by P and O, each makingone move at a time.(r3) Each play has the e�ect of tracing out a dialogue ofquestions and answers observing the following Princi-ples of Civil Conversation.Justi�cation A player is only allowed to make a moveprovided it is justi�ed: a question is raised only if anoccurrence of its unique justifying question is pending {already asked but not yet answered; an answer is prof-fered only if an occurrence of the question expectingit is pending.Priority or the \last asked �rst answered" rule: anyanswer o�ered must be an answer to the last pendingquestion.Unlike games which model proofs, there is no question ofwinning for either player in dialogue games.A dialogue game is completely speci�ed by its game tree.Paths of the tree represent legitimate plays of the game. Wepresent a game tree in two stages:� An arena de�nes the moves (questions and answers)of the game, which are nodes of the game tree, andspells out how one move justi�es another. These aredata speci�c to individual games but common to playsof the same game.� The collection of paths of the game tree is then de�nedto be sequences of moves satisfying the rules (r1), (r2),(r3) and (r4) (to be introduced later) of the game. Weshall refer to paths of the game tree as legal positionsof the arena in question.De�nition 2.1 An arena is a structurehQn(A);6A;Ans(A);qnA iwhere hQn(A);6A i is an upside down forest1 of questions;roots of the forest are the 6A-maximal elements. Questionsof depths 0, 2, 4, etc. are O-questions; those of depths 1,3, 5, etc. are P-questions. Questions of depth 0 are calledopening moves; they have a special status. We say that aquestion q justi�es another, say, q0 if q is the unique questionimmediately above q0 in the ordering. Ans(A) is a set ofanswers. To each question is associated a set of possibleanswers via the map qnA : Ans(A) �! Qn(A). For thesake of uniformity, we say that the question qnA(a) justi�esthe answer a. Moves of the arena are elements of Ans(A) [Qn(A).1A forest is a partially-ordered set such that the lower-set of eachelement is a �nite total order.
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. . .
of A of BFigure 1: The forest of questions of A) B.At any stage of a play, not every move is necessarilyavailable to the players; however some moves may becomeavailable (or \justi�ed" or \enabled") as the play unfolds.The notion of justi�cation is formulated as the partial or-dering 6A over questions. We can now make precise theinformally expressed condition (r3): a sequence s of moves,each of which (except the opening move) equipped with apointer, is said to satisfy (r3) if for every initial subsequencer � q of s where q is a question, the pointer at q points toan occurrence of q0 in r such that q0 justi�es q and the oc-currence pointed to is pending. Similarly for every initialsubsequence r � a of s where a is an answer, the pointer at apoints to an occurrence of q0 in r such that the occurrenceis pending and a is a possible answer of q0. We say that thequestion q (similarly the answer a) is explicitly justi�ed by(the appropriate occurrence of) q0. A well-formed sequenceis then a sequence of moves equipped with an auxiliary se-quence of pointers, one for each non-opening move, suchthat conditions (r1), (32) and (r3) are satis�ed.Construction of arenasWe can already de�ne product and function space of arenas.For product we simply take the obvious \disjoint sum" ofthe arenas A and B as directed graphs. For function spaceA ) B, it is simplest to draw a picture as in Figure 1.(In the picture there is only one opening move in B.) Theopening moves of A ) B are those of B and to the tree\below" each such opening move, we graft onto it a copy ofthe forest of questions of A.This is a good place to consider some examples.Example 2.2 The natural numbers arena, denoted � (byabuse of notation), is speci�ed by the following data. The(singleton) forest of questions consists of the opening O-question \[". There are as many (P-) answers as there arenatural numbers: ]0; ]1; ]2; � � � which are all possible answersto the only question \[". The Boolean arena o is de�nedsimilarly: the (singleton) forest of questions is the openingO-question\[" whose possible P-answers are \]t" and \]f".More generally, for any pcf-type A = (A1; � � � ; An; �), theforest of questions of the corresponding pcf-arena A (weshall systematically confuse the pcf-type with its interpre-tation as an arena) is an inverted �nite tree. It is useful toestablish a naming convention for questions of a pcf-arena.Take A = (((�; �); �; �); �; �) say. We draw its tree of ques-tions as in Figure 2. The questions are identi�ed by a �nitesequence of natural numbers (whose obvious de�nition weomit) as shown in the Figure.Views and legal positionsIntuitively a strategy (for P, say) is a method or rule thatdetermines P's move at a position which ends with an O-
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1.1.1Figure 2: Forest of questions of arena (((�; �); �; �); �; �).move. A strategy is said to be history-sensitive if the nextmove is determined as a function of the history of the play.We reject history-sensitive strategies in favour of strategieswhich operate on the basis of a certain abstraction of thehistory of play, called view. Player's view, or P-view, ppqof a well-formed sequence p of moves is de�ned recursively.Let q range over well-formed sequences of moves, and r oversegments of well-formed sequences.p[q def= [ if \[" is an opening movepq � (�r � [q def= pqq � (�[ if \(" explicitly justi�es \["pq�)q def= pqq�)pq � [�r�]q def= pqq if \]" explicitly answers \["pq � (q def= pqq � (:For example the P-view of a well-formed sequence of movesmay have the shape[�(�) � (�) � (�[�(�) � (�) � (�[�(�) � � � :By construction whenever there is a pattern \(�[" (respec-tively \(�)") in a P-view, the O-question \[" (respectivelyO-answer \)") is explicitly justi�ed by the P-question \(".There can be no segments of the form \[� � �]" in a P-view.This may be read as the following: Player ignores answersto questions posed by Opponent. There is a dual de�nitionof the O-view of a well-formed sequence, which we omit.Recall that legal positions of an arena are the paths ofthe associated game tree.De�nition 2.3 A legal position of an arena A is a well-formed sequence t which satis�es condition (r4) called visi-bility:For any initial subsequence s � ( of t, the O-question \[" explicitly justifying the P-question\(" occurs in the P-view of s. Similarly for anyinitial subsequence s � [ of t, the P-question ex-plicitly justifying \[" occurs in the O-view of s.Example 2.4 The sequence s of moves with the associ-ated pointers in Figure 3 is a legal position of the arenaA = ((�; �); �; �). The question-moves [a, (b, [c and (d areoccurrences of the questions [, (1, [1:1 and (2 of the arena Arespectively. For examplep[a � (b�[c � (d�)nq = [a � (b�[c � (d�)n andp[a � (b�[c � (d�)n � ]�)mq = [a � (b�)m:Innocent strategiesWe are interested in deterministic strategies for playing di-alogue games. Formally a P-strategy � of an arena A isa non-empty pre�x-closed collection of legal positions of Asatisfying the following conditions:

[ ( [ ( ) ] ) ]a b c d. . . . . . .n mFigure 3: The legal position s.(s1) Determinacy For any s 2 � at which Player is to move,if both s � a and s � b are in � then a = b.(s2) Contingent completeness For any s 2 � at which Op-ponent is to move and for any O-move a, if s � a is alegal position then it is in �.So a P-strategy of arena A corresponds to a subtree of thegame tree that has the following properties: at each node la-belled by an O-move, there is at most one o�spring, namely,P's unique response (if there is any). Note that our gametrees are inverted trees.De�nition 2.5 A P-strategy � is innocent if it is deter-mined by a partial function of a certain kind, mapping P-views (of legal positions at which Player is to move) to P-moves in the following way: for any legal position s 2 � atwhich P is to move, and for any P-move a,s � a 2 � () f(psq) is de�ned, and f(psq) = a.We call such a function f a de�ning partial function forthe innocent strategy �. Clearly innocent strategies may bespeci�ed by such de�ning functions.The category CA is de�ned by the following data: objectsof the category are arenas; maps from arenas A to B areinnocent P-strategies of the arena A) B. Innocent strate-gies (as maps) are composed in a way reminiscent of thecsp-style [Hoa85] \parallel composition plus hiding". Theterminal object of the category is the empty game. Theproduct and function space arenas de�ned in the precedingare the corresponding categorical constructions. For anyarena A, the collection of innocent strategies of A orderedby inclusion forms a dI-domain. A major result of [HO94]is the following:Theorem 2.6 The category CA is cartesian closed, andenriched over dI-domains2 . �For example, innocent strategies of the arena � have thestructure of a 
at natural numbers cpo. The least elementis the everywhere unde�ned strategy. The innocent strategydenoting n behaves as follows: in response to the openingquestion \[", P returns the answer \]n", and the play con-cludes.3 A fully abstract game model of PCFAny cpo-enriched cartesian closed category (with naturalnumbers and Booleans) gives rise to a model of pcf; seee.g. [LS86] for the general picture or [HO94, Part I] for ananalysis speci�c to pcf. Given such a category, the inter-pretations of �-abstraction, application and the �xed-pointoperator are completely (and standardly) determined by thecategorical structure. So the interpretation [[s ]] of any pcf-term s : A as an innocent strategy of the arena A is well-de�ned, and can be worked out based on the informationgiven so far.2A dI-domain is a consistently complete, prime algebraic CPO thatsatis�es axiom (I): every compact element dominates only �nitelymany elements.
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Figure 4: Trace of F � l-or.Example 3.1 Consider F = �f:f(ft
)(f
t), a type-2 termof type ((o; o; o); o). We show in Figure 4 a legal position ofthe innocent strategy [[F ]] which is the trace of playing Fagainst \left-or" l-or = �xy:condxt(condytf).The main result of [HO94] is the following theorem:Theorem 3.2 (Hyland-Ong) The observational quotient^CA of the category CA gives rise to an order-extensional,order fully abstract, universal model3 of pcf. �The proof is based on a Strong De�nability Theorem:there is an order-isomorphism between syntax (�nite canon-ical forms of P, which is essentially pcf extended by de�ni-tion by (any �nite number of) cases, ordered by 
-matching),and semantics (compact innocent strategies ordered by in-clusion). The strong de�nability result extends to a univer-sality result for CA : modulo observational equivalence, allrecursive innocent strategies are pcf-de�nable. The de�ni-tion of canonical form is presented in the Appendix.A problem of representationInnocent strategies are formally de�ned as certain collec-tions of legal positions. We observed that it may also bespeci�ed by de�ning functions. Even for relatively simplepcf-terms, precise description of their denotations as inno-cent strategies in either style very quickly becomes unwieldyand opaque. It would be highly desirable if an expressive cal-culus which lent itself to an economical description of suchuniform strategies were available. It is to this question ofrepresentation that we now turn.4 Polyadic �-calculusThe �-calculus was introduced by Milner et al. [MPW92] asan extension of the process algebra ccs in which processes3Similar results, based on somewhat di�erent games, have beenobtained independently by Abramsky, Jagadeesan and Malacaria[AJM94], and also by Nickau [Nic94]. Subsequently O'Hearn andRiecke [OR94] described a construction of the fully abstract model ofpcf by a kind of logical relations.

