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2 HYLAND AND ONGWe present an order-extensional, order (or inequationally) fully abstra
tmodel for S
ott's language p
f. The approa
h we have taken is very 
on-
rete and in nature goes ba
k to Kleene [47℄ and Gandy [30℄ in one tradition,and to Kahn and Plotkin [43℄, and Berry and Curien [10℄ in another. Ourmodel of 
omputation is based on a kind of game in whi
h ea
h play 
onsistsof a dialogue of questions and answers between two players who observethe following Prin
iples of Civil Conversation:1. Justi�
ation. A question is asked only if the dialogue at that point\warrants" it. An answer is pro�ered only if a question expe
ting it hasalready been asked.2. Priority. Questions pending in a dialogue are answered on a \lastasked �rst answered" basis. This is equivalent to Gandy's \no danglingquestion mark" 
ondition.We analyse p
f-style 
omputations dire
tly in terms of partial strategiesbased on the information available to ea
h player when he is about tomove. Our players are required to play an inno
ent strategy: they play onthe basis of their view whi
h is that part of the \history" that intereststhem 
urrently. Views are 
ontinually updated as the play unfolds. Hen
eour games are neither history-sensitive nor history-free. Rather they areview-dependent. These 
onsiderations give expression to what seems to usto be the nub of p
f-style higher-type sequentiality in a (dialogue) game-semanti
al setting.Key Words: higher-type sequential 
omputation, full abstra
tion, p
f, �-
al
ulus, gamesemanti
s CONTENTS1. Introdu
tion.2. Models of PCF.3. Observables, adequa
y, observational and full abstra
tion.4. Dialogue games over 
omputational arenas.5. Inno
ent strategies.6. Context lemma for CA .7. A fully abstra
t dialogue game model of PCF.8. Universality.9. Con
lusions and further dire
tions.A.1. Bounded segments.A.2. Proof of the proje
tion lemma.ORGANIZATION OF THE PAPERThis paper has three parts.Part I begins with a brief survey of the full abstra
tion problem of p
f tra
ing itsroots to old foundational problems in (higher-type) re
ursion theory and sequential
omputation 
onsidered by Platek and also by Kleene and others. We study the



ON FULL ABSTRACTION FOR PCF: I, II AND III 3model theory of p
f in the light of standard ideas from both 
ategori
al logi
 and
ategori
al type theory. We take a (
on
rete) model of p
f to be a 
-�x 
ategory(
artesian 
losed with 
onditionals and �xed points) equipped with what we 
all asimple obje
t of numerals. In the same 
ategori
al spirit the notion of observationalequivalen
e is analysed. Given a notion of observables on a symmetri
 monoidal
losed 
ategory C (e.g. a model of p
f), we give a pre
ise de�nition for the indu
edobservational preorder (over homsets of C ) and study the asso
iated quotient 
on-stru
tion C 7! Ĉ . These analyses yield a general 
ategori
al setting within whi
h toarti
ulate and reason about the standard (though hitherto 
on
retely understood)properties of adequa
y, order-extensionality (equivalently the 
ontext lemma) andfull abstra
tion.In Part II we formalize the 
lass of dialogue games in whi
h the two players in-volved are required to observe the dis
iplines of justi�
ation and priority mentionedabove. We make a 
ategory C A out of su
h games: obje
ts are 
omputational are-nas whi
h are a kind of environment for su
h dialogue games, and maps are inno
entstrategies. The main result of Part II is that the 
ategory C A is 
artesian 
losedand enri
hed over dI-domains. With respe
t to an intrinsi
 notion of observables,C A satis�es the 
ontext lemma; equivalently the asso
iated observational quotient^C A is order-extensional.The 
ategory C A is 
onsidered as a model of p
f and P { an extension of p
fby de�nition-by-
ases 
onstru
ts { in Part III. We prove a strong de�nabilitytheorem: there is an order-isomorphism between 
ompa
t elements of the modeland a 
lass of �nite 
anoni
al forms of P (ordered by 
-mat
hing). As a 
orollarythe observational quotient ^C A of C A is an order-extensional, order fully abstra
tmodel for p
f. The strong de�nability result extends to a universality theorem forC A : modulo observational equivalen
e, all re
ursive inno
ent strategies are p
f-de�nable. We 
on
lude this paper with a dis
ussion of and 
omparison with relatedwork. Dire
tions for further resear
h are identi�ed.
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Part I. Models, observables and the fullabstra
tion problem



ON FULL ABSTRACTION FOR PCF: I, II AND III 51. INTRODUCTIONHistori
al remarks.In the early 1940's, G�odel 
onsidered a notion of primitive re
ursive fun
tionals of�nite type, whi
h we now 
all G�odel's System T, in 
onne
tion with what 
ame tobe known as the Diale
ti
a Interpretation [32, 33℄. G�odel presented his results as a
ontribution to a liberalised version of Hilbert's programme.1 G�odel's work was laterextended to the Bar Re
ursive Fun
tionals by Spe
tor [71℄ who used them to givea 
onstru
tive 
onsisten
y proof for 
lassi
al analysis. However the �rst full-blowngeneralization of ordinary Re
ursion Theory to higher types was made by Kleene inthe late 1950's (see [45, 46℄ for a formulation in terms of 
omputation s
hemes). InKleene's theory, a notion of partial re
ursive fun
tion of higher type is de�ned overa total type stru
ture. Re
ursion is introdu
ed by a 
omputation s
heme whi
hessentially en
apsulates the Se
ond Re
ursion Theorem. In this theory, partialre
ursive fun
tions are not 
losed under substitution, and a natural formulation ofthe First Re
ursion Theorem fails. Kleene exhibited these features in [46℄ where healso observed in passing that a theory involving appli
ation of (partial) fun
tionsto partial fun
tions might be possible. A su

in
t a

ount of Kleene's theory andof its attendant diÆ
ulties is 
ontained in Gandy [29℄.An attempt was made by Platek in his thesis [59℄ to develop a re
ursion theoryon partial fun
tions of higher type whi
h avoids the problems of the Kleene theory.The type stru
ture Platek 
onsiders is that of hereditarily order-preserving partialfun
tions over the natural numbers. (This type stru
ture is 
lose in spirit to thatof the hereditarily order-preserving fun
tions over the 
at 
po of natural numbers;but there is a di�eren
e and its 
omputational signi�
an
e has been analyzed byvan Draanen [76℄.) Platek 
ou
hed his theory in terms of 
omputation s
hemes, andre
ursion is introdu
ed by a s
heme amounting to the First Re
ursion Theorem.The essentials of the theory are de�nition by 
ases and least �xed points, and Platekdoes introdu
e a �-
al
ulus formulation whi
h 
an be regarded as a pre
ursor top
f.The formal system p
f was introdu
ed by S
ott in a famous paper [69℄ whi
hremained an unpublished manus
ript for a long time until its re
ent appearan
e inthe B�ohm Fests
hrift. The syntax2 of p
f is simple enough: it is essentially thesimply-typed lambda 
al
ulus augmented by general re
ursion in the form of a �xed-point operator at every type and de�nition by 
ases at ground types, and furtheraugmented by basi
 arithmeti
 operations. S
ott intended p
f to be a \logi
al
al
ulus (or algebra)" for studying program equivalen
e and other algebrai
 andlogi
al properties of programs by using (simple) type theory [20℄.1Hilbert had set out to justify 
lassi
al mathemati
s systemati
ally in terms of notions whi
hshould be as intuitively 
lear as possible. A fo
us of his programme was the 
onsisten
y of 
lassi
alnumber theory; he wanted to �nd these basi
 notions in the domain of \�nitary mathemati
s".Bernays subsequently pointed out that in order to prove the 
onsisten
y of 
lassi
al numbertheory, it was ne
essary to extend Hilbert's �nitary standpoint by admitting \abstra
t 
on
epts"of a 
ertain kind in addition to the 
ombinatorial 
on
epts relating to symbols. G�odel introdu
edSystem T, whi
h is essentially the simply-typed �-
al
ulus augmented by primitive re
ursion, asa vehi
le for expressing the \abstra
t notion". He believed that System T would be the key tomaking Hilbert's programme viable in the modi�ed sense.2In [69℄ S
ott 
onsidered a version of PCF based on typed S- and K-
ombinators.



6 HYLAND AND ONGA major theme of S
ott's work is the relationship between the logi
al types whi
hare the higher types, and the data types whi
h are the ground and �rst-order types.The former are used to study the latter; the theory of data types requires the higher-type obje
ts | the 
omputable fun
tionals | for its formalization, as emphasizedby S
ott. Of 
ourse, S
ott had in mind a semanti
s in terms of what we now
all S
ott 
ontinuous fun
tions and for this interpretation, a quite straightforwardoperational semanti
s is appropriate: we 
an think of all the 
omputations as being�nite. Hen
e the theory introdu
ed by S
ott is in prin
iple implementable and hasbeen the fo
us of mu
h attention in Computer S
ien
e. Another theme in S
ott'spaper is 
ompleteness about whi
h he asked several questions. One su
h question
on
erns the power of expression of the language with respe
t to the 
ontinuousfun
tion spa
e model { in a word, de�nability. What 
ame to be known as the fullabstra
tion problem for p
f was adumbrated: S
ott observed that parallel or is notde�nable in the language and that an implementation on a \sequential ma
hine"would require a dovetailing strategy. System T and p
f (as a formal system in thesense of S
ott's original presentation as opposed to a programming language) aresimilar in various ways, though there is an important di�eren
e: S
ott's approa
hadmits (representations of) partial fun
tions whereas G�odel's is only 
on
erned withtotal fun
tions. 1.1. The programming language p
fIn [61℄ Plotkin presented p
f expli
itly as a programming language and stud-ied the relationship between its operational semanti
s and denotational semanti
swhi
h is based on the S
ott 
ontinuous fun
tion spa
e model. Types of the languageare just Chur
h's simple types [20℄. In the following we shall also refer to them asp
f-types. They are de�ned as follows:A ::= � natural numbersj o booleansj A) A arrow or fun
tion type:We use the meta-variable � to range over ground types � and o. As usual )asso
iates to the right: A1 ) A2 ) A3 is read as A1 ) (A2 ) A3). Note thatwith n > 0, ea
h simple type 
an be uniquely expressed as A1 ) A2 � � � ) An ) �,whi
h we abbreviate as (A1; � � � ; An; �), where � is a ground type. For examplethe type ((�) �)) �) �) ) � ) � is abbreviated as (((�; �); �; �); �; �). The heightht(A) of a type A is de�ned by re
ursion as follows:ht(�) def= 0ht(A) B) def= max(ht(A) + 1; ht(B)):We say that an obje
t is type-n if it has type of height n. Intuitively height mea-sures how \higher-order" a type really is. In general the mathemati
al diÆ
ultiesasso
iated with the higher-order obje
ts stem from nesting of the arrow on the left.



ON FULL ABSTRACTION FOR PCF: I, II AND III 7For ea
h type A, we �x a denumerable set of variables. Raw p
f-terms arede�ned by the following grammar:s ::= 
A unde�ned termj 
A 
onstantj x variablej (s � s) appli
ationj (�x : A:s) abstra
tionj YA(s) general re
ursive term, or Y-term;where 
A ranges over the setA of basi
 arithmeti
 
onstants whi
h we will introdu
eshortly. Whenever type information is irrelevant, we omit type labels and write 
A,
A, x : A and YA(�) simply as 
, 
, x and 0� respe
tively. We shall write (s � t)simply as st. As usual, appli
ation asso
iates to the left: st1 � � � tn abbreviates(� � � ((st1)t2) � � � tn), and we routinely omit as many parentheses as we safely 
an.p
f-terms are raw terms that are well-typed. The phrase s : A means that the typeof the term s is A, derived a

ording to the following rules:
A : A 
A : As : A) AYA(s) : A s : A1 ) A2 t : A1(s � t) : A2 s : A2(�x : A1:s) : A1 ) A2The set A of basi
 arithmeti
 
onstants is presented together with their types asfollows: n : � numerals, for ea
h natural number n > 0t; f : o booleans: truth and falsitysu

 : �) � su

essorpred : �) � prede
essorzero? : �) o test for zero
ond� : o) �) �) � natural number 
onditional
ondo : o) o) o) o boolean 
onditional.The notion of free and bound variables is 
ompletely standard; a 
losed term is aterm without any free variables. We write the term substitution (as opposed to
ontext substitution) operation as s[t=x℄ whi
h means \in s, substitute the termt for every free o

urren
e of x", taking 
are to rename bound variables wherene
essary so as to avoid variable 
apture. See, for example, [6, p. 27℄ for a formalde�nition.



8 HYLAND AND ONGOperational Semanti
s. Programs of p
f are just 
losed terms of ground type.(For this reason we shall often refer to a ground type as a program type.) Valuesare �-abstra
tions and 
onstants (less 
); values are ranged over by the meta-variable v. Following the fun
tion paradigm, to 
ompute a program in p
f is toevaluate it. We present the operational semanti
s of p
f in terms of a Martin-L�ofstyle evaluation relation. Formally we de�ne a relation + between 
losed terms andvalues indu
tively over the following rules. We read s + v as \the 
losed term sevaluates to the value v".v + v u[t=x℄ + v(�x:u)t + v s + v vt + v0st + v0s + t u + v
ond�suu0 + v s + f u0 + v
ond�suu0 + vsYA(s) + vYA(s) + vs + nsu

s + n+ 1 s + n+ 1preds + n s + 0preds + 0s + 0zero?s + t s + n+ 1zero?s + fWe further de�ne: for any program ss+ def= 9v:s + v;s* def= :[s+℄:Remark. Evaluation may be implemented by a pro
ess of one-step redu
tion.(Indeed we 
ould have presented the operational semanti
s equivalently in termsof a \small-step", Plotkin-style transition relation.) A

ording to this notion of re-du
tion, terms are redu
ed following the left-most redu
tion strategy, �-
ontra
tionis 
arried out in a 
all-by-name fashion, and no redu
tion is permitted \under alambda".There is an operational notion of program equivalen
e whi
h programmers under-stand well: two program fragments are equivalent if they 
an always be inter
hangedwithout a�e
ting the visible or observable out
ome of the 
omputations. This 
ri-terion of sameness whi
h is 
alled observational equivalen
e is expressed in termsof invarian
e of observable out
ome under all program 
ontexts. Let s and t bep
f-terms of the same type. We say that s observationally approximates t, writtens �� t, if for every type-
ompatible program 
ontext C[X ℄ su
h that both C[s℄ andC[t℄ are programs, and for any value v, if C[s℄ + v then C[t℄ + v. (To our knowledgethe idea of a preorder on terms de�ned by a universal quanti�
ation over 
ontexts



ON FULL ABSTRACTION FOR PCF: I, II AND III 9goes ba
k to Morris' thesis [55℄.) Two program fragments s and t are said to beobservationally equivalent if both s �� t and t �� s. We write program 
ontexts asC[X ℄ where the \hole" represented by X is to be thought of as a kind of meta-variable. As usual, C[s℄ means \the term whi
h is obtained from the 
ontext C[X ℄by substituting s for every o

urren
e of X in C[X ℄". Note that variable 
aptureis possible (and intended) in 
ontext substitution.1.2. The type theory p
fThe operational semanti
s for p
f en
apsulates a deterministi
 redu
tion or 
om-putation strategy for the programming language; but also it re
e
ts an intuitiveunderstanding of the meaning of the terms. In this view the redu
tions are justi�edas the repla
ement of a term by an equal term. Thus the intuitive semanti
s 
an begiven expression in an equational theory. In the 
ase of p
f this amounts to a typetheory related to S
ott's original formulation. Our (
ore) type theory for p
f T isgiven as follows. We take the typing rules already given, and de�ne a relation s = ton typed terms (in 
ontext) by taking, in addition to the usual rules for equality,the following:(�x : A:s)t = s[t=x℄ �x : A:sx = s (if x not free in s)
ond�tst = s 
ond�fst = ts(YA(s)) = YA(s)su

 n = n+ 1 pred n+ 1 = n pred 0 = 0zero?0 = t zero?n+ 1 = fIt is important that there be a good relation between the redu
tion relation + ofthe operational semanti
s and the equality of the type theory. This is given by thefollowing proposition.Proposition 1.1. For any programs s and t, if s and t are equal in the typetheory T then for any ground value vs + v () t + v:Proof. A more or less straightforward appli
ation of the Chur
h-Rosser theo-rem and a standardization theorem following, for example, the treatment in [60℄.Corollary 1.1. For any program s in the type theory and ground value v,s = v in the type theory if and only if s + v. �What is 
ommonly 
alled a denotational semanti
s for p
f is essentially somekind of interpretation of (model for) the type theory whi
h we have just introdu
ed.



10 HYLAND AND ONGThe usual form of a model for p
f is that the types are interpreted as domains andthe terms as 
ontinuous (or stable 
ontinuous) maps between domains. In thisintrodu
tion we shall restri
t attention to these traditional models. Later in thepaper however we shall introdu
e a more abstra
t 
ategori
al notion of model forp
f; this provides a more appropriate 
ontext in whi
h to understand our results.The standard model. In [69℄ S
ott gave a denotational semanti
s for p
f. Pro-gram types (booleans and the natural numbers) are interpreted by the respe
tive
at 
pos, and fun
tion types by S
ott 
ontinuous fun
tion spa
e. We shall 
all thismodel the standard (
ontinuous) model of p
f. Continuity is used to determine theway �xed point operators are interpreted i.e. standardly as the least upper boundof the !-in
reasing 
hain of su

essive iterates, see e.g. [75℄. Note that the standardmodel is order-extensional3 in the sense that fun
tion types are interpreted by setsof fun
tions whi
h are ordered pointwise.Adequa
y and full abstra
tion. More generally, writing the denotation of a pro-gram s as [[ s ℄℄, we say that the denotational semanti
s [[� ℄℄ is adequate if for everypair of type-
ompatible terms s and t,[[ s ℄℄ v [[ t ℄℄ =) s �� t:If, in addition, the 
onverse is also valid, that is to say,[[ s ℄℄ v [[ t ℄℄ () s �� t;then the denotational semanti
s is said to be order (or inequationally) fully abstra
tfor the language. To our knowledge the notion of full abstra
tion is due to Milner[51℄, though it seems impli
it in work in the pure lambda 
al
ulus by Plotkin, Morris[55℄, Wadsworth [77, 78℄, Hyland [37℄ and others. (The de�nition of adequa
y andfull abstra
tion whi
h we have just given is the traditional one. In the sequel, weshall present the same notions in a more general, 
ategori
al setting.) Adequa
y andfull abstra
tion tell us how well the operational and the denotational views of pro-gram equivalen
e relate to ea
h other. They are indi
ations of how reliable or how\�tting" the denotational model is in relation to the language. More spe
i�
ally,adequa
y assures us that the model is reliable enough for aÆrming observationalequivalen
e between two terms sin
e denotational equality suÆ
es; but the modelis not ne
essarily reliable for refuting equivalen
e for whi
h we need full abstra
-tion. Adequa
y is often easy to establish, but this is not so for full abstra
tion. Amodel is not fully abstra
t usually be
ause it is in some sense too ri
h a stru
turefor the language: it 
ontains semanti
 obje
ts whi
h \
annot be 
omputed" by theprogramming language. Conversely, a model whi
h is fully abstra
t for a languageprovides a very satisfa
tory 
hara
terization of (the observational equivalen
e of)the language in terms of the denotational model.Plotkin showed in [61℄ that the standard model is adequate but not fully abstra
tfor p
f. He also pointed out the reason for the failure of full abstra
tion. The mis-3More pre
isely, this means that for any partially ordered domainsDA1 andDA2 whi
h interpretthe types A1 and A2 respe
tively, and for any elements f; g of DA1)A2 , f 6 g if and only iff(a) 6 g(a) for every a 2 DA1 .
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h may be explained, in a nutshell, by the fa
t that while p
f-programs 
or-respond to \sequential" algorithms, the standard S
ott-
ontinuous fun
tion spa
emodel 
ontains \parallel" fun
tions, or more pre
isely, fun
tions whi
h 
an only beimplemented by parallel algorithms (e.g. parallel or). This point was made expli
itby Plotkin in [61℄ (see also [65℄ and [67℄ where the relation between extensions ofp
f by various parallel 
onstru
ts is studied) as follows.Theorem 1.1 (Plotkin, Sazonov). The standard S
ott-
ontinuous fun
tion spa
emodel is fully abstra
t for the programming language whi
h is obtained by extendingp
f by a parallel 
onditional 
onstant. �An important 
on
eptual advan
e was made by Plotkin and Milner in under-standing full abstra
tion. They identi�ed a ne
essary and suÆ
ient 
ondition forfull abstra
tion.Theorem 1.2 (Plotkin-Milner). Any 
ontinuous, order-extensional model ofp
f whi
h follows the standard4 interpretation is a system of S
ott domains. Fur-ther, su
h a model is fully abstra
t if and only if all 
ompa
t elements of the modelare p
f-de�nable. �Plotkin and Milners' result leaves open the question of whether there is a deno-tational model whi
h is fully abstra
t for p
f proper. This was qui
kly answeredby Milner [52℄:Theorem 1.3 (Milner). There is a unique (up to isomorphism) 
ontinuous,order-extensional fully abstra
t model for p
f. �1.3. The full abstra
tion problem for p
fWhile there seems to be a 
onsensus that the full abstra
tion problem for p
fis diÆ
ult, there is mu
h less agreement on what the problem is. At one levelthis question seems super
uous: for we already know that there is a unique fullyabstra
t model for p
f | witness Milner's 
onstru
tion. In our view the thrust ofthe problem has to do with the (philosophi
al) question of what a good model is. Agood model enlightens; it gives a new perspe
tive on the behaviour or operationalsemanti
s of the programming language in question. There is no doubt that Milner'sresult settles an important question and his 
onstru
tion is a valuable 
ontribution,at least from a mathemati
al point of view. Nonetheless be
ause his 
onstru
tionis essentially a term model, it does not mu
h in
rease our understanding of p
fbeyond what 
an already be gleaned dire
tly from the syntax. One way to formulatethe problem whi
h, we believe, strikes at the root of the issue is the following:The full abstra
tion problem for p
f. Give an abstra
t, syntheti
 a

ount ofthe unique order-extensional, fully abstra
t model of p
f as identi�ed by Milner.�4An interpretation of PCF is said to be standard if the ground types are interpreted as therespe
tive 
at CPOs with the 
onstants interpretated in the standard way.