which have changing structures may be expressed naturally.The key features of the �-calculus may be brought out insharp relief by contrasting and comparing it with the �-calculus. While the �-calculus is canonical for calculationwith functions, Milner et al. regard the �-calculus as \astep towards a canonical treatment of concurrent processes"which gives priority to the concept of names. In the �-calculus there are no constants and variables: they are sub-sumed under names. Names are (used to identify) commu-nication links, and computation is represented purely as thecommunication of names across links. The linkage betweencomponent agents of a system may be changed as a resultof a communication (of names) between neighbours. A dis-tinctive feature of the �-calculus is its ostensibly weak com-munication capabilities: in contrast to the �-calculus, thatwhich is transmitted or passed in the �-calculus is neveran agent, but rather access to an agent, i.e., names. Re-markably, as Milner showed in [Mil90], the \parsimonious"communication constructs of the �-calculus do not make itany less expressive than the �-calculus.PCF-sortingIn the following we shall focus on the polyadic �-calculus(but refer to it simply as the �-calculus) as introduced in[Mil91]. We presuppose an in�nite collection of names whichare ranged over by symbols such as x; x0; xi; f , a; b; u; v, etc.Names are sorted as follows. (We shall assume familiaritywith the notion of sort and sorting in [Mil91].) The set S ofsubject sorts is de�ned to bef ans�;anso;qn�;qno g [ fA : A is a pcf-type g:The sorts qn� and qno are precisely the sorts of naturalnumbers questions and Boolean questions respectively; andans� and anso are the sorts of natural number answers andBoolean answers respectively. There are denumerably manynames of each subject sort. In particular the names of sortans� include 0; 1; 2; etc :, and those of sort anso include tand f. Recall that object sorts are just �nite sequences ofsubject sorts, written as (s1; � � � ; sn). A sorting is a partialfunction from subject sorts to object sorts; it associates toeach subject sort S the sort of name-vector which each namex of sort S, written x : S, can carry or transmit. The pcf-sorting is de�ned to be the following partial function: forn > 1,8>>><>>>: A 7! (A1; � � � ;An;qn�) if A = (A1; � � � ;An; �)A 7! (A1; � � � ;An;qno) if A = (A1; � � � ;An; o)� 7! (qn�) o 7! (qno)qn� 7! (ans�) qno 7! (anso):With reference to pcf-sorting, a name x of sort A whereA = (A1; � � � ;An; �) and n > 0, can carry or transmit name-vectors of sort (A1; � � � ;An;qn�). Note that pcf-sorting isunde�ned on ans� and anso. This has the e�ect that a namen : ans�, say, cannot appear as the subject of an action.Such names are in e�ect (program) values. Thus we shallcall the names 0; 1; 2; 3; etc. and t and f value-names.PCF-sorted �-termsThe �-calculus consists of a collection of �-terms which intu-itively stand for processes or agents4. We shall use P;Q;R,4We shall use the word agent interchangeably with process in thesense of [MPW92], as opposed to [Mil91] which de�nes agents to bea syntactic subcategory of processes.



etc. to range over the collection � of �-terms. The syntaxof pcf-sorted �-terms is de�ned by the following grammarin bnf:P ::= 0 zero-termj g:P guarded termj P j P parallel compositionj !P replicationj (x1; � � � ; xn)P restrictionj [x = y]P matchj A[x1; � � � ; xn] de�ned agent (by recursion).Guarded terms g:P are terms that are pre�xed by ac-tions. There are four kinds of actions:g ::= � silent actionj x(y1; � � � ; yn; a) input actionj xh y1; � � � ; yn; a i free output actionj x(y1; � � � ; yn; a) bound output actionwhere n > 0. In the three non-silent actions, x, of sort Awhere A = (A1; � � � ;An; �), is known as the subject of theaction; a : qn� is called the principal object, and yi : Ai asubsidiary object of the action. In all three cases, x is a freename; the names y1; � � � ; yn and a are free in the free outputaction but bound in the other two. The collection of names,free names and bound names of a process P , denoted n(P ),fn(P ) and bn(P ) respectively, are as de�ned in [MPW92].The bound output action5 may be expressed in terms of therestriction operation and the (free) output action: x(y):P =(y)xh y i:P . We follow the notational convention of [Mil90];notably the guarded term g:0 is often abbreviated to g.This then (modulo pcf-sorting) is the �-calculus as pre-sented in [MPW92], but extended by polyadic features as in-troduced in [Mil91] and replication in [Mil90]. Note that wedo not need the summation constructor. Details of the de�-nition (e.g. the meaning of actions) which have been omittedmay be found in these references.Remark 4.1 We shall have occasion to consider an in�ni-tary version of the �-calculus which involves the parallelcomposition of an in�nite number of processes, all of which\begin" with a match construct. Further the cases associ-ated with the match constructs of these in�nite compositionsare all mutually exclusive. Typically it has the form[d = 0]P0 j [d = 1]P1 j � � � j [d = n]Pn j � � �which we shall abbreviate to Qm2! [d = m]Pm.Labelled transition relation and (late) weak bisimulationThe labelled transition relation ��! on �-terms where �ranges over actions is de�ned by induction over the rules inTable 6 in the Appendix, as adapted from [MPW92]. Fol-lowing [Mil90] we separate the structural laws which \gov-ern the neighbourhood relation" among processes, from therules which specify their interaction. Following a key insightof Berry and Boudols' Chemical Abstract Machine [BB90],the former is de�ned directly as a congruence relation � onagents as follows.5We are aware of the attractive new-name constructor �x:(�)which is equivalent to the bound output action but we prefer thelatter since it is better suited to our purpose.

De�nition 4.2 We de�ne structural congruence, written �,to be the least congruence over �-terms satisfying the fol-lowing:1. P � Q whenever P is �-convertible to Q2. P j 0 � P , P jQ � Q j P , P j (Q j R) � (P jQ) jR3. !P � P j !P4. (x1; � � � ; xn)0 � 0, (~x)P � (~y)P where ~y is a permuta-tion of ~x5. (x; ~y)(P jQ) � (~y)(P j(x)Q) if x not free in P6. (x)g:P � 0 if x is the subject of the action g.Note that case (6) above is non-standard. These structurallaws are preserved by the labelled reduction relation by def-inition, as decreed by rule (struct). We shall write therelation ��! (transition by silent action) simply as !, andwrite � as the re
exive, transitive closure of !. Finallywe shall assume the de�nition of weak (late) bisimulation asgiven in [MPW92] and [Mil89].5 Representing innocent strategiesWe shall only consider dialogue games in pcf-arenas i.e. are-nas which are the denotations of pcf-types. For ease of ex-position we assume that for each pcf-type A, the names ofsort A include all pcf-variables of type A.Game reading of �-actionsRecall that a legal position is a sequence of moves equippedwith an auxiliary sequence of pointers satisfying conditions(r1) to (r4). We shall refer to a move together with infor-mation concerning justi�cation pointers that emanate fromor point to it as an explicit move. The representation ofdialogue games in the �-calculus is based on a simple asso-ciation: explicit O-moves : input actionsexplicit P-moves : output actions.� An O-question a of type A = (A1; � � � ;An; �) corre-sponds to the input actionu(f1; � � � ; fn; a)where u : A, and so, fi : Ai for each i, and a : qn�. The�-action encodes the following information: the (non-opening) O-question a is explicitly justi�ed by the ex-plicit P-question whose corresponding �-action con-tains u as a subsidiary object. (The subject u marksthe source of the justi�cation pointer emanating froma.) Each subsidiary object fi marks the target of thejusti�cation pointer of some P-question (which comesafter and) explicitly justi�ed by a.� A P-answer v of an O-question a is represented by afree output action of the formah v iwhere the name v is of sort ans� or anso. The subject aof the action is the O-question to which v is a possibleanswer. Observe that the occurrence of a in the actionmarks the source of the justi�cation pointer emanatingfrom the P-answer.
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u(f; x; a): x(d):f(g; b): g(c): d(v). b(v0): ah v0 ich v i:Table 1: �-translation of the legal position s.� A P-question b of type B = (B1; � � � ;Bm; �) is repre-sented by a bound output actionf(g1; � � � ; gm; b)where f : B, and so, gi : Bi and b : qn�. The subjectf indicates that the P-question is explicitly justi�edby the explicit O-question which has f as one of itssubsidiary objects.� An O-answer d of the P-question b is represented byan input action of the formb(d)where d is of sort ans� or anso.Example 5.1 There is already enough information to givethe �-representation of legal positions. To illustrate we con-sider the legal position s of the arena A = ((�; �); �; �) (seeExample 2.4). In Table 1, s and its �-representation areshown; the �-action corresponding to each move is directlyabove the move in the picture. Note that the question \[c",say, is explicitly justi�ed by \(b", and \)m" is an answerspeci�c to the question \(b". In the former case, the justi-�cation pointer from \[c" to \(b" is represented by markingthe source of the arrow g as the subject of the input ac-tion corresponding to \[c", and by marking the target ofthe arrow as a subsidiary object of the output action corre-sponding to \(b". The justi�cation pointer of the latter caseis similarly represented; note that the target of the arrow isthe principal object of the output action corresponding to\(b".The game reading of �-actions as questions and answersgives rise to a completely adequate (and accurate) repre-sentation of legal positions. An important feature of therepresentation is the unique identi�cation of each questionmove (of a legal position) by a new and private name. Thisname is the principal object of the �-action representing thequestion move. In the case of s in Example 5.1, observethat the �rst four questions in order are uniquely identi�edby names a; b; c and d respectively. This scheme may be ex-tended to represent innocent strategies. We �rst give an in-formal explanation of how the capabilities of the �-calculusare employed to give expression to the salient features ofinnocent strategies.1. Generation of new, private links. Since a question (ex-cept the opening question) may be asked repeatedly inan innocent strategy, new names are generated dynam-ically so that each name is unique to a speci�c instanceof the question.2. Match. Just as strategies may respond to moves ac-cording to a case analysis, so agents representing themare de�ned by cases. We use the match constructsin conjunction with parallel composition to implementthis facility.