12 HYLAND AND ONGIt is worth expanding on the two operative words. By an abstra
t model, wemean a model whi
h is 
onstru
ted without re
ourse to the syntax or operationalsemanti
s of the language. In fa
t the more 
omputationally neutral the model isin its 
on
eption, the more apposite it is as a solution. By syntheti
 des
ription ismeant a 
onstru
tive, axiomati
 explanation of the fun
tion spa
e whi
h interpretsthe p
f fun
tion types (in terms of the respe
tive interpretation of the 
ompo-nents). For example, these 
riteria rule out Milner's 
onstru
tion even though themodel is fully abstra
t. In 
ontrast the interpretation of a program as a 
ontinuousfun
tion is evidently abstra
t. The syntheti
 des
ription of the S
ott 
ontinuousfun
tion spa
e model of p
f is also satisfa
tory in every way: the 
ategory of S
ottdomains (say) and 
ontinuous fun
tions is 
artesian 
losed and may be presented
onstru
tively.Sin
e the 
rux of the full abstra
tion problem is the 
hara
terization of sequential
omputations, we may reformulate the full abstra
tion problem for p
f as theproblem of �nding an abstra
t, syntheti
 
hara
terization of higher-type, sequential,p
f-de�nable fun
tionals. Formulated in this way, we highlight the epistemologi
aldiÆ
ulties inherent in the problem, for we do not have a proper de�nition of higher-type sequentiality from �rst prin
iples. At any rate, to date there is 
ertainly nonotion of higher-type sequentiality whi
h 
an be said to be 
anoni
al in any sense.In fa
t it is un
lear whether there are various inequivalent notions of higher-typesequentiality, all of them equally appealing; or whether as is the 
ase for e�e
tive
omputability, there is just one notion under di�erent guises.Some 
riteria. The full abstra
tion problem for p
f in the above qualitativesense is by its nature in
apable of being pre
isely spe
i�ed be
ause the underlying
onsiderations are philosophi
al and so more or less subje
tive in nature. Therefore,it seems all the more important to lay down a few 
riteria whi
h should be asobje
tive as possible so that progress in understanding the problem may to someextent be 
alibrated and be seen in perspe
tive.A 
ontinuous model of p
f is a 
po-enri
hed 
artesian 
losed 
ategory of a 
ertainkind (the exa
t nature is spelt out in the sequel). In view of Theorem 7.1, we mightsay that one weak form of the full abstra
tion problem for p
f boils down to thefollowing:Observational abstra
tion for PCF. Find a 
po-enri
hed 
artesian 
losed 
at-egory of S
ott domains (providing a standard interpretation of p
f) all of whose
ompa
t elements are p
f-de�nable. �Note that there is no intrinsi
 reason why the denotation of a p
f-program insu
h a model must be a set-theoreti
 fun
tion.In [41℄ Jung and Stoughton seek \a weak but pre
ise minimal 
ondition thata semanti
 solution of the full abstra
tion should satisfy". The se
ond 
riterion,whi
h we 
all the Jung-Stoughton 
riterion, imposes an e�e
tivity 
onstraint onthe way the fully abstra
t model is presented. It seeks an e�e
tive 
onstru
tionof the fully abstra
t model restri
ted to �nitary p
f i.e. that part of p
f whi
h isgenerated from the boolean base type.
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riterion is the hardest to satisfy. It asks for an axiomati
 
hara
teri-zation of higher-type, p
f-sequential fun
tions. By way of 
omparison, if it is rightto think of the �rst two 
riteria as 
ontributions to the representation theory ofhigher-type sequentiality, then the third is in the business of giving it a de�nition.One appealing way to 
hara
terize p
f-de�nable fun
tions is to express it in termsof an appropriate preservation property in an order-theoreti
 framework, for ex-ample, in the style of Bu

iarelli and Ehrhards' strongly stable fun
tions [16, 17℄.Another way is to 
hara
terize it topologi
ally say, as a re�nement of the S
otttopology. Su
h an approa
h is likely to be very hard, if it is at all feasible.1.4. Quest for a solution: a surveyThis sets the s
ene for a line of resear
h motivated by the quest for a solution tothe full abstra
tion problem (in the qualitative sense) for p
f. As Plotkin alreadyintimated in [61℄, the key to the solution is an abstra
t 
hara
terization of sequen-tial 
omputation. To give that, one needs a proper understanding of sequentiality.The matter is straightforward in the 
ase of �rst-order 
omputation. Milner andothers have already obtained satisfa
tory abstra
t des
ription of �rst-order sequen-tial fun
tions. Intuitively the meaning of sequential 
omputation is 
lear enough:it is to do \one thing at a time" at any intermediate stage of the 
omputation,and possibly in a spe
i�
 order. The real diÆ
ulty lies in des
ribing sequential,fun
tional 
omputation at higher types.The �rst major 
ontribution was made by Kahn and Plotkin and reported in ate
hni
al report written in Fren
h. Like the papers of S
ott and Plotkin mentionedin the pre
eding, a revised version of the paper [43℄ in English has also appeared inthe re
ently published B�ohm Fests
hrift. They introdu
e a 
lass of mathemati
alstru
tures known as 
on
rete data stru
tures (
ds). A 
ds is an elaborate stru
turespe
ially designed to arti
ulate sequential 
omputations. The framework of 
dssand Kahn-Plotkin sequential fun
tions is a highly innovative 
on
eptual advan
ein understanding higher-type sequentiality. Their framework does not give rise toa 
artesian 
losed 
ategory. (This is hardly surprising sin
e it was not their aim to
arry out a systemati
 analysis of higher-type fun
tional 
omputation in that paper.Its primary obje
tive was to examine the behaviour of stream-like 
omputation.)The sear
h for a 
artesian 
losed 
ategory of \sequential fun
tions" be
ame thefo
us of resear
h. Histori
ally the resear
h bifur
ated at this point. The 
rux ofthe matter is the abstra
t 
hara
terization of sequential, fun
tional 
omputation athigher type. The sti
king point lies in an apparent tradeo� between the two essentialfeatures: on the one hand, sequential 
omputation whi
h is an inherently intensionalnotion; and on the other, the requirement that su
h 
omputations intera
t with ea
hother in a fun
tional, or extensional way. So to 
hara
terize sequential fun
tionsis to �nd an appropriate setting in whi
h both properties 
an be held in tension.Unfortunately, based on the work of Berry and Curien in the late 1970's, it wouldseem that in order to get a 
artesian 
losed 
ategory of \sequential fun
tions", oneof the two 
riteria has to give.One major e�ort 
onsisted in relaxing the 
onstraints of sequentiality but stayingwithin the framework of fun
tions. This led Berry to the notion of stability [8℄.The appropriate maps are stable fun
tions whi
h are 
ontinuous fun
tions thatpreserve greatest lower bounds of 
onsistent (or \upper bounded") subsets; and the
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ts are dI-domains | S
ott domains whi
h satisfy a distributivity property andaxiom (I) meaning that every 
ompa
t element 
an only dominate �nitely manyelements. Stable fun
tions are not ordered by the standard extensional (or point-wise) ordering5 but by a new ordering 
alled stable ordering. A major result is thatthe 
ategory of dI-domains and stable fun
tions is 
artesian 
losed.The other approa
h builds on the 
entral ideas behind the framework of 
dsand Kahn-Plotkin sequential fun
tion but sa
ri�
es extensionality. Thus, Berryand Curien introdu
ed sequential algorithms over 
dss [10℄ (see also Curien's book[24℄ for a 
omprehensive introdu
tion). Sequential algorithms may be thought of asintensional re�nements or \implementations" of Kahn-Plotkin sequential fun
tions.There are two reasons why this way of thinking is appropriate. First it is possibleto express ea
h sequential algorithm as a pair of the form (f; �) where f is just aKahn-Plotkin sequential fun
tion, and �, referred to as the asso
iated 
omputationstrategy, is a partial fun
tion that pi
ks out a sequentiality index at ea
h stage ofthe 
omputation. Se
ondly it is a theorem that the quotient of the 
po of sequentialalgorithms by the extensional equality is isomorphi
 to the 
po of Kahn-Plotkinsequential fun
tions with respe
t to the stable ordering. Remarkably, unlike Kahn-Plotkin sequential fun
tions, sequential algorithms do give rise to a 
artesian 
losed
ategory.Ea
h of the approa
hes gives rise to a 
po-enri
hed 
artesian 
losed 
ategoryand provides a 
ontinuous model for p
f but none leads to a solution of the fullabstra
tion problem for p
f. In the 
ase of the stable fun
tion spa
e model, asimple reason6 is that the ordering in question is not the extensional ordering butrather the stable ordering. In the 
ase of the model asso
iated with sequentialalgorithms, the morphisms are not even fun
tions.Re
ently, drawing on their intuitions as programmers, Cartwright and Felleisen[19, 18℄ introdu
ed a 
ontinuous, order-extensional model for p
f whi
h is basedon what they 
all observably sequential fun
tions. Curien [22℄ immediately realisedthat the observably sequential fun
tions were a natural extensional re�nement ofsequential algorithms. This is remarkable be
ause the sequential algorithms being
onsidered in the extended setting, whi
h are 
alled observable algorithms, are stillvery mu
h intensional in nature, and are most su

in
tly represented as a kindof de
ision trees. The key to this surprising development is that the 
on
retedata stru
tures are now equipped with \error values". To ensure a well-behavedme
hanism of fun
tion appli
ation, observable algorithms are required to \per
olateerrors to the top" when they are applied to arguments. A main result is that the
ategory of d
dss with error values and observable algorithms is 
artesian 
losed.5Care should be taken not to 
onfuse the two 
on
epts: extensional obje
t and order-extensionalfun
tions. We use the adje
tive extensional simply to mean the property of being a fun
tion asopposed to, say, an algorithm whi
h is an intensional thing. However, even if the maps of anorder-enri
hed 
ategory are extensional, they are not ne
essarily order-extensional i.e. orderedextensionally. The 
ategory of dI-domains and stable fun
tions is a 
ase in point.6A \deeper" explanation has to do with a subtle point about the extensional way in whi
h PCFfun
tionals intera
t with fun
tion arguments. Curien has shown that there is no PCF-term of type(o) o) o)) o whi
h distinguishes between the left- or and right-or (say). However, sequentialalgorithms are more intensional: there is a sequential algorithm whi
h dis
riminates between two
omputations whi
h only di�er intensionally in the above sense.
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iated model is not fully abstra
t for p
f, but it is for a language 
alledsp
f whi
h is p
f extended by error values and es
ape handling 
ontrol fa
ilitiesmu
h resembling the 
at
h fa
ility in some versions of the programming languageLisp.Kahn-Plotkin sequentiality and Berry and Curiens' sequential algorithm are bothformulated within the rather 
on
rete setting of 
ds. Kahn, Plotkin, Winskel[79, 80℄ and others have proved various representation theorems. One result showsthat this approa
h applies to a (rather) restri
ted 
lass of 
pos known as 
on
retedomains. Can these two leading ideas in the understanding of higher-type sequen-tiality be generalized to a more abstra
t setting? In a series of papers [16, 17, 27℄,Bu

iarelli and Ehrhard set out to answer this question systemati
ally. They pro-pose an abstra
t framework 
alled sequential stru
ture whi
h is a pair hX�; X� iwhere� X�, the 
olle
tion of \data" or \answers", is a dI-domain, and� X� is the 
olle
tion of (a kind of) linear maps (\questions") from X� to thetwo-point dI-domain (? < >). An element of X� should be thought of as a linearproperty of elements of X�.Think of a sequential stru
ture as a 
on
rete data stru
ture made abstra
t. Theirkey idea was to repla
e 
ells with a 
lass of linear maps. States of a 
ds then
orrespond to points of the data spa
e X�. Remarkably, in this abstra
t setting,sequential algorithms 
an be de�ned quite naturally as pairs (f; �) where f , a se-quential fun
tion, des
ribes the input-output behaviour of the algorithm; and �,a partial fun
tion, des
ribes its intensional properties. The enabling relation in a
ds whi
h formalises a notion of \immediate rea
hability" or \adja
en
y in theordering" also has a natural, abstra
t representation in the setting of sequentialstru
ture. Ehrhard and Bu

iarelli show that a 
artesian 
losed 
ategory of se-quential stru
tures with enabling and sequential algorithms 
an be 
onstru
ted;and furthermore, into this 
ategory, the 
ategory of d
dss and sequential algo-rithms 
an be fully and faithfully embedded. Thus the goal of extending sequentialalgorithms to an abstra
t setting is a
hieved.Bu

iarelli and Ehrhard [16, 15℄ also introdu
ed the notion of strong stability.They were motivated by the observation that for d
dss, Kahn-Plotkin sequentialfun
tions 
an be given an equivalent des
ription in more algebrai
 terms. A

ordingto this de�nition, a sequential fun
tion is a 
ontinuous fun
tion preserving a 
ertain
lass of meets. They then 
ast this idea in a more abstra
t setting. The \domains"are dI-domains D equipped with a 
olle
tion C(D) of �nite subsets of D satisfyinga number of axioms. Call the 
olle
tion C(D) a 
oheren
e and any of its elementsa 
oheren
e property. A 
ontinuous fun
tion f : D �! E between dI-domains with
oheren
e is said to be strongly stable if� it preserves 
oheren
e properties i.e. f(A) is in C(E) whenever A is in C(D),and� it preserves greatest lower bound of 
oheren
e properties i.e. f(uA) = uf(A)for any A in C(D).Their result is that the 
ategory of dI-domains with 
oheren
e and strongly stablefun
tions is 
artesian 
losed. We know that the asso
iated model is not fully ab-
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t for p
f; but how 
losely does it model \sequential fun
tions"? At �rst order,strong stability 
oin
ides with Kahn-Plotkin sequentiality. However, at higher or-der, we �nd ourselves at a loss 
on
eptually for we are fa
ed with a fundamentalquestion: is there a standard or 
anoni
al de�nition for higher-type sequentiality?In [27℄ Ehrhard shows that any strongly stable fun
tion whi
h arises from themodel is the \extensional 
omponent" of a sequential algorithm. More pre
iselya 
artesian 
losed 
ategory is 
onstru
ted whose obje
ts are triples hE;X; � i. Insu
h a triple, E is a sequential stru
ture, X is a hyper
oheren
e, and � is a fun
tionfrom E� (the spa
e of points of E) to qD(X), the qualitative domain indu
ed byX . The fun
tion � is required to be linear, strongly stable (with respe
t to boththe linear 
oheren
e indu
ed by E� on E�, as well as the 
oheren
e indu
ed by thehyper
oheren
e X on qD(X)) and onto. (Hyper
oheren
e (see [26℄) is a simpli�edframework for dealing with strong stability. A hyper
oheren
e is a hypergraph thatgives rise naturally to a qualitative domain equipped with a 
oheren
e.) The intu-ition is this: E� is the spa
e of sequential algorithms, qD(X) is a spa
e of stronglystable fun
tions, and � is the \forgetful" operation whi
h sends any sequential al-gorithm onto its generalized extensional 
omponent. In this set up, the for
e ofthe fun
tion � being onto is that any strongly stable fun
tion is in some sense theextensional 
omponent of a sequential algorithm.Brookes and Geva [14℄ have adopted a topologi
al approa
h in an attempt to
hara
terize sequentiality. They propose a general de�nition of sequential fun
-tions on S
ott domains, 
hara
terized by a generalized notion of topology. Thisnotion of sequential fun
tion turns out to 
oin
ide with the Kahn-Plotkin notion ofsequential fun
tion when restri
ted to distributive 
on
rete domains, but it 
onsid-erably expands the 
lass of domains for whi
h sequential fun
tions may be de�ned.Ordered stably, the sequential fun
tions between two dI-domains form a dI-domain(the analogous property fails for Kahn-Plotkin sequential fun
tions). However the
ategory of dI-domains and sequential fun
tions is not 
artesian 
losed be
auseappli
ation is not sequential.Kleene's approa
h. Persisting in the ba
kground of these developments is adeeper, more philosophi
al question of whether there is su
h a thing as a 
anoni
alnotion of sequential 
omputation at higher type. Clearly, the kind of 
omputa-tion de�ned by p
f is at least a 
ontender for su
h a standard. But it seems tous that there is no 
ompelling eviden
e (yet) that p
f-style 
omputation is theonly a

eptable notion of higher-type sequentiality. The problem of 
hara
terizinghigher-type sequentiality should be thought of in 
onne
tion with a problem whi
hKleene posed in [47℄ (see also [48℄).Kleene's problem. Find \a 
lass of fun
tions whi
h shall 
oin
ide with all thepartial fun
tions whi
h are `
omputable' or `e�e
tively de
idable', so that Chur
h's1936 Thesis will apply with the higher types in
luded."In fa
t in this paper, Kleene initiated what is in e�e
t an atta
k on the fullabstra
tion problem for p
f. The series of four papers by Kleene are all 
on
ernedwith an attempt to give meaning to p
f (or rather to Kleene's own preferred versionof Platek's re
ursion in terms of s
hemes) in terms of rules for a dialogue. Kleene's