3. Replication. Since an innocent strategy may raise aquestion repeatedly, (the corresponding part of) a re-sponding strategy may need to be played several timesduring a computation. Such repetitive agents are con-structed by using the replicate construct !� of the �-calculus.4. Parallel composition. The composition of strategies(qua maps of the category CA ) corresponds to \par-allel composition plus hiding (with replication)".An exact representation of strategiesWe are now in a position to spell out an exact represen-tation of innocent strategies in (in�nitary) �-calculus. Aninnocent strategy � : (A1; � � � ;An; �) corresponds exactly toa (possibly) in�nitary canonical form �f1 � � � fn:s�; see The-orem A.3. For each innocent strategy � of type A, and forany name u of sort A, we de�ne a �-term [�]u which corre-sponds exactly to � in a sense to be made precise.De�nition 5.2 More generally for a strategy � of typeA = (A1; � � � ;Ak;Ak+1; � � � ;Ak+l; �)we de�ne a translation [�]u;f1;���;fk ;with indicated free names u; f1; � � � ; fk, of the formu(fk+1; � � � ; fk+l; a):(�)f1;���;fk+l ;a:We de�ne the translation � 7! [�]u;f1;���;fk by recursion onthe structure of s� 2 CF(f1 : A1; � � � ; fk+l : Ak+l) wheres� is the canonical form corresponding precisely to � (seeDe�nition A.2). The three cases of the de�nition� (equivalently s�) 7! [�]u;f1 ;���;fkare presented in Table 2.Note that [�]u;f1 ;���;fk corresponds tof1 : A1; � � � ; fk : Ak ` �(f1; � � � ; fk) : (Ak+1; � � � ;Ak+l; �):This translation is necessarily into in�nitary �-calculus. Butcompact strategies correspond to �nite canonical forms (see[HO94, Part II]), and for these we get a translation into�-calculus proper.Admissible tracesA trace of an agent is a sequence of actions which the agentcan perform in succession. The behaviour of an agent maybe described in terms of traces. Formally let P and P 0 rangeover �-terms. A trace of P is a sequence of actions de�nedinductively as follows:



For s� 2 CF(f1 : A1; � � � ; fn : An):(1) s� is 
: de�ne [�]u;f1 ;���;fk to be u(fk+1; � � � ; fk+l; a):0.(2) s� is n for some program value n: de�ne [�]u;f1 ;���;fk to be u(fk+1; � � � ; fk+l; a):ah n i.(3) s� is case fi(� ey1:t1) � � � (� eyr:tr)[Qm2! rm] where Ai = (C1; � � � ; Cr ; �); for each 1 6 j 6 r, Cj = (Dj1; � � � ;Djpj ; �),further for some innocent strategy �j of type ( eA;fDj; �), tj = s�j (i.e. tj 2 CF(ef : eA; eyj : fDj) is the associatedcf of �j); for each m 2 !, for some innocent strategy �m of type A with rm = s�m . De�ne [�]u;f1 ;���;fk to beu(fk+1; � � � ; fk+l; a):(�)f1;���;fk+l ;a which isu(fk+1; � � � ; fk+l; a):fi(g1; � � � ; gr ; b):![�1]g1;f1 ;���;fk+l j � � � j![�r]gr ;f1;���;fk+l jb(d):Ym [d = m](�m)f1;���;fk+l ;a:Table 2: De�nition of the encoding � (equivalently s�) 7! [�]u;f1 ;���;fk .� � (the empty sequence) is a trace of the zero agent� if � is a trace of P 0 and if P ��! P 0 then � �� is a traceof P .Not every trace of a �-term (encoding an innocent strategy)is of interest to us. To begin with we should disregard silentactions which may be thought of as compile-time optimiza-tion (about which more anon). Our intention is to capture(traces describing) the behaviour of a agent only when it in-teracts with an environment (of agents) behaving in accordwith pcf-computation.De�nition 5.3 An observable trace of an agent P is de�nedto be the subsequence of non-silent actions that is obtainedfrom a trace of P by deleting all � -actions. An observabletrace � is said to be admissible if it satis�es the followingconditions:� � is a sequence of strictly alternating input and outputactions� whenever (the �-action translate of) an O-answer ap-pears in �, it answers the (�-action translate of the)last pending P-question.Theorem 5.4 The tree of legal positions corresponding tothe innocent strategy � is isomorphic to the tree of admissibletraces of [�]u, in a way which is faithful to the correspon-dence between moves and actions (as explained at the startof section 5). �Generalized composition of strategiesSuppose that � : A1 � � � � � Ak ) A0 and that �i : B1 �� � � � Bl ) Ai for 1 6 i 6 k. Then we have a generalizedcomposite of strategies�(�1; � � � ; �k) : B1 � � � � �Bl ) A0:This is easily seen to be well-de�ned by appealing to thecartesian closed structure of the category CA .Theorem 5.5 The result of \parallel composition plus hid-ing" (with replication) on the respective translates of �; �1,� � � ; �k, namely(f1; � � � ; fk)[�]u;f1 ;���;fk j ![�1]f1;g1 ;���;gl j � � � j ![�k]fk;g1 ;���;glis weakly bisimilar to [�(�1; � � � ; �k)]u;g1;���;gl . �

Now consider a special case with � : (A1; � � � ;Ak; �) and�i : Ai. Then(f1; � � � ; fk)[�]u;f1 ;���;fk j ![�1]f1 j � � � j ![�k]fkis weakly bisimilar to� u(a):ahn i in case �(�1; � � � ; �k) is \output n"� u(a):0 in case �(�1; � � � ; �k) is \unde�ned".We introduce a notation: for �-terms P and P 0, we writeP # Q to mean that P � Q and :[9R:Q ! R & R 6� Q].Note that the silent reduction �! preserves the structuralcongruence �. We can rewrite the previous special case asthe following.Corollary 5.6 The composite strategy �(�1; � � � ; �k) is theinnocent strategy n in the arena � if and only if(u; ef)([�]u;f1;���;fk j ![�1]f1 j � � � j ![�k]fk j uh a i) # ahn i: �6 Encoding PCF in the �-calculusThe �-representation of innocent strategies already gives atranslation of pcf into the �-calculus: given a pcf-terms, take its denotation as an innocent strategy [[s ]] = �s,then translate it into the �-calculus i.e. [�s]u. We shall callthis the compact translation. Any translation of pcf intothe �-calculus amounts to a kind of compilation, for the�-calculus may be regarded as the description language ofa system of name-passing processes whose structures mayevolve dynamically. The snag of the compact encoding isthat the �-encoding of pcf-terms is given in terms of �-nite agents only for terms which denote compact innocentstrategies. (The advantage as we shall see shortly is that itcorresponds to a more e�cient compilation.) In this sectionwe give a direct encoding of pcf in the �-calculus.Take a pcf-term s of type A = (A1; � � � ;An; �). For anyname u : A, we de�ne by recursion a �-term dseu which hasthe general formu(f1; � � � ; fn; a): :ah v i:By de�nition of the pcf-sorting, the names f1; � � � ; fn and ahave sorts A1; � � � ;An and qn� respectively; and v is of sortans�.