ON FULL ABSTRACTION FOR PCF: I, II AND III 17idea of a dialogue developed in parallel with and independently of the work on
dss. While Kleene was not able to obtain a de�nitive 
hara
terization at highertypes, the general game-theoreti
 perspe
tive, a version of whi
h we present in thispaper, is already present in his work.Kleene's initiative was followed up by Robin Gandy and his student GiovanniPani. Unlike Kleene and Platek, who 
onsidered only monotoni
 fun
tions, Gandyand Pani have been working in the 
ontinuous framework usual in 
omputer s
i-en
e. Their work is not published, but they have investigated a number of possibleapproa
hes and have a

umulated numerous (
ounter) examples. One of us (Hy-land) has talked informally with Gandy and Pani about their ideas on a numberof o

asions. In parti
ular, Gandy �rst pointed out the importan
e of his \no dan-gling question mark" 
ondition for an explanation of p
f-style 
omputability. (Thea

ount of approa
h 
urrently favoured by Gandy whi
h we have seen leads us tobelieve that it di�ers from that whi
h we present.) A more detailed 
omparisonof our approa
h with Gandy's will be given in x9. We also dis
uss there the littleknown work of Sazonov who in the mid 1970s produ
ed a ma
hine oriented 
hara
-terization of the p
f-de�nable fun
tionals. (The algorithmi
 work of the \Siberians
hool" was roughly 
ontemporaneous with but independent of the early work ofMilner and Plotkin.)The question of higher-type sequentiality and Kleene's seemingly more generalproblem are of fundamental importan
e to Computer S
ien
e. They 
ertainly de-serve further investigation. For a survey of the full abstra
tion problem of p
f, seee.g. [11, 23, 57℄. Curien's book (se
ond edition) [24℄ provides an ex
ellent a

ountof the main body of resear
h inspired by the full abstra
tion problem of p
f.1.5. Outline of the paperIn the next se
tion, we study the model theory of p
f in the light of standardideas from both 
ategori
al logi
 and 
ategori
al type theory. We take a (
on
rete)model of p
f to be a 
-�x 
ategory (
artesian 
losed with 
onditionals and �xedpoints) equipped with what we 
all a simple obje
t of numerals. In the same
ategori
al spirit the notion of observational equivalen
e is analysed. Given a notionof observables on a symmetri
 monoidal 
losed 
ategory C (e.g. a model of p
f),we give pre
ise de�nition for the indu
ed observational preorder (over homsetsof C ) and study the asso
iated quotient 
onstru
tion C 7! Ĉ . These analysesyield a general 
ategori
al setting within whi
h to arti
ulate and reason about thestandard (though hitherto 
on
retely understood) properties of adequa
y, order-extensionality (equivalently the 
ontext lemma) and full abstra
tion.In Part II we formalize the 
lass of dialogue games in whi
h the two players in-volved are required to observe the dis
iplines of justi�
ation and priority mentionedabove. We make a 
ategory C A out of su
h games: obje
ts are 
omputational are-nas whi
h are a kind of environment for su
h dialogue games, and maps are inno
entstrategies. The main result of Part II is that this 
ategory C A is 
artesian 
losedand enri
hed over dI-domains. With respe
t to an intrinsi
 notion of observables,C A satis�es the 
ontext lemma; equivalently C A is order-extensional.The 
ategory C A is 
onsidered as a model of p
f and P { an extension of p
f byde�nition-by-
ases 
onstru
ts { in Part III. We prove a strong de�nability theorem:



18 HYLAND AND ONGthere is an order-isomorphism between 
ompa
t elements of the model and a 
lassof �nite 
anoni
al forms of P (ordered by 
-mat
hing). As a 
orollary the obser-vational quotient ^C A of C A is an order-extensional, order fully abstra
t model forP. The strong de�nability result extends to a universality theorem for C A : mod-ulo observational equivalen
e, all re
ursive inno
ent strategies are p
f-de�nable.We 
on
lude this paper with a dis
ussion of and 
omparison with related work.Dire
tions for further resear
h are identi�ed.Chronology. The results presented here were �rst announ
ed in a message en-titled \Dialogue games and inno
ent strategies: an approa
h to (intensional) fullabstra
tion for p
f" in the Types and Linear email lists in July `93 in 
onjun
tionwith a preliminary announ
ement of Abramsky, Jagadeesan and Mala
aria entitled\Games and full abstra
tion of PCF".
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al semanti
sThe 
ategori
al perspe
tive. Aspe
ts of the models of p
f whi
h we present inthis paper do not �t quite naturally into the 
ontext of denotational semanti
s astraditionally 
on
eived. Hen
e we think it worth des
ribing in outline one notionof model for p
f from the point of view of 
ategori
al logi
 and 
ategori
al typetheory. (These are distin
t traditions and we borrow from ea
h.)Standard referen
es for models of simple type theories are [49, 21℄. Usuallywe have a 
ategory (or better, a 2-
ategory) of 
ategories equipped with 
ertainstru
ture. These 
ategories are equivalent (in a sense whi
h needs to be madepre
ise) to type theories of a 
ertain kind, and so 
an be identi�ed with typetheories.Typi
ally we are interested in one parti
ular type theory T and so in the 
orre-sponding 
ategory T 
onstru
ted from its syntax. The perspe
tive of 
ategori
allogi
 is that models of T in an arbitrary 
ategory C of the sort in question are givenby stru
ture preserving fun
torsM : T �! C from the 
lassifying 
ategory T to C .(These matters are explained 
arefully in [21℄ where T is 
alled generi
.)Notations and 
onventions. We shall write the 
omposition of maps f : A �! Band g : B �! C as f ; g : A �! C. We stress at on
e that we shall take a relaxedattitude towards notation. In prin
iple we 
an distinguish between(i) the syntax of some type theory T ,(ii) the interpretation of the syntax in the (synta
ti
) 
lassifying 
ategory T, and(iii) the interpretation of the syntax in some arbitrary model M : T �! C .In 
ategori
al type theory, (i) and (ii) may harmlessly be identi�ed; but the interpre-tation of syntax in some spe
i�
 model is usually indi
ated by semanti
 bra
kets (see[21℄). However we prefer to overload notation by dropping the semanti
s bra
ketsand allow the 
ontext to disambiguate what we write. Thus we shall systemati
allydes
ribe maps in our semanti
 
ategories using a mixed syntax 
onsisting of thesyntax of our type theory (p
f) augmented by names for individual obje
ts andmaps in the model. (Or we 
an think of the syntax of C in the sense of 
ategori
altype theory.) Our 
onvention will be to let a term t of type B with free variables(amongst the) x1; � � � ; xn of types A1; � � � ; An respe
tively denote a mapt : A1 � � � � �An �! B:We develop a theory of models for p
f along the general lines of 
ategori
al typetheory. Some of the material is quite routine, but there are a number of points ofinterest; and we take the opportunity to re
ast the standard notions of denotationalsemanti
s in the more general framework.Extensionality and order-extensionality. There are a 
ouple of items whi
h wemay as well make pre
ise now. We assume for the purpose of this dis
ussion thatour 
ategories are equipped with a terminal obje
t 1, and that the global se
tionsfun
tor is appropriately thought of as giving the elements of types. (So we setaside models of linear logi
.) In general su
h 
ategories will not be 
on
rete in the



20 HYLAND AND ONGnatural way; that is, the global se
tions fun
tor will not be faithful. When it is,that is whenf = g : A �! B () 8a : 1 �! A:a; f = a; g : 1 �! B;we say that the model is extensional. Similarly in the 
ommon order-enri
hedsituation we may ask whether the global se
tions fun
tor regarded as an Poset-enri
hed fun
tor to the enri
hing 
ategory Poset (whi
h is enri
hed over itself) isfaithful. When it is, that is whenf 6 g : A �! B () 8a : 1 �! A:a; f 6 a; g : 1 �! B;we say that the model is order-extensional. Category theorists often talk of the
ategory (enri
hed 
ategory) having enough points.Computational soundness and adequa
y. Like the standard domain theoreti
models, 
ategori
al models of a fun
tional programming language are stati
: theyare essentially models of equational theories. In parti
ular we shall model theprogramming language of p
f given in x1.1 by modelling the equational theory fromx1.2. Thus the question arises of what should be the equational theory asso
iatedwith a programming language.An operational semanti
s for a (typed) fun
tional programming language typi-
ally provides:� a distinguished 
olle
tion of program types P ;� for ea
h program type P a distinguished 
olle
tion VP of (
losed) terms v : P
alled values;� for ea
h program type P a relation of 
onvergen
e to value s + v betweenarbitrary (
losed) terms s : P and values v : P .As usual we write s+ for 9v:s + v. (Note that this outline en
ompasses untypedlanguages whi
h 
an be regarded as having a single (program) type.)Consider for the moment a model of T (of some unspe
i�ed kind); we write [[� ℄℄for the interpretation fun
tion. In the model we should be able to distinguish a
olle
tion of values as the \elements" of the interpretation [[P ℄℄ of ea
h programtype P . Then the model is said to be� 
omputationally sound just when for any s : P , if s+ then the interpretation[[ s ℄℄ is a value in [[P ℄℄;� 
omputationally adequate just when for any s : P , if the interpretation [[ s ℄℄ isa value in [[P ℄℄ then s+.These notions 
learly admit stronger versions. We say that the model is� strongly 
omputationally sound just when s + v : P implies [[ s ℄℄ is a value in[[P ℄℄ and that [[ s ℄℄ = [[ v ℄℄ 2 [[P ℄℄;� strongly 
omputationally adequate just when [[ s ℄℄ is a value in [[P ℄℄ implies s + vfor some v with [[ s ℄℄ = [[ v ℄℄ 2 [[P ℄℄.
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ti
e models whi
h are 
omputationally sound and adequateare strongly so. (In the presen
e of suitable equality tests this will be automati
,but it holds in their absen
e.) Of 
ourse strong 
omputational soundness and
omputational adequa
y imply strong 
omputational adequa
y.(ii) One might be tempted by a 
ondition of the form[[ s ℄℄ = [[ v ℄℄ 2 [[P ℄℄ =) s + v : P:But this fails for traditional models of lazy languages where abstra
tions are re-garded as values.Sin
e the point of our models is that the pro
ess of 
omputation should be seenas the repla
ement of equals by equals, we 
learly want models to be strongly
omputationally sound. This 
an be ensured by insisting that the (initial, synta
ti
)
lassifying model is so, in other words by insisting thats + v : P =) s = vin a 
orresponding equational theory. Also we should at least be able to 
onsider
omputationally adequate models where 
omputation to value is faithfully re
e
ted.This requires that the 
lassifying model be 
omputationally adequate; in otherwords that s = v in the equational theory implies s + v : P . Thus the naturalrequirement on an equational theory asso
iated with a programming language isthat(y) s + v : P () s = v in the theory(In general there will be many theories satisfying this requirement.)Now 
onsider the spe
i�
 
ase of p
f. It seems natural in view of x1.1 to regardp
f as having two program types �; o. The values of type o are the booleans t; fand those of type � are the numerals. So we see that Corollary1.1 says that therequirement (y) is satis�ed in the 
ase of p
f by the equational theory whi
h wepresented in x1.2. As a result the (initial, synta
ti
) 
lassifying model T for p
fwill be (strongly) 
omputationally sound and adequate.2.2. C-�x 
ategoriesWe start by establishing a very general 
ategori
al 
ontext for re
ursion theory.We adopt what we take to be Platek's original 
on
eptions [59℄ and make highertypes, the 
onditional (or de�nition by 
ases) at all types and �xed points at alltypes the basis for our dis
ussion.Note that in 
ontrast with the usual formulation of p
f, we take a 
onditionalat all types as a basi
 rather than de�ned 
onstru
tion; this seems more naturalfrom a semanti
 point of view and does not7 entail a substantial 
hange of theprogramming language or type theory.7To see this, 
onsider p
f extended by a 
onditional 
ondA at every type A. For terms s and t oftype A = (A1; � � � ; An; �) and b of boolean type, we note that �x1 : A1 � � �xn : An:
ond�b(s~x)(t~x)(where ~x are not free in s, t and b) is extensionally (and hen
e also observationally) equivalent to
ondAbst.



22 HYLAND AND ONGDefinition 2.1. A 
-�x 
ategory is a 
artesian 
losed 
ategory C equipped withthe following additional stru
ture:(i) The 
onditional. An obje
t B, two maps t : 1 �! B, f : 1 �! B and a familyof maps 
A : B �A�A �! Afor ea
h obje
t A of C with the property thatA�A �= 1�A�A t� 1� 1- B �A�A �f � 1� 1 1�A�A �= A�A�����fst R 	�����sndA
A ?
ommutes.(ii) Fixed points. A family of maps for ea
h obje
t A of CYA : A) A �! Awith the property that the diagram(A) A)� (A) A) 1� YA- (A) A)�AA) A�6 YA - Aev ?
ommutes.Remark.(i) 
A interprets the 
onditional at type A and the 
ommutative diagram givesthe two usual equations: 
ond(t; x; y) = x
ond(f; x; y) = y:Category theorists might expe
t to see the requirement that 
 be a natural trans-formation whi
h would give the naturality equationh(
ond(b; x; y)) = 
ond(b; h(x); h(y)):However we do not need to insist on this as part of the general theory.



ON FULL ABSTRACTION FOR PCF: I, II AND III 23(ii) YA interprets the �xed-point operator at type A and the 
ommutative dia-gram gives the standard �xed-point equation:f(YA(f)) = YA(f):In examples, we shall often have familiar properties of Y (dinaturality, Beki
-S
ottproperty for produ
ts), but again we do not need to insist on them as part of thegeneral theory. (Indeed we do not know a 
omplete list of equational properties ofthe �xed-point operator in 
ategories of domains.)(iii) Note that we do not say that t and f are distin
t. However if they are thesame, then for every A in C , the two proje
tions fst; snd : A�A �! A are identi
al.It follows at on
e that A is subterminal (the unique map A �! 1 is moni
). But the�xed-point operator provides at least one element (global se
tion) for any A. So in
ase t and f are equal, the 
-�x 
ategory is equivalent to the (one-obje
t-one-map)
ategory 1.Many of our 
-�x 
ategories will be order-enri
hed and some will be enri
hed insome 
ategory of stru
tured domains. The standard referen
e for enri
hed 
ategorytheory is [44℄. We need to make 
lear what we mean by an enri
hed 
-�x 
ategory.Definition 2.2. Suppose that V is a symmetri
 monoidal 
ategory. By a 
-�x
ategory enri
hed over V we mean the following: a 
ategory C enri
hed over V,(i) whi
h is 
artesian 
losed in the enri
hed sense, so that the natural isomor-phisms 
hara
terizing the produ
ts and fun
tion spa
es in C are maps between theappropriate hom-obje
ts in V, and(ii) whose underlying 
ategory is an ordinary 
-�x 
ategory.Note that as things stand there is no intera
tion between the enri
hment andthe 
onditional or the �xed points.Maps of 
-�x 
ategories. As maps between 
-�x 
ategories we should take suit-able stru
ture preserving fun
tors. We spell this out in the following de�nition.Definition 2.3. Suppose C and D are 
-�x 
ategories. A fun
tor F : C �! Dis a map of 
-�x 
ategories (or just a map when the 
ontext is obvious) under thefollowing 
onditions:(i) F preserves produ
ts and fun
tion spa
es in the usual up-to-isomorphismsense: the 
anoni
al maps F (1) �! 1F (A�B) �! F (A) � F (B)are isomorphisms, and the resulting 
anoni
al mapF (A) B) �! F (A)) F (B)is also an isomorphism.



24 HYLAND AND ONG(ii) F preserves the 
onditional in the sense that the 
anoni
al mapB �! F (B)is an isomorphism. (It follows that modulo isomorphism, 
F (A) is F (
A) and soon.)(iii) F preserves �xed points in the sense thatF (A)) F (A) YF (A)- F (A)F (A) A)�=6 F (YA)- F (A)wwwwwwwww
ommutes.The basi
 setting for our 
ategori
al semanti
s is the 
ategory of 
-�x 
ategoriesand maps (of 
-�x 
ategories). Of 
ourse the usual notion of natural transformationmake this naturally a 2-
ategory, but for the most part we are able to suppress this.For 
ompleteness, we make 
lear what we mean by a map of 
-�x 
ategories inthe enri
hed setting.Definition 2.4. Suppose that C and D are 
-�x 
ategories enri
hed over thesymmetri
 monoidal 
ategory V. A map of enri
hed 
-�x 
ategories F : C �! D(or just map when the 
ontext is obvious) is an enri
hed fun
tor F : C �! D whoseunderlying ordinary fun
tor is a map of ordinary 
-�x 
ategories.2.3. Models of p
fIn the previous subse
tion, we de�ned stru
ture on a 
ategory whi
h modelsthe basi
 pro
esses of de�nition (typed �-
al
ulus, 
onditionals and �xed points)in p
f, but we have yet to 
onsider how to model the arithmeti
al stru
ture onthe basi
 data type of individuals. We 
hoose to regard this as a question of adi�erent kind: we treat � separately from o. Note that o has a dual role: it is a datatype but it is �rst introdu
ed to give a basi
 re
ursion-theoreti
 
onstru
tion, the
onditional. One equational theory for arithmeti
 was presented in [69℄, but herewe 
on
entrate on the 
ategori
al interpretation of the weak equational theory ofx1.2 whi
h re
e
ts Plotkin's operational semanti
s.As a preliminary 
onsider a 
ategory C with terminal obje
t 1. Suppose that wehave an obje
t N of C equipped with maps1 0 - N N s - NThen (overloading notation) we 
an de�ne maps n : 1 �! N for n a natural numberindu
tively: the map 0 : 1 �! N is already given and we set n+ 1 : 1 �! N equal
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omposite 1 n - N s - NWe refer to the maps n : 1 �! N so de�ned as numerals. Note that we do notassume that numerals n : 1 �! N and m : 1 �! N with m 6= n are distin
t mapsin C .We 
an of 
ourse now regard any f : N �! N in C as \de�ning" a numeri
alfun
tion F : N �! N; but the usual 
ontext is a 
ategory with produ
ts.Definition 2.5. Suppose that C is a 
ategory with �nite produ
ts and that Nis an obje
t of C equipped with maps1 0 - N N s - N:Take numerals n : 1 �! N as just de�ned. A map f : Nk �! N in C numeralwiserepresents (or numeralwise expresses) the numeri
al fun
tion F : Nk �! N justwhen the 
omposite 1 (n1; � � � ; nk)- Nk f - Nis equal to F (n1; � � � ; nk) : 1 �! N for all natural numbers n1; � � � ; nk.Suppose also that B is an obje
t of C equipped with maps1 t - B 1 f - B:A map r : Nk �! B numeralwise represents the k-ary relation R on N just whenthe 
omposite 1 (n1; � � � ; nk)- Nk r - Bis t : 1 �! B for all hn1; � � � ; nk i 2 R and f : 1 �! B for all hn1; � � � ; nk i =2 R.With these standard ideas as ba
kground we give the 
ategori
al 
ounterpart tothe arithmeti
al equations of x1.2.Definition 2.6. Suppose that C is a 
ategory with �nite produ
ts (a terminalobje
t suÆ
es) equipped with a diagram1 t -f - B:Consider an obje
t N of C equipped with maps1 0 - N N s - NN p - N N z - B:



26 HYLAND AND ONGWe say thatN so equipped is a simple obje
t of numerals (relative to 1 t -f - B)just when the diagrams1 0 - N 1 n+ 1- N�����0R �����nRNp ? Np ?1 0 - N 1 n+ 1- N�����t R �����f RBz ? Bz ?
ommute. (Here of 
ourse the n : 1 �! N are the numerals derived from 0 : 1 �!N and s : N �! N .)This de�nition is weak in two respe
ts. First it only provides information aboutthe behaviour of the numerals n : 1 �! N . Two of the diagrams say that thestandard prede
essor fun
tion is numeralwise represented by p; while the other twosay that z numeralwise represents a test for zero. We hope to suggest this fo
uson numeralwise representability by speaking of an obje
t of numerals rather thannatural numbers. Of 
ourse the arithmeti
al equations of x1.2 are 
on
erned onlywith numerals and this re
e
ts the fa
t that the only values in the operationalsemanti
s are numerals. The se
ond way in whi
h the de�nition is weak is that it ispurely equational and makes no referen
es to the possibility of any re
ursion. Weintend to suggest this feature by the quali�
ation \simple". This simpli
ity is partof the 
harm of Plotkin's redu
tion rules [61℄ giving the operational semanti
s.In general the for
e of the de�nition of simple obje
t of numerals (as of the
orresponding equations) will be extremely weak. Very few fun
tions need be nu-meralwise representable. (Think for example about what 
an be expli
itly de�nedin the 
ase B = N , t = 0 and f = 1.) However in the 
ontext of 
-�x 
ategories thede�nition is strong as we shall explain in the next subse
tion.We 
an now des
ribe our notion of a 
ategori
al model for p
f. We give twode�nitions the �rst of whi
h is very simple.Definition 2.7. (Con
rete version) A 
ategori
al model for p
f is a 
-�x 
ate-gory equipped with a simple obje
t of numerals.We hope that it is 
lear how the equational theory of p
f 
an be modelled insu
h a stru
ture. Note in passing that a given 
-�x 
ategory may 
ontain many
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 simple obje
ts of numerals; so the 
hoi
e of su
h is de�nitely partof the stru
ture.Remark. For some purposes it is useful to look at the de�nition from the pointof view of 
ategori
al logi
. Let T be a 
artesian 
losed 
ategory generated by theequational theory of p
f. (There are a number of equivalent ways to 
onstru
t T.For example one might augment p
f with a terminal type and produ
ts and takeequivalen
e 
lasses of terms in the manner des
ribed by Lambek and S
ott [49℄ andby Crole [21℄; or else 
onsider formal produ
ts of types and equivalen
e 
lasses oftuples of terms.) T is a 
-�x 
ategory and it 
ontains by 
onstru
tion a simpleobje
t of numerals whi
h we may as well 
ontinue to 
all �. So T is as one wouldhope a model for p
f in the sense just given.Definition 2.8. (Abstra
t version) A 
ategori
al model for p
f is a map M :T �! C of 
-�x 
ategories.The point is that sin
e the notion of a simple obje
t of numerals is purely equa-tional,M(�) is a simple obje
t of numerals in C . All that the mapM does e�e
tivelyis to pi
k out this stru
ture and so the two de�nitions are essentially equivalent.The se
ond de�nition has the virtue of making 
lear the sense in whi
h T (or theidentity T �! T) is initial amongst models for p
f. Usually we shall simply writeC for a model of p
f, letting the stru
ture in the sense of De�nition 2.7 or thestru
ture and interpreting fun
tor M in the sense of De�nition 2.8 be understood.We 
an justify this de�nition in terms of the dis
ussion in x2.1. The values inp
f are the booleans of type o and numerals of type �. Thus Corollary 1.1 saysin e�e
t that the initial model T of p
f is 
omputationally sound and adequate(in the strong sense). Hen
e all our models of p
f are (strongly) 
omputationallysound. (This is not a serious restri
tion.) Computational adequa
y on the otherhand has a number of 
hara
terizations.Proposition 2.1. Let C (M : T �! C ) a be a model of p
f. Then the followingare equivalent:(i)C is 
omputationally adequate.(ii)C is strongly 
omputationally adequate.(iii)If M(s : 1 �! �) (respe
tively M(s : 1 �! o)) is a numeral (respe
tivelyboolean) in C then s is a numeral (respe
tively boolean) in T.(iv)If M(s) =M(n) (respe
tively M(s) =M(t);M(s) =M(f)) in C then s = n(respe
tively s = t; s = f) in T. �Sin
e 
onditions (iii) and (iv) make no referen
e to the operational semanti
s,they suggest the following general de�nition. Suppose that a type theory T isequipped with program types P and sets of values UP � T(1; P ). We assume thatany model M : T �! C is equipped with values VM(P ) � C (1;M(P )) so thatM(UP ) � VM(P ). Thus M : T �! C is a strongly sound model of T.



28 HYLAND AND ONGDefinition 2.9. Let M : T �! C be a strongly sound model of the type theoryT. We shall say that C (stri
tly speaking M) is adequate just when M re
e
tvalues: if M(s) is in VP then s is in UP .In the 
ase of p
f we take as values in any model the booleans and numerals.Then the above de�nition applies to give a generalization of the usual notion ofadequa
y. Not all models of p
f are adequate. In parti
ular the trivial model ofp
f, the unique model M : T �! 1 of p
f in the (terminal) one-obje
t-one-map
ategory 1 is 
ertainly not adequate. (But adequa
y 
an fail in more subtle ways.)In an adequate model of p
f the elements (i.e. global se
tions) of B and Nmay be quite bizarre. Usually however we are interested in models in whi
h theindividual values are distin
t and in whi
h there is just one additional non-valueat ea
h program type. This is the familiar notion of a standard model of p
f. Wepresent this in our general setting 
onstru
tively and in both a set-based and anorder-enri
hed version.Definition 2.10. Let C be a model for p
f and write VP for the values in C ofthe program type P (either booleans or numerals).Set-based 
ase. We say that C is standard just when(i) the individual values in VP are distin
t, and(ii) for all a; b : 1 �! P in C , a = b in C if and only if a 2 VP () b 2 VP .Order-enri
hed 
ase. We say that the order-enri
hed model C is standard just when(i) the individual values in VP are distin
t, and(ii) for all a; b : 1 �! P in C , a 6 b in C if and only if a 2 VP =) b 2 VP .There is one further desirable property of models of p
f whi
h we need to 
on-sider. First we make a general de�nition.Definition 2.11. Suppose that C is a 
ategory with produ
ts and that we havea 
olle
tion of program types P in C and sets of values VP � C (1; P ). We 
alla map f : P1 � � � � � Pk �! P from a produ
t of program types P1; � � � ; Pk to aprogram type P a �rst order map. We say that su
h a map f is (elementwise)stri
t in its i-th argument just when for any a1 : 1 �! P1; � � � ; ak : 1 �! Pk, if the
omposite 1 (a1; � � � ; ak)- P1 � � � � � Pk f - Pis a value, then so is ai : 1 �! Pi. And we say that f is stri
t (without quali�
ation)just when it is stri
t in all its arguments. (Note that this de�nition depends on theprodu
t representation P1 � � � � � Pk.)We shall be interested in models for p
f in whi
h there are appropriate stri
tmaps.Definition 2.12. A model C of p
f is stri
t just when the stru
tural maps satisfythe following natural stri
tness 
onditions:
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N : B�N �N �! N and 
B : B�B�B �! B are both stri
t in their �rstargument;� s : N �! N; p : N �! N and z : N �! B are all stri
t.Example 2.1.(i) The initial model T of p
f is stri
t. (This follows from Corollary 1.1 and thenature of the evaluation relations. For example if 
ondust = n : � then 
ondust + n;but + 
orresponds to a deterministi
 evaluation strategy so we dedu
e that u+ asrequired.)(ii) The standard S
ott domain model for p
f is stri
t. (This is 
lear from itsde�nition but see Proposition 2.8 below.)(iii) The trivial model 1 is stri
t.We leave the reader to ruminate on non-stri
t models (the obvious ones arerather boring) and simply give some suÆ
ient 
onditions for stri
tness.Proposition 2.2. Suppose that a model C of p
f is su
h that the fun
torM : T �! C maps T(1; �) surje
tively onto C (1; N) and C (1; o) surje
tively ontoC (1; B). If C is adequate then C is stri
t.Proof. Suppose for example that a : 1 �! N in C is su
h that1 a - N s - Nis a numeral. By surje
tivity a =M(u) for some u : 1 �! � in T. Now we haveM(u);M(su

) = M(u; su

)a numeral. As C is adequateM re
e
ts numerals and so u; su

 is a numeral in T.But su

 is stri
t in T (see above) so u is a numeral. Thus a =M(u) is a numeral asrequired. The other 
ases are similar.Corollary 2.1. Suppose that C is a standard model of p
f Then C adequateimplies C stri
t.Proof. We show that the fun
torM : T �! C satis�es the surje
tivity hypothe-ses of the pre
eding Proposition. It suÆ
es to show that some element of T(1; �)(respe
tively T(1; o)) maps to a non-value in C (1; N) (respe
tively C (1; B)). InT(1; �) 
onsider Y(su

). If Y(s) =M(Y(su

)) = n in C , then n = n+1 in C andC is equivalent to the one-obje
t-one-map 
ategory 1 and so not standard; thusY(s)is the \unde�ned" element of C (1; N). A similar argument using the �xed point ofa map swap : o �! o deals with the other 
ase. The result now follows from Proposi-tion 2.2.
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ursion theoryWe start by 
onsidering the following de�nition whi
h (like that of simple obje
tsof numerals) deals only with numerals.Definition 2.13. Suppose C is a 
ategory with �nite produ
ts (for the momenta terminal obje
t suÆ
es). An obje
t N of C equipped with maps1 0 - N N s - Nis an iterative obje
t of numerals just when it 
omes equipped for any obje
t X andmaps a : 1 �! X , f : X �! X with a 
hoi
e of maps r = it(a; f) : N �! X su
hthat the diagrams1 0 - N 1 n+ 1 = n; s- N�����aR Xr ? Xn; r ? f - Xr ?
ommute.In other words an iterative obje
t of numerals is one whi
h enables us to representiterations numeralwise. Now a standard argument shows that in a 
ategory withprodu
ts we 
an also numeralwise represent re
ursion: that is, we 
an give for anyobje
t X and maps a : 1 �! X , g : N �X �! X a 
hoi
e of maps r = re
(a; g) :N �! X su
h that the diagrams1 0 - N 1 n+ 1 = n; s- N�����aR Xr ? N �X(n; n; r) ? g - Xr ?
ommute.We remark in passing on the strength of this de�nition in a 
artesian 
losed 
ate-gory. Suppose that 1 0 - N s - N is an iterative obje
t of numeralsin a 
artesian 
losed 
ategory C . The 
losure enables us to parametrize re
ursivede�nitions. So a sequen
e of primitive re
ursive de�nitions based on 0 and s givesrise to a sequen
e of maps in C whi
h numeralwise satisfy the 
orresponding re
ur-sion equations. Rather than spell this out in detail we give a formulation as in [49℄where the result is stated for the (stronger) notion of weak natural number obje
t.Proposition 2.3. If 1 0 - N s - N is an iterative obje
t of nu-merals in a 
artesian 
losed 
ategory C then all primitive re
ursive fun
tions arenumeralwise representable in C . �
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ott presented the 
orresponding result for a weak natural num-ber obje
t in [49℄. The approa
h is essentially to observe that a weak natural numberobje
t is an iterative obje
t of numerals and then to follow the standard approa
houtlined above.(ii) Re
all that we did not assume that our numerals n : 1 �! N were alldistin
t. However, in the 
ontext of an iterative obje
t of numerals in a 
artesian
losed 
ategory C , it is easy to show the following analogue of Remark 2.2(iii): ifn : 1 �! N and m : 1 �! N are equal for n 6= m, then the 
ategory C is equivalentto the one-obje
t-one-map 
ategory 1.Let us return to the observation that in the presen
e of produ
ts, iteration entailsre
ursion (at the level of numeralwise representation). The standard re
ursionequations for prede
essor involve no parameters, so prede
essor 
an be representednumeralwise; also a test for zero 
an be de�ned by iteration. Hen
e we have thefollowing trivial result.Proposition 2.4. Suppose that the 
ategory C with produ
ts is equipped with adiagram 1 t -f - B:Then an iterative obje
t of numerals 1 0 - N s - N 
an be furtherequipped to give a simple obje
t of numerals (relative to B). �Re
ursion in a 
-�x 
ategory is provided in a powerful way by �xed points. Hen
eit is not surprising that in a model of p
f we have a 
onverse to the above.Proposition 2.5. In a model of p
f the stru
ture 1 0 - N s - Nis (or 
an be equipped with the stru
ture of) an iterative obje
t of numerals.Proof. Given a : 1 �! X and f : X �! X we de�ne r : N �! X impli
itly bythe informal equationr(n) = if (n = 0) then a else f(r(p(n)));using the �xed-point operator and 
he
k that it works.Remark. It follows that the requirements on a standard model that the valuesbe distin
t is essentially the requirement that there be a non-value.We have seen that in a model of p
f the notion of a simple obje
t of numeralsprovides an algebrai
 way of des
ribing an iterative obje
t of numerals. So byProposition 2.3, it provides numeralwise representations for all primitive re
ursive
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tions. Note that this representation is quite uniform: there is a representationin T whose interpretation in a model is a representation there. In fa
t all partialre
ursive fun
tions 
an similarly be represented in a sense whi
h we now make 
lear.Definition 2.14. Suppose that C is a 
ategory with �nite produ
ts and thatN is an obje
t of C equipped with maps 0 : 1 �! N and s : N �! N . Takenumerals n : 1 �! N as usual. A map f : Nk �! N in C tra
ks a partialnumeri
al fun
tion � : Nk �! N just when for any natural numbers n1; � � � ; nkwith �(n1; � � � ; nk) de�ned, the 
omposite 1 (n1; � � � ; nk)- Nk f - N is equalto 1 �(n1; � � � ; nk)- N ; and numeralwise represents � just if, in addition, wheneverthe 
omposite 1 (n1; � � � ; nk)- Nk f - N is a numeral, then �(n1; � � � ; nk) isindeed de�ned.Sin
e p
f 
an be regarded as a programming language its terms should represente�e
tive fun
tions.Proposition 2.6. If f : �k ) � is a term of p
f then (the interpretation of) fnumeralwise represents a partial re
ursive fun
tion in the initial model T.Proof. The relation t + v is de�ned indu
tively and so is semi-re
ursive. The re-sult follows as by Corollary 1.1, f(n1; � � � ; nk) = m if and only if f(n1; � � � ; nk) +m.A standard pie
e of programming gives a partial 
onverse.Proposition 2.7. For every partial re
ursive fun
tion � : Nk �! N, there is aterm f : �k ) � whose interpretation tra
ks � in the initial model T.Proof. The argument is standard. The 
olle
tion of partial fun
tions tra
kedin a model is 
learly 
losed under substitution (
omposition). Hen
e it suÆ
es (inview of Kleene's representation of the partial re
ursive fun
tions) to show how theresult of applying the least number operator may be tra
ked. We give the simplest
ase. Suppose that h : � � � ) � tra
ks (and so numeralwise represents) the totalfun
tion H : N � N �! N. De�ne g : �� �) � impli
itly by the informal equationg(n; k) = if h(n; k) = 0 then k else g(n; k + 1)using the least �xed-point operator. Then f : �) � de�ned by f(n) = g(n; 0) tra
ksthe possibly partial fun
tion �(n) = �k:(H(n; k) = 0).Corollary 2.2. If C is a model of p
f then for every partial re
ursive � :Nk �! N there is a term f of p
f whose interpretation in C tra
ks �. �To get the full 
onverse we need additional arguments. We �rst note the followinggeneral property of stri
t models.
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t model of p
f. Then for any f : Nk �!N in C there is a stri
t g : Nk �! N whi
h represents the same partial fun
tion(and similarly for arbitrary �rst order maps).Proof. De�ne t : N �! N byt(x) def= 
ond(zero?x)00:We see that t is stri
t and 
arries all numerals to 0. Now de�ne g by g(x1; � � � ; xk) def=
ond(zero?t(x1))(
ond(zero?t(x2))(
ond � � � (
ond(zero?t(xk))f(x1; � � � ; xk)
) � � �) � � �)
:Corollary 2.3. Suppose that C is a stri
t model of p
f. Then the 
olle
tion ofpartial fun
tions numeralwise represented in C is 
losed under substitution (
om-position).Proof. The essential point is the following. If f1; � � � ; fk : N l �! N numeral-wise represent �1; � � � ; �k : Nl �! N and if g : Nk �! N is stri
t and numeralwiserepresents  : Nk �! N, then g(f1; � � � ; fk) : N l �! N numeralwise represents (�1; � � � ; �k) : Nl �! N.The full 
onverse to Proposition 2.6 gives the following 
hara
terization.Theorem 2.1. The partial fun
tions numeralwise representable in the initialmodel T for p
f are exa
tly the partial re
ursive fun
tions.Proof. It simply remains to re�ne the proof of Proposition 2.7. As T is stri
t,Corollary 2.3 means that it suÆ
es to show that the least number operator preservesnumeralwise representability. But this is a straightforward 
onsequen
e of the fa
tthat Y behaves synta
ti
ally like a least �xed-point operator:if (Yt)(s1; � � � ; sk) + v then tr
(s1; � � � ; sk) + v for some r:In the notation of Proposition 2.7 we dedu
e by a straightforward indu
tion thatg(n; k) numeralwise represents the fun
tion (n; k) = �l:(l > k & H(n; l) = 0);and so f numeralwise represents � as required.Remark.(i) This result was of 
ourse known to Platek [59℄ and S
ott [69℄. We sket
h ithere to show how the proof appears in our general perspe
tive.(ii) One 
an extra
t further information from the p
f de�nability of the leastnumber operator. Suppose we vary p
f by omitting the prede
essor but in
lud-ing an equality test N � N �! B. Then we 
an de�ne a fun
tion numeralwise
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essor fun
tionp(x) = if x = 0 then 0 else �y:su

y = x:However the prede
essor 
annot be re
overed from (su

essor and) test for zeroalone.We note some elementary observations:Lemma 2.1.(i)If f : (�; � � � ; �| {z }k ; �) is a term of p
f then in the initial model T (the interpretationof) f numeralwise represents a partial re
ursive fun
tion.(ii)If f tra
ks � in T then f tra
ks � in any model of p
f. If f numeralwiserepresents � in T then f numeralwise represents � in any adequate model of p
f.Proof. (i) is Obvious in view of the e�e
tive nature of the redu
tion relation +.We omit proof of (ii).Finally we 
an say something about the representability of partial re
ursive fun
-tions in adequate models of p
f.Proposition 2.9. If C is an adequate model of p
f then for every partial re
ur-sive fun
tion � : Nk �! N there is a term f of p
f (in the sense of Remark 2.3)whose interpretation in C numeralwise represents �.Proof. If f numeralwise represents � in T then it does so in C as the fun
torM :T �! C re
e
ts numerals.The 
onverse of the pre
eding Proposition is essentially obvious:Proposition 2.10. Suppose that C is an adequate model of p
f. Then any termf : �k �! � of p
f represents a partial re
ursive fun
tion in C . �



ON FULL ABSTRACTION FOR PCF: I, II AND III 353. OBSERVABLES, ADEQUACY, OBSERVATIONAL AND FULLABSTRACTION3.1. Observables, observational preorder and quotientWe start by 
onsidering a notion of observational equivalen
e in a general 
ategor-i
al setting. Throughout this se
tion we take C to be a symmetri
 monoidal 
losed
ategory, whi
h we think of as some 
ategory of types and terms. (We suppress thestru
ture of asso
iativities and so on.)Definition 3.1. A notion of observables O on C asso
iates to ea
h obje
t Aof C a set OA of subsets of C (I; A) 
alled observables at A, with the propertythat if f : A �! B in C and S 2 OB thenf�S def= f a : I �! A j a; f 2 S g 2 OA:We say that su
h an asso
iation A 7! OA equips C with observables and that C soequipped is a 
ategory with observables.Example 3.1. (i) Suppose that T is a programming language with an opera-tional semanti
s as 
onsidered at the end of the last se
tion; and suppose that T isthe 
ategory of types and (equivalen
e 
lasses of) terms for a 
orresponding typetheory. We assume that T is 
omputationally sound and adequate (in the strongsense) so that 
onvergen
e to value is preserved and re
e
ted by equalities in thetype theory. Hen
e we do not bother to distinguish between types and terms in Tand the obje
ts and maps in T whi
h are their respe
tive denotations. Then wehave relations� of 
onvergen
e a+ for a : I �! P (P a program type)� of 
onvergen
e to value a + v for a : I �! P , v : I �! P (P a program typeand v the interpretation of a value)on maps in T. (Of 
ourse, a + v is just a suggestive way of writing \a = v : I �! Pis the interpretation of a value"!)Take for simpli
ity a single program type P . (The generalization to more thanone program type is straightforward.) For f : A �! P we de�ne an observationOf def= f a : I �! A j a; f+gand for f : A �! P and v : I �! P a value we de�neOf;v = f a : I �! A j a; f + v g:Now we give some notions of observables.(i) Termination. The asso
iation A 7! OA = fOf j f : A �! P g equips T withobservables.(ii) Termination to value. The asso
iation A 7! OA = fOf;v j f : A �! P; v :I �! P a value g equips T with observables.(iii) Termination to spe
i�ed value. Choose a value u : P , so that we have adistinguished map u : I �! P in T. The asso
iation A 7! OA = fOf;u j f : A �!P g equips T with observables.