dneu def= u(a):ah n idsucceu def= u(x; a):x(b):b(n):([n = 0]ah 1 i j [n = 1]ah 2 i j � � �)dzero?eu def= u(x; a):x(b):b(n):([n = 0]ah t i j [n = 1]ah f i j [n = 2]ah f i j � � �)dcondeu def= u(x; y1; y2; a):x(b):b(s):([s = t]y1(c1):c1(d):ahd i+ [s = f]y2(c2):c2(d):ah d i)dxeu def= u(f1; � � � ; fn; a):x(g1; � � � ; gn; b):!df1eg1 j � � � j!dfnegn jb(d):ahd id�f1 : A1:seu def= u(f1; � � � ; fn; a):(v)(vh f2; � � � ; fn; a i j dsev)dsteu def= u(f2; � � � ; fn; a):(v; f1)(vh f1; � � � ; fn; a i j dsev j !dtef1)dYeu def= u(f; f1; � � � ; fn; a):f(g; g1; � � � ; gn; b):!dYfeg j!df1eg1 j � � � j!dfnegn jb(d):ahd i:Table 3: De�nition of the direct �-encoding s 7! dseu.d(�x:x)2eu = u(a):(v; x)(vhx; a i j v(x0; a0):x0(b):b(d):a0hd i j !x(a00):a00h 2 i):Table 4: The encoding of (�x:x)2.The agent dseu interacts with the environment by �rstcommunicating via the opening port u. It expects to receivean (n+1)-vector of names which will be bound to f1; � � � ; fnand a respectively. Note that this is the only action dseucan engage at the beginning. Suppose at some point afterinteracting with the environment, the name a has been in-stantiated to a0. The �nal action of the agent is to send thevalue-name v (or the name to which v has been instantiated,if v is a bound name) along the link a0.De�nition 6.1 The recursive de�nition s 7! dseu is pre-sented in Table 3. Fix the opening port as u and let A =(A1; � � � ; An; �). Some explanatory remarks in connectionwith the de�nition are in order. Note that we shall some-times (e.g. in the de�nition of dYeu) represent a variable foccurring in a pcf-term s and a name f appearing in the�-translate dseu by the same letter; this should not causeany confusion.� The agent dneu interacts with the environment via theport u : �: upon receipt of a link name, say, a0, theagent sends out the value-name n along a0 and becomesinactive i.e. the zero agent.� Successor, predecessor (omitted) and test for zero are\in�nite" objects: they are not compact as innocentstrategies.� The �-encoding of a pcf-variable x : A is de�ned byrecursion over the type A of x. Note that for each i,fi and gi are of sort Ai. In e�ect the encoding of x isperformed on its full �-expansion.� In the case of the �-abstraction, the body s has type(A2; � � � ;An; �), with each fi : Ai.� We assume that the application st has type(A2; � � � ;An; �)with s : A and t : A1.

� Finally we take the �x-point constant Y of type (A)A) ) A; and so, the name f is of sort B where B =(A;A1; � � � ;An; �), with each fi : Ai. Note that this isthe only place where an agent is de�ned by recursion.The \f" in the subterm dYfeg occurring in the de�-nition of dYeu is a pcf-variable; the translate dYfegof the application Yf is (well-)de�ned by recursion.Remark 6.2 The s 7! dseu encoding takes pcf into in�ni-tary �-calculus. There are two ways by which the encodingcan be modi�ed to one which maps into �-calculus proper.The �rst replaces the constants succ;pred and zero? by theirobvious compact approximants succm;predm and zero?m re-spectively for each m 2 !. For example succmn evaluates ton+ 1 provided n 6 m. The other way is to change the waynatural numbers (program values) are encoded. There arevarious possibilities, some of which are discussed in [Mil91].However such a change would destroy the correspondencebetween �-actions and game moves, which is the main themeof this work.The free names of an agent represents its current knowledgeof, or linkage to, other agents. An agent that has no freename can only possibly perform silent action. Take a pcf-term s : A with opening port u, it is easy to see by recursionthat fn(dseu) = f u g [ fv(s):So if s is a program, after performing the action u(a), theagent dseu can only perform silent action.Example 6.3 As an example we encode t = (�x:x)2 : �.Note that the encoding dteu, which is shown in Table 4,begins with an input action u(a). Now consider the (silent)reduction of (u)(dteu j uh c i), for some name c : qn� whichserves as a kind of bu�er. This easily reduces to(x)(x(b):b(d):chd i j !x(a00):a00h 2 i)
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Figure 5: Trace of G.which is � to(x)(x(b):b(d):ch d i j x(a00):a00h 2 i j !x(a00):a00h 2 i)which reduces to(x; b)(b(d):ch d i j bh 2 i j !x(a00):a00h 2 i)and so to (x)(ch 2 i j !x(a00):a00h 2 i)which is � to ch 2 i j (x)(!x(a00):a00h 2 i):By (6) and (2) of De�nition 4.2, corresponding to \garbagecollection", the last agent is � to ch 2 i. Hence(u)(d(�x:x)2eu j uh c i) # ch 2 i:Example 6.4 Consider the type-3 functionalG = �g:g(�x:g(�y:x)) : (((�; �); �); �):A legal position of the innocent strategy denotation of Gcorresponding to playing G against, say, �f:f1 : ((�; �); �) isshown in in Figure 5. This trace should be compared withthe �-term bGcu as shown in Table 5 which is weakly bisim-ilar to the direct encoding dGeu. (We omit the de�nitionof h 7! bhcu for h ranging over head normal forms of pcf.)Observe that the correspondence between moves and actionsextends to one between a strategy and its �-translate.Soundness of the �-encodingWhat are the good properties of the translation? We sum-marize our results in the following. The �rst concerns thesoundness of the encoding relative to the innocent strategyinterpretation, or the compact translation.Theorem 6.5 Take any closed pcf-term s : A. Write theinnocent strategy interpretation [[s ]] of s as �s.(i) The tree of admissible traces of dseu is isomorphic tothe tree of admissible traces of [�s]u.(ii) dseu is weakly bisimilar to [�s]u. �

It is a standard result that the following \cut-rule" isvalid in pcf: iff1 : A1; � � � ; fk : Ak ` s : A0 andg1 : B1; � � � ; gl : Bl ` ti : Aifor each 1 6 i 6 k, theng1 : B1; � � � ; gl : Bl ` s[̂ti=fi] : A0:There is a corresponding result in the �-translation:Proposition 6.6 ds[̂ti=fi]eu is weakly bisimilar to(f1; � � � ; fk)(dseu j !dt1ef1 j � � � j !dtkefk ): �Since substitution in pcf is modelled by generalized com-position, this is a consequence of Theorem 5.5 and Theo-rem 6.5(ii).A �-term P is said to be deterministic if whenever P �Q and also Q! Q0 and Q! Q00 then Q0 � Q00.Theorem 6.7 For any pcf-program s,(i) s + n () (u)(dseu j uha i) # ahn i(ii) the agent (u)(dseu j uh a i) is deterministic. �Part (i) of the theorem is a corollary of Theorem 6.5 and thecomputational adequacy of the dialogue game interpretationof pcf. Part (ii) can be proved by a case analysis of thesyntactic shape of s.The pcf evaluation relation s + n follows a left-most,weak (i.e. no reduction \under a �") reduction strategy.However our direct encoding of pcf into the �-calculus ac-tually re
ects a head reduction strategy in pcf. This meansthat reductions may take place \under a �" if the head re-dex happens to be a subterm of a �-abstraction. Note thatfor terms of program type, the two reduction strategies co-incide.7 Conclusion and further directionsOur �-encoding of pcf is not the �rst of its kind: Milner�rst studied the encoding of the pure, untyped �-calculus inthe �-calculus in [Mil90]. He considered translations of thelazy �-calculus [AO93] and Plotkin's call-by-value �-calculus[Plo75] into the �-calculus. Comparing the appropriate dia-logue game �-encoding of the lazy �-calculus with Milner'sencoding, it is clear that the two are conceptually quite un-related, apart from the idea of the �-representation of �-calculus substitution by \parallel composition with hidingand replication" which is common to both. Also Milner'sencoding seems much simpler, and corresponds to a moree�cient implementation. The novelty of our encoding liesin the facility it provides for an accurate representation ofthe innocent strategy denotation of the �-calculus in termsof the �-calculus.There are various ways by which the work described inthe paper can be extended. Both the dialogue game modeland the corresponding �-representation can be modi�ed togive an interpretation for call-by-value and for lazy pcf.The same programme can also be carried out for the un-typed �-calculi; for example, the lazy �-calculus and the



bGcu def= u(g; a):g(h; b):![h(y; c):g(k; d):![k(x; e):y(f):f(v):eh v i]jd(v0):ch v0 i]jb(v00):ah v00 iTable 5: The encoding of G optimized.call-by-value �-calculus. In a somewhat di�erent direction,we have only just begun to explore ways of representingstrategies. Although we have achieved a representation thatis in complete accord with the dialogue game paradigm andrespects the correspondence between actions and moves, itis still not optimized for capturing the uniform6 or paramet-ric nature of (innocent) strategies which are denotations of�-terms. Here we have in mind the various kinds of \tit-for-tat" strategies in which P simply copies O-moves from one\component" of the play to the other. Strategies of suchnature occur also in various game models of linear logic; seee.g. [Bla92, AJ94, HO93]. It would be very useful to have ageneric calculus capable of capturing a general class of suchschematic strategies. It has been suggested to us that a cal-culus along the lines of Sangiorgi's higher-order �-calculus[San93] may well �t our requirements, but we have not yetinvestigated the matter.In this paper we have presented the polyadic �-calculusas a formal language for representing innocent strategieswhich have recently been used to construct a fully abstractgame model of pcf. Our results show that the representa-tion is so precise that it may as well be taken to be the basisfor a formal de�nition of innocent strategies. We have alsogiven a direct encoding of pcf into the �-calculus which issound, and agrees with the fully abstract innocent strategyinterpretation.AcknowledgementsThis work has received �nancial support from EPSRC re-search grant GR/J97366 Systematic Programming Seman-tics, and from EU esprit Basic Research Action ProjectCategorical Logic in Computer Science-II. We thank Pierre-Louis Curien for numerous insightful email and fax messageson game interpretation of pcf, and David Walker for mosthelpful comments on a draft of this paper.References[AJ94] S. Abramsky and R. Jagadeesan. Games and fullcompleteness for multiplicative linear logic. Jour-nal of Symbolic Logic, 59:543{574, 1994.[AJM94] S. Abramsky, R. Jagadeesan, and P. Malacaria.Full abstraction for PCF (extended abstract).In Theoretical Aspects of Computer Software:TACS'94, Sendai, Japan, pages 1{15. Springer-Verlag, 1994. LNCS Vol. 789.[AO93] S. Abramsky and C.-H. L. Ong. Full abstrac-tion in the lazy lambda calculus. Informationand Computation, 105:159{267, 1993.[BB90] G. Berry and G. Boudol. The Chemical AbstractMachine. In Conference Record of the 7th Annualacm Symposium on Principles of ProgrammingLanguages, pages 81{94. acm Press, 1990.6The connotation here is with parametric (as opposed to ad hoc)polymorphism in the sense of Strachey (see e.g. [Rey83]).