36 HYLAND AND ONG(ii) More generally suppose given a monoidal 
losed 
ategory C , an obje
t P (aprogram type) of C and a 
olle
tion V of \elements" v : I �! P of P (a set ofvalues). Then for f : A �! P we de�ne an observation:Of def= f a : I �! A j a; f 2 V g;and for f : A �! P and v : I �! P 2 V we de�ne an observationOf;v def= f a : I �! A j a; f = v g:We generalise the notion of observables above.(i) Termination. The asso
iation A 7! OA = fOf j f : A �! P g equips C withobservables.(ii) Termination to value. The asso
iation A 7! OA = fOf;v j f : A �! P; v :I �! P 2 V g equips C with observables.(iii) Termination to spe
i�ed value. Choose a distinguished map u : I �! P 2 V .The asso
iation A 7! OA = fOf;u j f : A �! P g equips C with observables.(iii) Suppose O equips D with observables and F : C �! D is a fun
tor. Then itis easy to see that the asso
iationA 7! (F�1O)A = fF�1(u) j u 2 OA gequips C with observables.Remark.(i) The reader may like to 
onsider how very di�erent are the notions of observ-ables termination, termination to value and termination to spe
i�ed value in the
ase of (models of) lazy languages where abstra
tions are values: only terminationseems to 
orrespond to a 
lear 
omputational intuition in this 
ase. However forp
f as we shall shortly see the notions will 
oin
ide in reasonable 
ir
umstan
es.(ii) The 
onstru
tion in (iii) is parti
ularly revealing in the 
ase of a modelM : T �! C of a programming language where C is equipped with a notion O ofobservables as in (ii). (We naturally assume that the interpretation of values in Tis identi
al with those maps in T whi
h be
ome values in C .) In this 
ase M�1Ois a notion of observables in T whi
h generally will not 
oin
ide with any notionde�ned as in (i). The stru
ture in C allows us to make additional observations inT.It seems just worth introdu
ing some suggestive terminology to des
ribe spe
ialproperties of notions of observables O.Definition 3.2. Suppose that C is a (symmetri
 monoidal 
losed) 
ategory withobservables O.



ON FULL ABSTRACTION FOR PCF: I, II AND III 37(i) We say that U 2 OG is a universal observation just whenOA = f f�U j f : A �! G gfor all A.(ii) We say that a set G of observations is a generating set of observationsfor O just whenOA = f f�R j f : A �! C; R 2 OC is in G gfor all A.(iii) We say that an \element" d : I �! D is a dete
tor for observations justwhen f d g 2 OD is a universal observation. (We also say d 
an be used to dete
tobservation.)Consider the examples in (i) and (ii) above. In the 
ase of termination there isa universal observation. In the 
ase of termination to spe
i�ed value, the value 
anbe used to dete
t observations. In the 
ase of termination to value the 
olle
tionfOid;v j v : I �! P g is a generating set of observations where id : P �! P is theidentity.Observational preorder. Suppose that C is a (symmetri
 monoidal 
losed) 
at-egory with observables A 7! OA. Then there is a natural notion of observationalpreorder between maps from the same hom-set. For f; g : A �! B in C we de�nef . g def= f 2 R =) g 2 R for all R 2 OA(Bwhere f; g : I �! (A ( B) are obtained from f; g respe
tively by transposing.We write the asso
iated equivalen
e as '. (The reader will see that at last thesymmetri
 monoidal 
losed assumption is beginning to be used.)Composition on either side preserves this preorder. Note that maps h : B �! Cand k : D �! A give rise to obvious map (A ( h) : (A ( B) �! (A ( C)and (k ( B) : (A ( B) �! (D ( B). Suppose that f . g : A �! B. TakeR 2 OA(C ;f ;h 2 R () f 2 (A( h)�R =) g 2 (A( h)�R () g;h 2 R:Thus f ;h . g;h : A �! C. Similarly take S 2 OD(B ; suppose that f . g : A �!B. Take R 2 OA(C ;k; f 2 S () f 2 (k( B)�S =) g 2 (k( B)�S () k; g 2 S:Thus k; f . k; g : D �! A.Definition 3.3. If we let bC (A;B) def= C (A;B)=. be the poset indu
ed by thepreorder . on C (A;B), we get a new order-enri
hed 
ategory bC , whi
h we referto as the observational quotient of C . (Of 
ourse bC depends on the 
hoi
e ofobservables O.)



38 HYLAND AND ONGThe 
ategory bC inherits a symmetri
 monoidal 
losed stru
ture (now as an order-enri
hed 
ategory) from C . Note that a map g : C �! D indu
es an obvious map(A( B) �- (A
 C ( B 
D);the transpose of (A( B)
 A
 C ev
 g- B 
DSuppose that f . f 0 : A �! B. Take R 2 OA
C(B
D .f 
 g 2 R () f 2 ��R =) f 0 2 ��R () f 0 
 g 2 R:Thus f 
 g . f 0 
 g : A 
 C �! B 
D. It follows at on
e that f . f 0 : A �! Band g . g0 : C �! D entail f 
 g . f 0 
 g0 : A 
 C �! B 
D. Thus 
 be
omesan order-enri
hed fun
tor on bC and the symmetri
 monoidal stru
ture 
arries over.The 
losed stru
ture does likewise as bC (A
B;C) and bC (A;B ( C) are isomorphi
posets trivially by the de�nition.Now suppose that C is a 
artesian 
losed 
ategory so that we are dealing with a
ategori
al produ
t� and 
orresponding fun
tion spa
e). Then bC is also 
artesian
losed. It is enough to show that � is a 
ategori
al produ
t in bC . Note that a mapg : C �! B gives rise to a map
 : (C ) A) �= (C ) A)� 1 1� g- (C ) A)� (C ) B) �= (C ) A�B):Suppose that f . f 0 : C �! A. Take R 2 OC)A�B ;(f; g) 2 R () f 2 
�R =) f 0 2 
�R () (f 0; g) 2 R:Thus (f; g) . (f 0; g) : C �! A � B. It follows at on
e that f . f 0 : C �! A andg . g0 : C �! B entail (f; g) . (f 0; g0) : C �! A�B. The 
onverse impli
ation iseasy and so � is a produ
t in bC in the order-enri
hed sense.To summarise the dis
ussion so far, we have shown:Proposition 3.1. For any symmetri
 monoidal 
losed 
ategory C with observ-ables, the observational quotient bC is an order-enri
hed 
ategory whi
h inherits thesymmetri
 monoidal 
losed stru
ture from C . (That is, the quotient fun
tor pre-serves the stru
ture.) If C is in fa
t 
artesian 
losed, then the same stru
ture islikewise inherited by bC . �Remark.(i) Naturally di�erent notions of observables may give rise to the same notion ofobservational quotient. Indeed suppose O and O0 are two notions of observables onthe same (symmetri
 monoidal 
losed) 
ategory C , giving rise to preorders .1 and.2 respe
tively. Then one easily sees thatf .1 g =) f .2 g



ON FULL ABSTRACTION FOR PCF: I, II AND III 39holds generally just when for every f ,\fR 2 O1 j f 2 R g � \fR 2 O2 j f 2 R g:(ii) Generally suppose C is a 
artesian 
losed 
ategory enri
hed over 
pos, andthat it is equipped with a notion of observables. (For example the 
ategory C A of
omputational arenas and inno
ent strategies whi
h is the subje
t matter of PartIII.) We 
all the enri
hing partial order the given ordering of C . It is easy to seethat if for ea
h A, every observable R 2 OA is upper-
losed with respe
t to thegiven ordering of C (1; A), then the given ordering is 
ontained in the asso
iatedobservational preorder. (This is the 
ase for C A .)3.2. Observables: the 
ase of p
fRe
all from x2.4 that we regard p
f as having two program types o; �. The valuesof type o are the booleans and those of type � are the numerals. Thus in T we havevalues t; f : 1 �! o and n : 1 �! � for ea
h natural number n. In a model C ofp
f it remains natural to take the booleans and numerals in C as values. (Theyare just the images of values in T.) Thus in any model C of p
f we have notions ofobservables along the lines of Example 3.1(ii). In prin
iple we 
an distinguish nineseparate notions. We have� termination� termination to value� termination to spe
i�ed valueand we may take these as� at N only� at B only� at both N and B.We now show that in good 
ir
umstan
es these distin
t notions 
oin
ide.We start by 
onsidering the general situation. Re
all from Example 3.1(ii) thatour di�erent notions of observables are de�ned in terms of observations:Of def= f a : I �! A j a; f 2 VP gOf;v def= f a : I �! A j a; f = v gfor f : I �! P where P is a program type and v 2 VP a value. Now suppose P andQ are program types. If v 2 VQ we write kv : P �! Q for a stri
t map 
arryingall values to the 
onstant value v. if u 2 VP and v 2 VQ we write lu;v for a stri
tmap whi
h 
arries just the value u to a value, that value being v. When su
h mapsexist we get 
onnexions between observations:Of;u = O(f ;lu;v);vOf;u = Of ;lu;uOf = O(f ;kv);v:



40 HYLAND AND ONGIn other words the di�erent kinds of observations are inter
hangeable.By Proposition 2.8 we are in this good position in stri
t models of p
f.Proposition 3.2. If C is a stri
t model for p
f then the nine separate notionsof observables (introdu
ed at the start of the subse
tion) 
oin
ide. �In the non-stri
t situation it seems best to make a 
hoi
e. We shall take as thestandard notion of observables for p
f that of termination at both ground types. Ingeneral unless we say otherwise this is the one we shall mean; and for an arbitrarymodel C of p
f we shall write bC for the quotient 
ategory with respe
t to thisnotion. But in 
ase C is stri
t all reasonable 
hoi
es give the same result.We note in passing the following simple fa
t about the observational quotient ofmodels of p
f.Proposition 3.3. Suppose that C is a model of p
f; then n 6 s in bC entailsn = s in C . In parti
ular(i) C adequate () bC adequate(ii) C standard =) bC standard(iii) C stri
t () bC stri
t. �(Of 
ourse the se
ond impli
ation is not reversible; T is not standard but bT is.)A 
onsequen
e is the following simple property of the observational preorder.Corollary 3.1. Suppose that in a model of p
f the maps f; g : Nk �! Nnumeralwise represent the partial fun
tions �;  : Nk �! N respe
tively. Thenf . g entails � �  (i.e. � extends  ).Proof. Suppose �(n1; � � � ; nk) = m. Then in C we havem = (n1; � � � ; nk); f . (n1; � � � ; nk); g:We dedu
e m = (n1; � � � ; nk); g in C and so  (n1; � � � ; nk) = m.3.3. Behavioural preorders, order-extensionality and 
ontext lemmaWe now turn to the standard notion(s) of observational preorders de�ned 
on-
retely over terms of a programming language. We restri
t attention to p
f thoughmu
h of the dis
ussion has wider appli
ation. Let s and t be 
losed terms of typeA. Re
all that s is said to approximate t observationally if C[s℄+ implies C[t℄+ forevery type-
ompatible 
ontext C[X ℄ su
h that C[s℄ and C[t℄ are programs. Supposex1 : A1; � � � ; xn : An ` s; t : B, and let � range over 
losing substitutions i.e. type-preserving fun
tions from variables to 
losed p
f-terms. There are several ways bywhi
h the notion of behavioural preorder may be extended to a preorder on openterms.� 
losure by 
ontext: s �� t def= if C[s℄+ then C[t℄+ for all type-
ompatible 
ontextsC[X ℄ su
h that both C[s℄ and C[t℄ are programs
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losure by abstra
tion: s ��o t def= if C[�~x : ~A:s℄+ then C[�~x : ~A:t℄+ for all
ontexts X : A1 ) � � � ) An ) B ` C[X ℄of program type� 
losure by substitution: s ��s t def= if C[s�℄+ then C[t�℄+ for all 
losing substitu-tions � and 
ontexts X : B ` C[X ℄ of program type.Remark. Ea
h of the preorders may be regarded as an appropriate de�nition(for di�erent reasons).(i) The �rst preorder �� is the observational preorder with respe
t to whi
h in-equationally full abstra
tion is standardly de�ned. Note that free variables in s(and similarly t) are bound as a result of the 
ontext substitution C[s℄.(ii) The se
ond preorder ��o (the supers
ript \o" is for 
losure) 
orresponds pre-
isely to the observational preorder of the p
f type theory T with respe
t to thenotion of observables as de�ned in Example 3.1.(iii) The third preorder ��s (the supers
ript \s" is for substitution) was studiedin [4℄ in the 
ontext of the lazy �-
al
ulus.We 
ould have de�ned �� (and similarly for the other two preorders) as:C[s℄ + v =) C[t℄ + v; for all values v;but this is equivalent to the simpler formulation given earlier. For if for someC[X ℄, we have C[s℄ + v and C[t℄ + v0 where v and v0 are distin
t values, takeD[X ℄ to be 
ond(eqC[X ℄v)0
. Then D[s℄+ and D[t℄*. (This is a 
on
rete proof ofProposition 3.2 for the stri
t initial model T of p
f.)What is the relationship between the three preorders? Restri
ted to 
losed terms,it is 
lear that they are equivalent. For open terms, it is easy to see that �� implies��o and ��s sin
e the e�e
ts of 
losure and 
losing substitution respe
tively 
an besimulated (by an appeal to Proposition 1.1) by appropriate 
ontexts. But in fa
tthe three preorders 
oin
ide even for open terms.Lemma 3.1. The preorder ��o is 
ontained in the preorder ��.Proof. Consider p
f-terms y1 : B1; � � � ; ym : Bm ` s; t : A. Take a 
ontext X :A ` C[X ℄ su
h that C[s℄ and C[t℄ are both programs. For any fresh variable z : Ewhere E is B1 ) � � � ) Bm ) A, (�z : E:C[z~y℄)(�~y : ~B:s) = C[s℄ is an equation inthe type theory T. Therefore, by Proposition 1.1, if C[s℄+ then (�z : E:C[z~y℄)(�~y :~B:s)+. Suppose s �� t; take D[X ℄ � (�z : E:C[z~y℄)(�~y : ~B:X), then (�z :E:C[z~y℄)(�~y : ~B:t)+, and so, C[t℄+ by Proposition 1.1.Remark. The above simple synta
ti
 argument is really quite general.



42 HYLAND AND ONGLemma 3.2. The preorder ��s is 
ontained in the preorder ��o.Proof. This is a simple appli
ation of Milner's 
ontext lemma. Suppose s ��s t.Then for all 
losing substitutions � we have s� �� t�, and hen
e for all 
losed terms~a of types ~A we have (�~x:s)~a �� (�~x:t)~a:But now by the 
ontext lemma it follows that �~x:s �� �~x:t, and so, s ��o t.Hen
e we 
an 
on
lude:Proposition 3.4. As preorders over open terms, ��, ��o and ��s are equivalent.�Context lemma and order-extensionality. To our knowledge, the �rst 
ontextlemma (or Operational Extensionality Theorem as Meyer 
alls it in [50℄) was provedby Milner in [52℄. Sin
e then, several results of a similar kind but for di�erentlanguages have been proved; see e.g. the work of Berry [9℄, Curien [24℄, Stoughton[72℄, Howe [36℄ and Abramsky and Ong [4℄ et
.Adapting Meyer's terminology, it seems reasonable to say that in a (symmetri
monoidal 
losed) 
ategory C equipped with a notion of observables, the observa-tional extensionality theorem is valid just in 
ase the indu
ed observationalpreorder . satis�es the following:f . g : A �! B () 8a : 1 �! A:a; f . a; g : 1 �! B:This is equivalent to the 
ondition that the global se
tions fun
tor from bC to theenri
hing 
ategory of posets is faithful, that is, to the 
ondition that the order-enri
hed 
ategory is order-extensional.Suppose now that the notion of observables O on C is that based on terminationat program type. Then the observational preorder . is just the (analogue of the)preorder ��o des
ribed above for the 
ase of p
f. But quite generally ��o 
oin
ideswith the 
ontextual preorder ��. Hen
e in these 
ir
umstan
es we refer to theobservational extensionality theorem as the 
ontext lemma. This is 
onsistent withthe usual de�nitions. Curien in [24, p. 324℄ de�nes the 
ontext lemma (in the 
aseof p
f) as the following property: for any 
losed terms s and t of the same typeA = (A1; � � � ; An; �) say,s �� t () su1 � � �un + v =) tu1 � � �un + v for any value v and any ui : Ai.By an easy indu
tive argument, the 
ontext lemma is equivalent to:s ��� t () su1 ��� tu1 for any u1 : A1,where ��� may be any of the three behavioural preorders we have just 
onsidered.If the 
ontext lemma (or observational extensionality theorem) is valid in a modelof p
f, we 
an exploit it to good e�e
t. As a simple example we give a 
onverse toCorollary 3.1.
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ontext lemma is valid in a model C for p
fand that the observational quotient bC is standard. Take f; g : Nk �! N in Cnumeralwise representing the partial fun
tions �;  : Nk �! N respe
tively, andsuppose that f is stri
t. Then we havef . g () � �  :Proof. By Corollary 3.1 we only need the 
onverse impli
ation, so we assume� �  . By the 
ontext lemma, it suÆ
es to showf(a1; � � � ; ak) . g(a1; � � � ; ak)(a1; � � � ; ak); f . (a1; � � � ; ak); gfor all a : 1 �! Nk in C . As bC is standard it suÆ
es to show that (a1; � � � ; ak); f anumeral implies (a1; � � � ; ak); g a numeral. As f is stri
t we know that (a1; � � � ; ak); fa numeral, b say, implies a1; � � � ; ak are numerals. We dedu
e that �(a1; � � � ; ak) = band so as � �  ,  (a1; � � � ; ak) = b. But then (a1; � � � ; ak); g = b as required.3.4. Adequa
y, observational and full abstra
tionWe give an a

ount of the notions of adequa
y and full abstra
tion in the generalframework we have introdu
ed.Definition 3.4. Suppose that M : T �! C is a model of the type theory T andthat T is equipped with a notion of observables O.(i) C is adequate just when for any R 2 OA we have(y) s 2 R and M(s) =M(t) implies t 2 R.(ii) Suppose further C is order-enri
hed. C is order-adequate just when for anyR 2 OA we have(y) s 2 R and M(s) 6M(t) implies t 2 R.The 
onnexions with standard notions of adequa
y is quite straightforward.Note that 
ondition (y) for a generating set of observations is suÆ
ient to ensureadequa
y. Consider the three notions of observables dis
ussed in Example 3.1.We assume that values in C are su
h that u is a value in T if and only if M(u)is a value in C .� In 
ase O is termination, C is adequate if and only ifM(s) a value in C impliess a value in T.� In 
ase O is termination to value, C is adequate if and only if M(s) = M(u)a value in C implies s = u in T.The �rst of these is the notion generally taken as standard notion of adequa
y.Note that the idea of order-adequa
y is negle
ted for the good reason that one
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onsider a model C where M(s) is greater than but not equal to avalue.We 
an give an easy alternative 
hara
terization of our notion of adequa
y whi
his familiar in the 
ase of the usual notion.Proposition 3.6. Suppose that M : T �! C and that O is a notion of observ-ables on T.(i)C is adequate if and only if for all s; t : A �! BM(s) =M(t) =) s ' t:(ii)Suppose that C is order-enri
hed. C is order-adequate if and only if for alls; t : A �! B M(s) 6M(t) =) s . t:The notion of full abstra
tion also makes sense at this level of generality.Definition 3.5. Suppose that M : T �! C is a model of the type theory Tand that T is equipped with a notion of observables O.(i) C is equationally fully abstra
t just when for all s; t : A �! BM(s) =M(t) () s ' t:(ii) Suppose further that C is order-enri
hed. C is (order) fully abstra
t justwhen M(s) 6M(t) () s . tfor all s; t : A �! B. This notion is often 
alled inequational full abstra
tion.It is 
lear that this is a simple generalization of the standard notion.Finally we introdu
e the notion whi
h is fundamental to our treatment of p
f.Definition 3.6. Suppose that M : T �! C is a model of a type theory T. ThenC is observationally abstra
t just when for all s; t : A �! BM(s) .M(t) () s . t:Thus in the given 
ir
umstan
es C is observationally abstra
t just when the
omposite T - C - bCis fully abstra
t.One way to think of observational abstra
tion is as follows. If C is observationallyabstra
t, then the 
ontexts in C allow us to make no more distin
tions between p
f-de�nable maps than do the 
ontexts in T. So T �! C indu
es (an order-embedding)bT �! bC .
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Part II. Dialogue games and inno
ent strategies



46 HYLAND AND ONG4. DIALOGUE GAMES OVER COMPUTATIONAL ARENASDialogue games are played by two players in a pres
ribed setting or environment
alled a 
omputational arena. The dialogue game playable in a given 
omputationalarena is 
ompletely determined by the asso
iated game tree. We spe
ify a gametree in two stages:� First the 
omputational arena spells out the moves (whi
h are questions andanswers) of the game and the justi�
ation ordering between question-moves.� The game tree is then systemati
ally generated from the set of moves subje
tto a number of ground rules. Formally the game tree is represented as the 
olle
tionof all paths in the tree. Su
h paths are 
alled legal positions.4.1. An approa
h based on dialogue gamesDialogue games are two-person games. The two players are 
alled Player (orP) and Opponent (or O). In diagrams we represent Player's move as the hollow
ir
le \Æ", and Opponent's move as the �lled 
ir
le \�". A dialogue game is playedin a 
omputational arena whi
h sets out the moves of the game. There are fourkinds of moves: Player's question whi
h we represent generi
ally as \(", Opponent'sanswer \)", Opponent's question\[" and Player's answer \℄". The representation ofquestions and answers as left and right mat
hing parentheses respe
tively re
e
tsthe following 
onvention: Player's question 
an only be answered by Opponent, andvi
e versa. In addition every answer is asso
iated with a unique question.Not all question-moves are ne
essarily available at the start of the game. Someof them may be
ome available or enabled as the play progresses. Ex
ept for theinitial questions (whi
h do not need any justi�
ation), a question-move 
an onlybe made provided its unique justifying (or enabling) move has been made. Thisnotion of justi�
ation is formulated as a partial ordering between questions so thatthe resultant partially ordered set is an upside-down forest.Definition 4.1. A 
omputational arena A 
onsists of the following data:� A partially ordered set of questions hQn(A);6A i su
h that the upper set ofea
h question is a �nite linear order. So the questions form an upside down forest(of trees), the root of ea
h tree being a maximal element in the ordering.� An asso
iation to ea
h question of a set of possible answers. This is representedas a map qnA : Ans(A) �! Qn(A) where Ans(A) is the set of all answers of thearena A. An answer a is said to be an appropriate answer of the question qnA(a).Questions of depth 0, 2, 4, et
. are asso
iated with Opponent (O). We referto these questions as O-questions. Questions of depth 1, 3, 5, et
. are asso
i-ated with Player (P), and we 
all them P-questions. Answers appropriate to anO-question are asso
iated with Player, and they are 
alled P-answers. Similarlyanswers appropriate to a P-question are asso
iated with Opponent, and they are
alled O-answers. Questions of depth 0 (
orresponding to the roots of trees) are
alled initial or opening questions, and they have a spe
ial status.Let q and q0 range over questions. We say that q0 justi�es q if q0 is the uniquequestion immediately above q in the ordering; that is to say, q0 is the least questionin Qn(A) su
h that q 6A q0 and q 6= q0. For the sake of uniformity, we shall alsorefer to the question qnA(a) as the (unique) justifying question of the answer a.
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omputational arena, a play involving Player and Op-ponent observes the following rules:� A play of a dialogue game always starts by Opponent asking an initial question.� Thereafter the play alternates stri
tly between Player and Opponent. A playends as soon as the initial question is answered.Prin
iples of Civil Conversation. Ea
h play tra
es out a dialogue of questions andanswers whi
h obeys the following prin
iples:1. Justi�
ation. A question is asked only if the dialogue at that point \warrants"it in the sense that (an instan
e of) the unique justifying question is pending i.e. al-ready asked but not yet answered. Likewise, an answer is pro�ered only if (aninstan
e of) the unique question with whi
h it is asso
iated is pending.2. Priority. Questions pending in a dialogue are answered on a \last-asked-�rst-answered" basis: the question whi
h is last asked must be answered �rst. This isequivalent to Gandy's \no-dangling-question-mark 
ondition".Definition 4.2. Formally a well-formed sequen
e s of a 
omputational arenaA is a sequen
e of moves m1 � m2 � � �mn su
h that ea
h move mi is asso
iatedwith a natural number �i 
alled the justi�
ation index of mi satisfying �i < i and
onditions (w1) to (w4) in the following. By 
onvention �1 is 0. The indi
es are bestthought of as a way of representing justi�
ation pointers. Note that the pre
edingrequirement �i < i means that the justi�
ation pointers always point ba
kwardsfrom mi to m�i . So a well-formed sequen
e s is by de�nition equipped with anauxiliary sequen
e of justi�
ation indi
es; both sequen
es are of the same length.We say that a move mj (whi
h may be a question or an answer) is expli
itlyjusti�ed by the question mi if mi justi�es mj , and that the justi�
ation pointer atmj points to mi. We say that mj is an expli
it answer of the question mi if mj isan appropriate answer of mi and that �j = i.(w1) Initial question to start. The �rst move m1 in s is an initial question ofA and there 
an be no o

urren
e of any initial question of A in the rest of s. By
onvention �1 is 0: an initial move is not justi�ed by any move.(w2) Alternating play. The sequen
e alternates between Player's move and Op-ponent's move.(w3) Expli
it justi�
ation. There are two 
ases:{ Any non-initial question may be asked if an instan
e of its unique justifyingquestion has already been asked and has not been answered so far. More pre
iselyfor any non-initial questionmj in s, the move indexed by �j (whi
h ism�j ) expli
itlyjusti�es mj , and the segment m�j �m�j+1 � � �mj of s does not 
ontain any expli
itanswer of m�j . Note that this means that for �j < k < j, if mk is an appropriateanswer of the question m�j then �k 6= �j ; in fa
t it is a 
onsequen
e of 
ondition(w4) that �k > �j .{ Any answer a may be o�ered if an instan
e of its unique justifying questionqnA(a) has already been asked and has not been answered so far. More pre
isely
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m m m m m m1 2 3 4 5 6

[ ( [ ] ) ]FIG. 1. An example.any answer mj in s expli
itly answers the question m�j , and that the segmentm�j �m�j+1 � � �mj�1 of s does not 
ontain any expli
it answer of m�j .(w4) \Last asked �rst answered" (or \no dangling question mark"). Any se-quen
e s � m1 �m2 � � �mn satisfying the pre
eding three 
onditions is said to satisfythe \last asked �rst answered" 
ondition if for any answer move mi in s, the movem�i whi
h expli
itly justi�es mi is the last unanswered question in m1 � � � � �mi�1.This 
ondition is equivalent to Gandy's no-dangling-question-mark 
ondition. We�rst introdu
e a de�nition. A question m o

urring in a sequen
e t of movesequipped with an auxiliary sequen
e of justi�
ation indi
es is said to be danglingin the sequen
e t if t does not 
ontain any expli
it answer of m. Using the samenotations as before, any sequen
e s � m1 � m2 � � �mn is said to satisfy the no-dangling-question-mark 
ondition if for every answer mj o

urring in the sequen
es, the segment m�j �m�j+1 � � �mj 
ontains no dangling question in itself. Note thatby 
ondition (w3) the question m�j is expli
itly answered by mjThe prin
iple of priority is a version of the so 
alled well-bra
keting 
onditionin formal language theory. There is a tradition in game semanti
s of intuitionisti
logi
 whi
h uses essentially the same 
ondition, see e.g. Fels
her's survey paper [28℄.For example, as shown in Figure 1, the sequen
e m1 �m2 � � �m6 of shape [�(�[�℄�)�℄with the 
orresponding sequen
e of justi�
ation indi
es 0 � 1 � 2 � 1 � 2 � 3 violatesthe no dangling question mark 
ondition (sin
e (say) the segment m2 � � �m5 has adangling question m3). It is easy to see that every initial subsequen
e of a well-formed sequen
e is well-formed.Remark.(i) For any well-formed sequen
e s � m1 � m2 � � �mn, for ea
h i, the justi�
a-tion index �i of mi is a pointer from mi to the move m�i whi
h expli
itly justi�esmi, regardless of whether mi is a question or an answer. The indi
es are a rep-resentation of pointers in terms of relative positions in the well-formed sequen
es. Therefore whenever the well-formed sequen
e is altered or transformed in anyway (say by removing some element), the auxiliary sequen
e of justi�
ation indi
eshas to be systemati
ally re
al
ulated in order to preserve the original justi�
ationrelationship. In the following we shall only be 
on
erned with a parti
ular kind oftransformation of well-formed sequen
es 
alled proje
tion. We say that a sequen
e
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ts to s0 (or s0 is a proje
tion of s) if s0 is obtained from sby deleting some elements from s; equivalently s0 is a subsequen
e of s.(ii) A proje
tion of a well-formed sequen
e s to a subsequen
e s0 respe
ts justi�-
ation if whenever a move m in s o

urs in the subsequen
e s0, so does the questionexpli
itly justifying m. If this 
ondition is satis�ed, we 
an be sure that the im-age s0 of the proje
tion (after the indi
es have been systemati
ally reset) satis�es
ondition (w3) of expli
it justi�
ation.(iii) Note that so long as m�j is a non-initial question of a well-formed sequen
e,m�j is in turn justi�ed by the movem� where � is the justi�
ation index ��j ofm�j .We 
an iterate this pro
ess thereby tra
ing out the history of expli
itly justifyingquestions or simply the history of justi�
ation of mj whi
h must end with the onlyunjusti�ed question of the well-formed sequen
e | the initial question m1. Clearlyfor any non-initial move mi, its history of justi�
ation is a unique subsequen
e ofs. For any move m o

urring in the history of justi�
ation of m0, we say that m0is hereditarily justi�ed by m. We state two elementary properties of well-formedsequen
es. The proof is straightforward and we omit it.Lemma 4.1.(i)In any initial subsequen
e of a well-formed sequen
e, the number of answerso

urring in it is less than or equal to the number of questions.(ii)Any well-formed sequen
e whose last element is an expli
it answer to theinitial O-question is maximal. �4.2. Views and legal positionsDefinition 4.3. Player's view, or P-view, ppq of a well-formed sequen
e p ofmoves is de�ned re
ursively. Let q range over well-formed sequen
es of moves, andr over segments of well-formed sequen
es.p[q def= [ if \[" is initial,pq � (�r � [q def= pqq � (�[ if \(" expli
itly justi�es \[",pq�)q def= pqq�)pq � [�r�℄q def= pqq if \℄" expli
itly answers \[",pq � (q def= pqq � (:Note that this de�nition is by re
ursion over the initial subsequen
es of a well-formed sequen
e. There is no ambiguity in the se
ond 
lause: given an O-question\[" at the end of the sequen
e, there may well be several o

urren
es of the uniquejustifying question \(" of \[" in the sequen
e to the left of \["; but by 
ondition(w3) there is a pointer emanating from \[" indi
ating a spe
i�
 instan
e of \("
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h justi�es it expli
itly. For example the P-view of a well-formed sequen
e ofmoves may have the shape[�(�) � (�) � (�[�(�) � (�) � (�[�(�) � � � :By 
onstru
tion whenever there is a pattern \(�[" in a P-view, the O-question \["is expli
itly justi�ed by the P-question \(". Also there 
an be no segments of theform \[� � �℄" in a P-view. This may be read as the following: Player ignores answersto questions posed by Opponent.There is a dual de�nition of Opponent's view, or O-view, xpy of a well-formedsequen
e p of moves:xq � [�r � (y def= xqy � [�( if \[" expli
itly justi�es \(",xq�℄y def= xqy�℄xq � (�r�)y def= xqy if \)" expli
itly answers \(",xq � [y def= xqy � [:The O-view of an empty sequen
e is the empty sequen
e. Sin
e a well-formedsequen
e never begins with a P-question, we omit the 
ase of x(y. An O-view 
annever have a segment of the form (� � �): Opponent ignores answers to questionsposed by Player. An O-view may, for example, have the shape[�(�[�℄ � [�℄ � [�(�[�℄ � [�(� � � :The following properties of P-view and O-view are easy to verify:� By repeated appli
ation of 
ondition (w3), if q � (�r�) is a well-formed sequen
eand if \(" expli
itly justi�es \)", thenpq � (�r�)q = pqq � (�):Dually if q � [�r�℄ is a well-formed sequen
e and if \[" expli
itly justi�es \℄", thenxq � [�r�℄y = xqy � [�℄:� If p is a well-formed sequen
e ending with an O-move (respe
tively P-move),then the last move of p is preserved by P-view (respe
tively O-view); that is to say,the last move of ppq (respe
tively xpy) 
omes from the same last move of p.What kind of a sequen
e is the P-view (or O-view) of a well-formed sequen
e?Is it ne
essarily a well-formed sequen
e? For s ranging over well-formed sequen
es,the operation of P-view s 7! psq is a proje
tion. So psq inherits the justi�
ationpointers from s in the natural way mentioned in the Remark . Unfortunately theproje
tion does not always respe
t justi�
ation. For example the following well-formed sequen
e with its auxiliary sequen
e of justi�
ation indi
es[1�(2�[3�(4�[5�(6�)7 0 � 1 � 2 � 3 � 2 � 3 � 6
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t to the inherited justi�
ation pointers, this se-quen
e does not satisfy 
ondition (w3) of well-formed sequen
e: the last P-question\(6" inherits a justi�
ation pointer to \[3" whi
h does not appear in the P-view. Asit stands, as unary operations over well-formed sequen
es, P-view and O-view areonly properly de�ned on 
ertain well-formed sequen
es. What additional 
ondition
hara
terizes these well-formed sequen
es? This motivates the visibility 
ondition.Visibility 
ondition. Re
all that we 
hoose to spe
ify the game tree of a dialoguegame in terms of the 
olle
tion of all paths in the tree. Su
h paths are 
alled legalpositions whi
h we de�ne as follows.Definition 4.4. A legal position of a 
omputational arena A is a well-formedsequen
e t whi
h satis�es the following visibility 
ondition:For any initial subsequen
e s � ( of the sequen
e t, the O-question \[" expli
itlyjustifying the P-question \(" o

urs in the P-view of s. Similarly for any initialsubsequen
e s � [ of the sequen
e t, the P-question expli
itly justifying \[" o

urs inthe O-view of s.It is easy to see that every initial subsequen
e of a legal position of an arena is alegal position. It is also easy to 
he
k that as proje
tions a
ting on legal positions,both the operations of P-view and O-view respe
t justi�
ation. In performing theoperation p�q (respe
tively x�y), we impli
itly assume that the justi�
ation indi
esare systemati
ally reset in psq (respe
tively xsy) in the appropriate way.The above visibility 
ondition applies only to questions of a legal position. How-ever this 
ondition is strong enough to ensure that a 
orresponding visibility 
ondi-tion automati
ally holds for answers. This is made pre
ise in the following lemmawhose essentially straightforward proof is omitted.Lemma 4.2. The expli
itly justifying question of every P-answer (respe
tively O-answer) in a legal position appears in the P-view (respe
tively O-view) of the legalposition up to that point. More pre
isely,(i)for every initial subsequen
e s�) of a legal position t, the P-question whi
h \)"expli
itly answers o

urs in xsy;(ii)for every initial subsequen
e s�℄ of a legal position t, the O-question whi
h \℄"expli
itly answers o

urs in psq. �A sequen
e of moves of a 
omputational arena A, equipped with an auxiliarysequen
e of justi�
ation pointers, is said to be a P-view (respe
tively O-view) if itis the P-view (respe
tively O-view) of some legal position of A. The operations ofP-view and O-view are well-de�ned on legal positions: they map legal positions tolegal positions.Notation. Given a sequen
e s � m1 � m2 � � �mn, we write s6mi for the initialsubsequen
e of s up to and in
luding mi, that is to say, m1 �m2 � � �mi. We writes<mi for m1 �m2 � � �mi�1.