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[Plo75] G. D. Plotkin. Call-by-name, call-by-value andthe lambda calculus. Theoretical Computer Sci-ence, 1:125{159, 1975.[Plo77] G. D. Plotkin. LCF as a programming language.Theoretical Computer Science, 5:223{255, 1977.[Rey83] J. C. Reynolds. Types, abstraction and para-metric polymorphism. In Information Processing1983, pages 513{523, 1983.[San93] D. Sangiorgi. Expressing mobility in process al-gebras: First-order and higher-order paradigms.Technical Report CST-99-93, University of Edin-burgh, 1993. PhD thesis.[Sco93] D. S. Scott. A type-theoretical alternative tocuch, iswim and owhy. Theoretical ComputerScience, 121:411{440, 1993. In B�ohm Festschrift,a special issue of the Journal. The article has beenwidely circulated as an unpublished manuscriptsince 1969.A AppendixA.1 PCFDe�nition A.1 The de�nition of the language pcf may befound in various places, see e.g. [Plo77] or [Ong95]. The op-erational semantics of pcf may be de�ned by induction overthe following rules: v ranges over values which are constantsand �-abstractions; we read s + v as \s reduces to value v"v + v u[t=x] + v(�x:u)t + v s + v vt + v0st + v0s + t u + vcond�suu0 + v s + f u0 + vcond�suu0 + vs + nsuccs + n+ 1 s + n+ 1preds + n s + 0preds + 0s + 0zero?s + t s + n+ 1zero?s + f sYA(s) + vYA(s) + vA.2 Canonical formsDe�nition A.2 We de�ne the in�nitary language P whichis pcf augmented by an in�nitary de�nition by cases con-struct. For ease of presentation we assume that � is the onlyprogram type. The typing rule governing the case constructis: s : � rm : � m 2 !case s[Qm2! rm] : �The operational semantics of P is de�ned by the followingrule scheme, in addition to those that de�ne the operationalsemantics of pcf: s + j rj + ncase s[Qm2! rm] + n j 2 !For any pcf-types A1; � � � ;An where n > 0, we de�nethe collection CF(f1 : A1; � � � ; fn : An)of canonical forms (cfs) of P with free variables appearingin the list f1; � � � ; fn as follows.

� The ground-type 
 and program values n > 0 are inCF(ef : eA).� For any ef : eA � f1 : A1; � � � ; fn : An and for any1 6 i 6 n whereAi � (C1; � � � ; Cr ; �) and whereCj � (Dj1; � � � ;Djpj ; �) for each 1 6 j 6 r;if rm 2 CF(ef : eA) for each m 2 ! and iftj 2 CF(ef : eA; eyj : fDj)for each 1 6 j 6 r, thencase fi(� ey1:t1) � � � (� eyr :tr)[Ym2! rm] 2 CF(ef : eA):Note that a cf is by de�nition of program type; and it iseither 
, or a number n, or a de�nition-by-cases construct.A �nite canonical form (fcf) is a canonical form in whichall occurrences of the case construct have �nite branches.Theorem A.3 For each pcf-typeA = (A1; � � � ;An; �), thereis an order-isomorphism between innocent strategies � : Aordered by inclusion, and canonical formss� 2 CF(f1 : A1; � � � ; fn : An)ordered by the 
-match ordering. �We omit the de�nition of the order-ismorphism � 7! s� :CF(ef : eA).



(in) x(~y):P x(~y)�! P (out) xh ~y i:P xh ~y i�! P(par) P 
�! P 0P jQ 
�! P 0 jQ if bn(
) \ fn(Q) = ? (com) P xh ~y i�! P 0 Q x(~z)�! Q0P jQ ��! P 0 jQ0[~y=~z](close) P x(~w)�! P 0 Q x(~w)�! Q0P jQ ��! (~w)P 0 jQ0 (open) P xh ~y i�! P 0(~y)P x(~y)�! P 0 if x =2 ~y(res) P 
�! P 0(y)P 
�! (y)P 0 if y =2 n(
) (struct) Q � Q0 Q0 
�! P 0 P 0 � PQ 
�! P(match) P 
�! P 0[x = x]:P 
�! P 0 Table 6: De�nition of the labelled transition relation 
�!.