52 HYLAND AND ONGProposition 4.1. Let s be a legal position of a 
omputational arena. Both theO-view and the P-view of s are legal positions.Proof. We will just 
onsider the 
ase of the P-view psq of a legal position sfor illustration. By the re
ursive de�nition of p�q, it is 
lear that 
onditions (w1)and (w2) are satis�ed by psq. For (w3), there are four 
ases to 
onsider. First P-question. Consider an initial subsequen
e p � ( of psq. By 
onstru
tion we see thatp is just ps<(q. Sin
e s satis�es the visibility 
ondition, \(" is expli
itly justi�edby some O-question whi
h o

urs in p. Se
ondly O-question. Consider an initialsubsequen
e of the shape p � [ of psq. By de�nition, either p is the empty sequen
e,in whi
h 
ase, \[" is an initial question; or p ends with an P-question \(" whi
hexpli
itly justi�es \[". Thirdly, P-answer: but by 
onstru
tion, a P-view does not
ontain any P-answer. Fourthly, O-answer. For any initial subsequen
e p�) of psq,suppose, for a 
ontradi
tion, the expli
itly justifying question \(" of \)" does noto

ur in p. Note that p is ps0q su
h that s0�) is an initial subsequen
e of s. Thereare two possibilities:� \(" o

urs in a segment (1� � � [2 of s where \(1" expli
itly justi�es \[2", and thatp 
ontains the segment (1�[2. In this 
ase, s 
ontains the segment (1� � � (� � � [2� � �).By the no dangling question 
ondition, an appropriate answer of \[2", say \℄3",o

urs before \)". That is to say, s 
ontains the segment (1� � � (� � � [2� � �℄3 � � �). AP-view does not 
ontain any P-answer: we 
onsider ea
h of the three 
ases ex-plaining the disappearan
e of \℄3" in ps0q in turn. Case 1: s 
ontains the segment[2� � � (4� � �℄3 � � � [5 with \(4" expli
itly justifying \[5". By the no dangling question
ondition, \(4" expli
itly justi�es an appropriate answer whi
h o

urs before \℄3".But this 
ontradi
ts our assumption that \(4" remains expli
itly unanswered up to\[5". Case 2: s 
ontains the segment [2� � � [4� � �℄3 � � �℄5 with \[4" expli
itly justifying\℄5" su
h that \[4" and \[5" vanish in ps0q a

ording to the fourth 
lause of thede�nition of p�q. But this violates the no dangling question 
ondition. Case 3: thesegment [2� � �℄3 vanishes under the P-view operation by virtue of the fourth 
lauseof the re
ursive de�nition. But this 
ontradi
ts our assumption that the segment(1�[2 appears in p.� \(" o

urs in a segment [1� � �℄2 of s where \[1" expli
itly justi�es \℄2". So s
ontains the segment [1� � � (� � �℄2 � � �): note that ) has to o

ur to the right of ℄2, forotherwise it would not o

ur in the P-view psq. But this violates the no danglingquestion 
ondition.Condition (w4) is va
uously satis�ed sin
e it is easy to see that whenever ananswer and its expli
itly justi�ed question o

ur in a P-view, they are ne
es-sarily P-question and O-answer and adja
ent to ea
h other. Finally, the visi-bility 
ondition. For any initial subsequen
e p � [ of a P-view, by 
onstru
tion,the last move \(" of p expli
itly justi�es \[". Sin
e any initial subsequen
e ofa P-view is a P-view, and so, is P-view invariant, \(" o

urs in ppq. For anyinitial subsequen
e p � ( of a P-view psq, note that by 
onstru
tion, p is ps0q,for some initial subsequen
e s0 of s su
h that s0 � ( is in turn a subsequen
e ofs. Sin
e s satis�es the visibility 
ondition, the expli
itly justifying question of\(" appears in ps0q � p. It then remains to observe that p is P-view invariant.



ON FULL ABSTRACTION FOR PCF: I, II AND III 53Lemma 4.3. The operations of P-view and O-view are idempotent i.e. pppqq =ppq, and xxpyy = xpy for any legal position p. �The proof is straightforward and is left to the reader. We note that sin
e aninitial subsequen
e of a P-view (respe
tively O-view) is a P-view (respe
tively O-view), it is therefore invariant under the P-view (respe
tively O-view) operation.Re
all that the history of justi�
ation of a move m in a well-formed sequen
e s isa well-de�ned subsequen
e of s whi
h may be tra
ed out by su

essively \
hasing"the justi�
ation pointers starting from m until the initial question is rea
hed. Ournext result shows that the history of justi�
ation of a move in a legal position maybe de�ned 
ompletely in terms of P-view and O-view.Lemma 4.4. Let t be a legal position of a 
omputational arena.(i)If t ends with a question m then the history of justi�
ation of m (as a subse-quen
e of t) is pxtyq = xptqy, and is therefore a legal position.(ii)If t ends with an answer m whi
h is expli
itly justi�ed by (say) the questionm0 in t, then the history of justi�
ation of m is pxt6m0yq �m = xpt6m0qy �m, wheret6m0 is the initial subsequen
e of t up to and in
luding m0.Proof. (i) We shall just 
onsider the 
ase ofm being a P-question; the argumentfor the 
ase of m being an O-question is similar. We prove by indu
tion on thelength of su
h sequen
es. The base 
ase of length 2 is immediate. For the indu
tive
ase 
onsider the following analysis of t where we use \(" to represent m, and that\(0" and \[" are spe
i�
 instan
es of moves in t su
h that \[" expli
itly justi�es \("and that \(0" expli
itly justi�es \[": tz }| {s0z }| {� � �| {z }s00 (0 � � � [| {z }s � � �| {z }t0 (
As shown in the above diagram, we write s � s0 � [ and t � t0 � (. Now, we havexty = xs0y � [�(. Hen
e, we havepxtyq = pxs0y � [�(q = pxs0y � [q � ( = pxsyq � (:Hen
e, by the indu
tion hypothesis, we havepxtyq = xpsqy � (: (1)We 
an already 
on
lude that the history of justi�
ation of \(" is pxtyq sin
e, bythe indu
tion hypothesis, the history of justi�
ation of \[" is xpsqy. However westill need to show that pxtyq = xptqy. Observe that psq = ps00q � (0�[, hen
e we getfrom (1), pxtyq = xps00q � (0�[y � ( = xps00q � (0y � [�(: (2)



54 HYLAND AND ONGNow we have xptqy = xpt0q � (y = xpt0q<[y � [�(: (3)Re
all that p<m denotes the initial subsequen
e of p up to but not in
luding m.The last equation is justi�ed sin
e the O-question \[" whi
h expli
itly justi�es \("o

urs in pt0q: this is the visibility 
ondition. For the same reason, and be
ause\(0" expli
itly justi�es \[", we infer thatpt0q<[ = ps00q � (0: (4)Combining equations (3) and (4), we get xptqy = xps00q � (0y � [�(: Hen
e from (2), wehave xptqy = pxtyq. The proof of (ii) follows immediately.4.3. Constru
tions of 
omputational arenasWe 
ould already have de�ned the produ
t A � B and fun
tion spa
e A )B of 
omputational arenas A and B. These will turn out to be a
tual produ
tand fun
tion spa
e of a 
artesian 
losed 
ategory of 
omputational arenas. Theveri�
ation of the respe
tive universal properties will have to wait until the 
ategoryis introdu
ed in the next se
tion.Produ
t. For produ
t we simply take the obvious \disjoint sum" of the arenasA and B as dire
ted graphs. More pre
iselyQn(A�B) def= Qn(A) +Qn(B);Ans(A�B) def= Ans(A) + Ans(B);qn(A�B) def= qn(A) + qn(B) (= [qn(A); in1; qn(B); in2℄)where ini is the 
anoni
al inje
tion map and [f; g℄ the so-
alled sour
e tupling.Fun
tion spa
e. For A) B it is simplest to draw a pi
ture as in Figure 2. (Inthe pi
ture there is only one initial move in B.) The initial moves of A ) B arethose of B; and to the tree \below" ea
h su
h initial move, we graft onto it a 
opyof the forest of questions of A. More formally we de�neQn(A) B) def= (Qn(A)�MB) +Qn(B);Ans(A) B) def= (Ans(A)�MB) + Ans(B);qn(A) B) def= (qn(A)� IdMB ) + qn(B);where MB is the set of initial (equivalently maximal) questions of B. The justi�-
ation ordering 6A)B is de�ned to be the least partial order whi
h in
ludes thepartial order asso
iated with Qn(A) � MB + Qn(B) viewed as a 
onstru
tion ofposets (MB being a dis
rete poset), and satis�es the additional 
ondition:(q;m) 6A)B m for any m 2 MB and q 2 Qn(A):
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Forest
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FIG. 2. The forest of questions of A) B.The net e�e
t of the 
onstru
tion is that moves of the new 
omputational arenaA ) B are de�ned in terms of those of A and B in a way similar to the gamesemanti
s of the linear formula (!A)? / B (read \shriek A perp par B") in thestyle of Blass a

ording to whi
h a P-move (respe
tively O-move) in A be
omes anO-move (respe
tively P-move) in A) B (see [13℄). More a

urately 
orrespondingto ea
h A-question at level 2n (respe
tively 2n+ 1) of the forest Qn(A), there arem 
opies of the same question at level 2n + 1 (respe
tively 2n + 2) of the forestQn(A) B), where m is the number of initial questions in Qn(B).This is a good pla
e to 
onsider some examples and �x some notations.Example 4.1.(i) The natural numbers 
omputational arena N is spe
i�ed by the following data:{ The forest of questions is a singleton tree | the initial O-question \[�" (orsimply \[" whenever its type is 
lear).{ The answers are all P-answers ℄0; ℄1; ℄2; � � � whi
h are appropriate to the onlyquestion \[�".(ii) The boolean 
omputational arena B is de�ned similarly: the forest of ques-tions is a singleton \[o"; the answers (all P-answers) are \℄t" and \℄f".There is no harm in writing the answers simply as 0; 1; 2; � � � rather than ℄0; ℄1; ℄2; � � �,and we shall do so o

asionally.Remark. More generally, for any p
f-type A = (A1; � � � ; An; �), the forest ofquestions of the 
orresponding p
f-arena A is an inverted �nite tree whi
h is 
on-stru
ted by re
ursion as follows: \below" the initial question 
orresponding to �,graft onto it a 
opy ea
h of the tree of questions 
orresponding to A1; � � � ; An re-spe
tively (of 
ourse, O-questions and P-questions in the Ais are inter
hanged as aresult).
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1.1.1FIG. 3. Forest of questions of arena (((�; �); �; �); �; �).It is useful to establish a naming 
onvention for questions of a p
f-arena A. Ea
hquestion o

urring in the tree is marked by an o

urren
e whi
h is a �nite sequen
eof positive integers. The o

urren
e is de�ned as follows:� the initial question of � (or o) has o

urren
e �, the empty sequen
e� for 1 6 i 6 n, if a question m of the arena Ai has o

urren
e l then m regardedas a question of (A1; � � � ; An; �) has o

urren
e i � l.For example the forest of questions of the arena (((�; �); �; �); �; �) is shown in Figure 3with the questions annotated with o

urren
es. Answers of a (p
f-)arena are just\
opies" of answers at program type, namely, ℄0; ℄1; ℄2; � � � or ℄t and ℄f .4.4. Properties of fun
tion spa
e arenasThe de�nition of fun
tion spa
e arena is remarkably simple. Our task now is toinvestigate properties of the fun
tion spa
e arena and to express them syntheti
ally,i.e. in terms of the respe
tive properties of the sub-arenas A and B.Components. Let s be a legal position of a fun
tion spa
e arena A) B and leta be an (instan
e of an) A-initial move in s. We refer to the following subsequen
esof s as the 
omponents of s:� s � B, the B-
omponent of s (or the proje
tion of s onto B), is the subsequen
eof s 
onsisting of all B-moves in s,� s � (A; a), the (A; a)-
omponent of s (or the proje
tion of s onto the 
omponent(A; a)), is the subsequen
e of s 
onsisting of all moves in A whi
h are hereditarilyjusti�ed by a.In addition we write s � (A; a)+ to mean the subsequen
e m � s � (A; a) where m isthe initial B-move of s. Clearly every move of s belongs to pre
isely one 
omponentof s.Two useful properties we shall prove shortly about fun
tion spa
e arenas are:� Proje
tion 
onvention. The proje
tion of a legal position of A ) B onto B isa legal position in B, while the proje
tion onto A 
an be read as an appropriateinterleaving of a �nite number of legal positions in A.
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hing 
onvention. Player, but not Opponent, is allowed to swit
h 
ompo-nent, that is to say, either between a B-
omponent and an (A; a)-
omponent, orbetween di�erent (A; a)-
omponents.Both 
onventions are reminis
ent of similar 
onditions whi
h are axioms in the
onstru
tion of par games in the Blass-style game semanti
s of Linear Logi
 (seefor example [13, 2, 39℄). It is an indi
ation of the simpli
ity of the arena approa
hthat these 
onventions are 
onsequent features and not part of the de�nition of thefun
tion spa
e 
omputational arena.Let s be a legal position of the arena A. Let b0 be an initial move of the arenaB, and suppose s begins with an initial move a. It is easy to see that b0 �s is a legalposition of the fun
tion spa
e arena (A) B) su
h thatfb0 � sg � (A; a)+ = b0 � s;whi
h is the same as saying that all moves of the legal position b0 � s are in the
omponent (A; a)+. (In this paper we use 
urly parentheses \f" and \g" to indi
ateoperator pre
eden
e rather than the more standard \(" and \)" whi
h are reservedfor denoting P-questions and O-answers respe
tively.) Conversely if t is a legalposition in (A) B) su
h that t � (A; a)+ = t;then t � (A; a) is a legal position in A beginning with the initial A-move a.Lemma 4.5. Let b0 �s be a legal position of the arena A) B su
h that all movesin s belong to the 
omponent (A; a). Then we have:(i)pb0 � sqA)B = b0 � xsyA.(ii)xb0 � syA)B = b0 � psqAProof. The proof is a straightforward indu
tion on the length of the legal posi-tion in question. We sket
h the argument for (i) for illustration. Suppose the (A)B)-legal position b0 �s is of the form b0 �p �m �r �m0 where the P-questionm expli
itlyjusti�es the O-question m0. Then its P-view is pb0 � pqA)B �m �m0, whi
h by theindu
tion hypothesis is b0 �xpyA �m �m0. As a move in A, m is the O-question whi
hexpli
itly justi�es the P-questionm0. Therefore xpyA �m�m0 is just xp �m � r �m0yA.The other 
ases of the re
ursive de�nition of P-view are dealt with similarly.We are now in a position to state and prove the Swit
hing Convention.Proposition 4.2. Let s be a legal position of an arena A ) B beginning withan initial move b, and let the last move of s be a P-move m (for (i) and (ii)).(i)(O-view proje
tion 1). If m is in B then xsyA)B � B = xs � ByB =xsyA)B.(ii)(O-view proje
tion 2). If m is in the 
omponent (A; a) thenxsyA)B � (A; a)+ = b � ps � (A; a)qA = xsyA)B:
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hing 
onvention). Whenever any two 
onse
utive moves m and m0in s = [� � �m � m0 � � � are in di�erent 
omponents of s, then they are of the shape� � Æ, as opposed to Æ � �. In other words Player, but not Opponent, is allowed toswit
h 
omponent.Proof. We prove (i), (ii) and (iii) by mutual indu
tion on the length of s. Therespe
tive base 
ases are trivial. We 
onsider the indu
tive 
ases in turn.(i). Let m� be the move in s whi
h expli
itly justi�es m; by 
onstru
tion of s, m�is an O-move in B. Sin
e s<m� �m� has length less than that of s, by the indu
tionhypothesis of (iii), the last move of s<m� is in B. Hen
exsy � B = xs<m�y � B �m� �m by the indu
tion hypo. of (i)= xs<m� � By �m� �m= xfs<m� �m� �mg � By= xs � By:Also by indu
tion xsy � B = xs<m�y�B � m� � m = xs<m�y � m� � m, and so,xsy � B = xsy.(ii). If m is (an instan
e of) an initial A-move a then xsy = b �m. We then havexsyA)B � (A; a)+ = b �m = b � ps � (A; a)qA:If m is not an initial A-move then let m� be the O-move expli
itly justifying m.Note that both m and m� belong to the same 
omponent (A; a), say. We havexsy = xs<m�y �m� �m. By the indu
tion hypothesis of (iii), the last move of s<m�is in the same 
omponent (A; a) as m�. Hen
e by the indu
tion hypothesis of (ii),xsyA)B � (A; a)+ = b � ps<m� � (A; a)qA �m� �m = b � ps � (A; a)qA:Also by indu
tion xsyA)B � (A; a)+ = xsyA)B.(iii). Let s be a legal position whose last move m is an O-move, and let m� be theP-move in s immediately pre
eding m. There are two 
ases. First, m� is in (A; a).By the indu
tion hypothesis of (ii), xs6m�y has the form [�p where \[" is the initialB-move in s, and p is a sequen
e of moves in (A; a). By the visibility 
ondition themove whi
h expli
itly justi�es m is either \[" or some move in p. The former is tobe reje
ted sin
e m being an O-move 
an only be justi�ed by a P-question. Hen
em is expli
itly justi�ed by some move in the (A; a)-
omponent, and so, it must bea move of the same 
omponent. The other 
ase of m� in B follows from the indu
-tion hypothesis of (i), and we leave the details as an easy exer
ise for the reader.Example 4.2. Consider the legal position s of the arena A) B as in Figure 4.The P-view psq is b1 � a1 � a4 � b4 � b5 with justi�
ation indi
es 0 � 1 � 2 � 1 � 4, andso, psq � B is b1 � b4 � b5 with justi�
ation indi
es 0 � 1 � 2. Clearly s � B = ps � Bq.Observe that psq � B is a (proper) subsequen
e of ps � Bq.
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5FIG. 4. An example.Convention In the following we write s 4 t to mean that s is a subsequen
e (notne
essarily initial) of t.Proposition 4.3 (P-view Proje
tion). Let s be a legal position of an arenaA) B. Suppose s ends with the move m.(i)If m is in B then psqA)B � B 4 ps � BqB.(ii)If m is in the 
omponent (A; a) then psqA)B � (A; a)+ 4 b � ps � (A; a)qA.Proof. Sin
e the proof is quite te
hni
al, we relegate it to the Appendix.Proposition 4.4 (Proje
tion Convention). Let s be a legal position of thearena A) B.(i)The proje
tion s � B of s onto B is a legal position in B.(ii)For any instan
e a of an initial A-move in s, the proje
tion s � (A; a) is alegal position of the arena A.Proof. (i). We show that t � s � B is a legal position of B. Condition (w1)of a well-formed sequen
e is 
learly inherited by t. An immediate 
onsequen
e ofthe Swit
hing Convention (Proposition 4.2) is that t is an alternating sequen
e.Suppose we are given a P-question \(" in t. By regarding \(" as a move in s whi
his a legal position, the expli
itly justifying question \[" (say) o

urs before \(" ins and is pointed to by the justi�
ation index. Now \[" is a B-question, and so,it o

urs in t before \(". The same argument applies to expli
it justi�
ation ofO-questions in t. By pro
eeding in an identi
al manner and by 
onsidering thede�nition of the order stru
ture of Qn(A ) B) in terms of that of Qn(B), we see



60 HYLAND AND ONGthat properties (w3) as well as (w4) are inherited by t. For the visibility 
ondition,take any P-question \(" in t. By regarding it as a P-question in s whi
h is a legalposition, we infer that the expli
itly justifying question \[" of \(" o

urs in ps<(q.Sin
e \[" is a B-move, it o

urs in ps<(q � B. Hen
e, by Proposition 4.3, \[" o

ursin ps<( � Bq.For (ii) we shall just verify the visibility 
ondition; the rest is routine. Let sbe a legal position in A ) B whi
h begins with b0. Take any P-question (re-garded as a move in A) m in t � s � (A; a). By regarding it as an O-question(of A ) B) in s, the P-question m (also in the 
omponent (A; a)) whi
h ex-pli
itly justi�es m is in xs<myA)B . Observe that m belongs to xs<my � (A; a)+.By Proposition 4.2(ii), m is in xs<m � (A; a)+y whi
h is just xb0 � fs<mg � (A; a)y.By de�nition all moves of s<m � (A; a) are in the 
omponent (A; a); and the lastmove is a P-move in A) B. Hen
e, by Lemma 4.5, m is in pt<mq as required.Remark. The payo� of the visibility 
ondition may be seen in the above: theproje
tion of a merely well-formed sequen
e of a fun
tion spa
e 
omputationalarena A ) B (say) onto either of the two 
omponents A or B is not ne
essarilywell-formed. It is easy to 
he
k that the following sequen
e with the auxiliarysequen
e of justi�
ation indi
es is well-formed in A) B:[B �(A�[A�(B �[A; 0 � 1 � 2 � 1 � 2however the proje
tion onto A with the auxiliary sequen
e of justi�
ation indi
essystemati
ally reset in the natural way as follows(A�[A�[A 0 � 1 � 1is not an alternating sequen
e.



ON FULL ABSTRACTION FOR PCF: I, II AND III 615. INNOCENT STRATEGIESA strategy for a player is a rule or a method that determines how a player is torespond at a position where he is expe
ted to make a move. Abstra
tly a strategyfor Player, say, is a partial fun
tion (of a 
ertain kind) mapping legal positions (atwhi
h Player is to move) to P-moves. We represent a strategy as an appropriate sub-tree of the game tree asso
iated with an arena. Sin
e we have 
hosen to representthe game tree asso
iated with an arena A formally as the 
olle
tion of all paths(= legal positions) in the tree, we de�ne a P-strategy � of A to be a non-emptypre�x-
losed 
olle
tion of legal positions of A satisfying the following 
onditions:(s1) Determina
y. For any s 2 � at whi
h Player is to move, if both s � a ands � b are in � then a = b.(s2) Contingent 
ompleteness. For any s 2 � at whi
h Opponent is to move andfor any O-move a, if s � a is a legal position then it is in �.5.1. Un
overing and 
omposition of strategiesFirst some terminology. A sequen
e of moves of arenas A1; � � � ; An is said tobe expli
itly justi�ed if it is equipped with justi�
ation pointers represented by anasso
iated sequen
e of natural numbers 
alled justi�
ation indi
es.Suppose we are given strategies � and � of 
omputational arenas A ) B andB ) C respe
tively. Take a legal position s of the 
omputational arena A ) C.We de�ne the un
overing of s in a

ord with � and � , written u(s; �; �), as theunique maximal expli
itly justi�ed sequen
e u of moves of A, B and C satisfyingthe following properties: (u1) u � (A;C) 6 s;(u2) u � (B;C) 2 �;(u3) u � (A;B)b 2 �;where 6 in the �rst 
lause is pre�x ordering between legal positions. For legalpositions s and t, we say that s 6 t holds just in 
ase� as sequen
es of moves, s is a pre�x of t� the auxiliary sequen
e of justi�
ation indi
es of s is a pre�x of that of t.The subs
ript b in the third 
lause ranges over all instan
es of initial B-moves in u.Note that u may be an in�nite sequen
e of moves; in whi
h 
ase we read the se
ond
lause as: every �nite trun
ation of the proje
ted sequen
e u � (B;C) belongs to � .The same quali�
ation applies to the third 
lause.Convention. . By a 
omponent is meant either (B;C), or (A;B)b where b isan instan
e of an initial B-move o

urring in u. We will use X as a meta-variableranging over 
omponents, and �X a meta-variable denoting � if X is (A;B)b, or �if X is (B;C).Definition 5.1. The un
overing u = u(s; �; �) may be generated by the follow-ing algorithm. We write u = u1 � u2 � u3 � � � � with ui ranging over moves in arenasA;B and C. Let n be the length of u (note that n may be in�nite). We show
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tively that for ea
h i 6 n, the initial subsequen
e v � u1 � u2 � � �ui satis�es
lauses (u1), (u2) and (u3); and if v < u, then the next move ui+1 is uniquelyde�ned.(1) If s is the empty sequen
e, then so is u; otherwise the initial move of s isthe initial move of u.(2) If v � u1 �u2 � � � � �ui has been generated and ui 
an be regarded as an O-movein the 
omponent X (that is to say, ui is either an O-move in the arena A) C orit is a B-move), then v � X is indu
tively in �X (whi
h is � or � as appropriate).(2.1) If (v � X) � a 2 �X for (a ne
essarily unique) a, then there are twopossibilities:(2.1.1) either a is a B-move, then we de�ne ui+1 to be a;(2.1.2) or a is a move in A) C, in whi
h 
ase,(2.1.2.1) if we still have v � (A;C) � a 6 s, then de�ne ui+1 to be a,(2.1.2.2) otherwise we stop with u = v.(2.2) If not, we stop with u = v.(3) If v � u1 �u2 �� � ��ui has been generated and ends with a move ui in 
omponentX whi
h 
annot be regarded as an O-move (that is to say, ui is a P-move in A) C),then indu
tively, v � (A;C) 6 s.(3.1) If there is a move in A) C, say a, making v � (A;C) �a 6 s, then de�neui+1 to be a. (The move a must be an O-move in the same 
omponent (in the senseof Proposition 4.2) of A) C as ui, by the Swit
hing Convention.)(3.2) If not, stop with u = v.It is straightforward to 
he
k that u generated as above is the un
overing of sa

ording to � and � , and is uniquely de�ned.We make the following useful observation.Lemma 5.1. For any legal position t of A) C, and any s 6 u(t; �; �) � (A;C),we have u(s; �; �) � (A;C) = s:Proof. Let v be the maximal initial subsequen
e of u(t; �; �) su
h that v � (A;C) =s. It suÆ
es to 
he
k that v is in fa
t u(s; �; �).Composition of strategies. We 
an now formally de�ne 
omposition. Givenstrategies � and � of A) B and B ) C respe
tively, we de�ne�; � def= fu(s; �; �) � (A;C) : s is a legal position of A) C g:The 
omposition of strategies is reminis
ent of 
sp-style parallel 
omposition plushiding [35℄.The 
olle
tion �; � is 
learly non-empty: any initial move of A ) C (regardedas a singleton sequen
e) belongs to �; � . For any legal position t of A ) C, and



ON FULL ABSTRACTION FOR PCF: I, II AND III 63for any s 6 u(t; �; �) � (A;C), by Lemma 5.1, s = u(s; �; �) � (A;C), and so, s is in�; � . Therefore �; � is pre�x-
losed.Now 
onsider De�nition 5.1 (of un
overing). Suppose s 2 �; � ends with an O-move d0. Writing u(s; �; �) as u, it is 
lear that if u is in�nite, then there 
an beno P-move a su
h that s � a 2 �; � . So suppose u is �nite. By 
onstru
tion ofthe un
overing u, for some �nite n > 0, there are B-moves d1; � � � ; dn, and for ea
h0 6 i 6 n, writing Xi as the 
omponent in whi
h di may be regarded as an O-move,su
h that:� u � v � d0 � d1 � � � dn with v � d0 � (A;C) = s, and� (v � d0 � d1 � � � � � di � Xi) � di+1 2 �Xi , for ea
h 0 6 i 6 n� 1.Further(A) either (v � d0 � d1 � � � � � dn � Xn) is a maximal legal position in �Xn , 
orre-sponding to 
ase (2.2) in De�nition 5.1; note that in this 
ase there 
an be noP-move a for whi
h s � a 2 �; � ;(B) or there is some P-move a in A ) C su
h that v � d0 � d1 � � � � � dn � Xn � a 2�Xn 
orresponding to 
ase (3.2) in the same de�nition. In this 
ase observe thats � a 2 �; � , and a is unique.Hen
e we see that 
ondition (s1) (of strategy) is satis�ed by the 
olle
tion �; � .Also, by referen
e to 
lause (3.1) of De�nition 5.1, �; � inherits property (s2) fromthe same of � and � . Hen
e �; � is a strategy.Composition of strategies as de�ned is asso
iative. Given strategies �; � and � ofarenas A ) B, B ) C and C ) D respe
tively; take any s 2 (�; �); �, we showthat s 2 �; (� ; �) by indu
tion on the length of s. (In
lusion in the other dire
tionis similar and we leave it as an exer
ise for the reader.) The base 
ase is obvious.Let m be the last move of s. W.l.o.g. suppose m is an A-move. The 
ase of m beingan O-move is easy: by the swit
hing 
onvention (Proposition 4.2), the move m�pre
eding m must also be in the same 
omponent as m. Sin
e s6m� is in �; (� ; �)by the indu
tion hypothesis, so must s by 
ondition (s2) of strategy.Now suppose m is a P-move. We 
onsider the less straightforward 
ase ofm� being a D-move. By the indu
tion hypothesis s6m� is in �; (� ; �). Writ-ing u(s6m� ; �; � ; �) as u, by Lemma 5.1, u � (A;D) = s6m� , as depi
ted in Fig-ure 5. Sin
e s is in (�; �); �; by Lemma 5.1, writing u(s; �; �; �) as v, we havev � (A;D) = s, and for some C-moves ~
, v has shape w � ~
 �m where w has m� asthe last move. Let 
n be the last move in ~
, and suppose 
n is in the 
omponent(A;C)
0 . By de�nition of the un
overing v,v � (A;C)
0 2 �; �:Observe that 
n andm are the penultimate and last move respe
tively in v � (A;C)
0 .By de�nition of �; � and by Lemma 5.1, writing u(v � (A;C)
0 ; �; �) as l, we havel � (A;C)
0 = v � (A;C)
0where l has shape � � �~
�~b�m. Supposem be in the (A;B)b0 -
omponent of l. We havel � (A;B)b0 2 �. It is easy to 
he
k that u �~b �m is u(s; �; � ; �), and u �~b �m � (A;D)is s. Hen
e s 2 �; (� ; �).
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FIG. 5. Composition of strategies is asso
iative.To summarize we have shown:Proposition 5.1. Composition of strategies is well-de�ned and asso
iative. �For strategies �; � and � of arenas A ) B, B ) C and C ) D respe
tivelyand for a legal position s of A ) D, we de�ne u(s; �; �; �) as the unique maximalexpli
itly justi�ed sequen
e u of moves of arenas A;B;C and D satisfying� u � (A;D) 6 s� u � (C;D) 2 �� u � (B;C)
i 2 � for ea
h instan
e 
i of initial (B ) C)-move o

urring in u� u � (A;B)bj 2 � for ea
h instan
e bj of an initial (A ) B)-move o

urring inu.We leave the essentially straightforward proof of the following result to the reader.Proposition 5.2. The 
omposition (�; �); � (or equivalently �; (� ; �)) is�; � ; � = fu(s; �; �; �) � (A;D) : s is a legal position of A) D g: �5.2. Representation of inno
ent strategiesA strategy for Player is history-free if Player's move at any position of the gamewhere he is expe
ted to play is determined by the last move of Opponent: thehistory of the play prior to the last move has no bearing on Player's response (see[2℄). If Player's move depends on the entire history of the play up to that point,then the strategy is said to be history-sensitive. Inno
ent strategies are neither



ON FULL ABSTRACTION FOR PCF: I, II AND III 65history-free nor history-sensitive. Rather they determine a response to Opponent'smove on the basis of a narrow view of the history of the play up to that point (hen
ethe adje
tive \inno
ent").Ea
h su
h P-strategy, say �, is determined by a partial fun
tion of a 
ertain kindmapping P-views p (of legal positions at whi
h Player is to move) to pairs of theform h a; � i where a is a P-move and � a justi�
ation pointer from a to a position i(say) in the P-view p. Suppose p = psq and i is the position in s that proje
ts ontoi under P-view. We shall 
all the new pointer � from a to i the transposed pointerof �.Definition 5.2. [Inno
ent strategy℄A strategy � is said to be inno
ent if there issome partial fun
tion f of the abovementioned kind su
h that for any legal positions 2 � at whi
h P is to move, and for any P-move a, s�a (together with a justi�
ationpointer �, say, for a) is in � if and only if f(psq) = h a; �0 i, and � 
oin
ides with thetransposed pointer of �0. We shall 
all su
h a fun
tion f a de�ning partial fun
tionfor the inno
ent strategy �.Remark. In the following we shall often regard de�ning partial fun
tions ofinno
ent strategies 
onveniently as a fun
tion from P-views to P-move, suppressingthe justi�
ation pointer of the P-move whenever where it points to is 
lear fromthe 
ontext. We regard this as a harmless simpli�
ation.It is easy to see that 
orresponding to ea
h inno
ent strategy �, there is a least(and so unique) su
h partial fun
tion regarded as a graph, written f�. We 
all f�the representing partial fun
tion for the inno
ent strategy �. We also 
all fun
tionsof the form f� representing inno
ent fun
tions. The representing fun
tion f� maybe 
hara
terised as follows: for any P-view p ending with an O-move, and for anyP-move a, f�(p) is de�ned, and equal to a if and only if there is some s 2 � su
hthat(i) psq = p, and(ii) s � a 2 �.So for any P-view p ending with an O-move, f�(p) is unde�ned if and only if eitherthere is no legal position s 2 � su
h that p = psq, or for some (and hen
e for every)legal position s 2 � su
h that p = psq, s is a maximal legal position in �. (It iseasy to see that a history-free strategy is automati
ally inno
ent, but the 
onverseis not true.)Representation of inno
ent strategies. Clearly not every partial fun
tion from P-views to P-moves gives rise to an inno
ent strategy. There is, however, a ne
essaryand suÆ
ient 
ondition for a partial fun
tion of the appropriate type to be therepresenting partial fun
tion of some inno
ent strategy. We �rst introdu
e a helpfulnotion. Let A be a 
omputational arena. Take any P-view p of A ending with anO-move, and let f be a partial fun
tion of the following type:f : fP-views of A ending with O-movesg * fP-moves in A g:
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olle
tion Pf p of f-tra
es of p is a subset of the legal positions of A de�nedas follows:s 2Pf p() 8>>><>>>: s � m1 �m2 � � �m2n+1; for some n > 0; is a legal position of A where� psq = p;� for ea
h 0 6 l < n, f(pm1 �m2 � � �m2l+1q) = m2l+2:Definition 5.3. A partial fun
tion of the above type is said to be inno
ent if forany P-view p of a legal position ending with an O-move, and for any P-move a,f(p) is de�ned, and equal to a if and only if the following 
onditions are satis�ed:(if1) Pf p is non-empty,(if2) for any legal position s, if s 2Pf p, then s � a is a legal position of A.Consider the 
olle
tion �f of legal positions de�ned indu
tively as follows. For nranging over !, and writing � as the empty sequen
e, we de�ne�0f def= f � g;�2n+1f def= f s � a j s 2 �2nf ; a 2 O-moves; and s � a is a legal position g;�2n+2f def= f s � f(psq) j s 2 �2n+1f ; f(psq) is de�ned g;�f def= Sn2! �nf :Lemma 5.2.(i)Given any inno
ent (partial) fun
tion f , the 
olle
tion �f of legal positionsde�ned above is an inno
ent strategy.(ii)For any P-view p of a legal position ending with an O-move,Xf p = f s 2 �f : psq = p g: �The proof is an easy exer
ise whi
h is left to the reader. In fa
t inno
ent strategiesand inno
ent fun
tions are the same thing, as the following proposition shows. Weomit the largely straightforward proof.Lemma 5.3. For any inno
ent strategies � and �0 and any inno
ent fun
tions fand f 0, we have,(i)f�f = f .(ii)�f� = �.(iii)f � f 0 if and only if �f � �f 0 .(iv)� � �0 if and only if f� � f�0 . �



ON FULL ABSTRACTION FOR PCF: I, II AND III 67Consequently we are justi�ed in regarding an inno
ent fun
tion f as a (unique)representation of the inno
ent strategy �f .We use this representation in a number of ways: to explain the notion of a �nite or
ompa
t strategy (see Lemma 5.4) and to de�ne re
ursive strategies (see x5.6). In asense inno
ent fun
tions seem more fundamental than inno
ent strategies (as trees);but the latter are well suited to an explanation (and de�nition) of 
omposition.5.3. Composition of inno
ent strategiesIn x5.1 we saw how to 
ompose strategies of 
omputational arenas. Now we
onsider whether this operation preserves inno
en
e. The main result in this se
tionis the following:Proposition 5.3. Composition of inno
ent strategies is well-de�ned.To prove this proposition, we need to verify the following: for any inno
entstrategies � = �f and � = �g of 
omputational arenas A ) B and B ) Crespe
tively, the 
omposition �; � is an inno
ent strategy. By Proposition 5.1, weknow that �; � is a strategy. It remains to prove that the strategy �; � is inno
ent;that is to say,there is a partial fun
tion h mapping P-views of legal positions (at whi
h P is tomove) of A) C to P-moves of the same arena su
h that for any legal position s of�; � at whi
h P is to move, and for any P-move a of A) C,s � a 2 �f ; �g () h(psq) is de�ned, and is equal to a.Suppose s is a legal position of the arena A ) C. Write u � u(s; �; �), theun
overing of s a

ording to � and � . For d an O-move in the general sense in u(i.e. an O-move in A) C or a B-move), let d be the pre
eding O-move in A) C(so that d 
oin
ides with d when d is a move of A) C) and writeu(d) � u(ps6dq; �; �):Sin
e the P-view of a legal position is a legal position (Lemma 4.1), u(d) is well-de�ned.Proposition 5.4. For any generalised O-move d in u, we 
onstru
t by re
ursionon d an identi�
ation of u(d) as a subsequen
e of u6d of the following kind: u6dlooks like: � Æ � Æ � Æ � Æ � � �where the leftmost \�" is an initial move in C; other o

urren
es of \�" are O-moves in A) C; \ " represents a blo
k of alternating moves in B, and \Æ"is a P-move in A) C. The following are satis�ed:(i)u(d)6d simply omits segments of the form \� Æ"; where \�", and soalso \Æ", are missing from ps6dq. We shall write u(d)6dlu6d to mean that u(d)6dis a subsequen
e of the required kind.



68 HYLAND AND ONG(ii)If X is the 
omponent in whi
h d is an O-move, thenpu(d)6d � Xq = pu6d � Xq:Before we prove the Proposition, let us unpa
k the equation in 
lause (ii) andexpress it in terms of the following 
ommuting diagram: for any legal position s ofA) C, and for any generalised O-move d o

urring in s, and d as before,s; d; d un
over s- u(s; �; �) � u trun
ate at d - u6ds6dtrun
ate s at d?
ps6dqP-view in A) C? pu6d � XdqP-view in Xd ?

u(d) � u(ps6dq; �; �)un
over? trun
ate at d - u(d)6d P-view in Xd- pu(d)6d � XdqwwwwwwwwwProof. We prove by a 
ase analysis on d.Case 1. d is an O-move in A) C.Case 1a. d is the initial O-move in C: this is obvious.Case 1b. d is an O-move after the initial C-move, so that d = d, say in 
omponentX . Then by 
ondition (w3) of legal position, d is expli
itly justi�ed by a P-move,
all it e, in 
omponent X . Let x be the O-move immediately pre
eding e in u. Notethat x is still in 
omponent X , though it may be a B-move.(i). Note that s6d is of the form s6x � e � � � d, so that taking the P-view in A) C,we have ps6dq = ps6xq � e � d. Hen
e u(d) � u(ps6dq; �; �) = u(ps6xq � e � d; �; �)has u(x) � u(ps6xq; �; �) as an initial subsequen
e. By the re
ursion hypothesis,u(x)6xlu6x \is" a subsequen
e of the required kind, and so, also u(d)6x = u(x)6x.By the indu
tion hypothesis for (ii), we have pu(x)6x � Xq = pu6x � Xq. Note thatwe have already observed that x and d o

ur in the same 
omponent X . Hen
e,hX(pu(d)6x � Xq) = hX(pu(x)6x � Xq) = hX(pu6x � Xq) = e;by 
onstru
tion of u. And it follows by 
onstru
tion of u(d) that u(d)6d is u(d)6x �e � d = u(x)6x � e � d. This provides an obvious identi�
ation of u(d)6d as a subse-quen
e of u6d of the right kind. Note that we omit all the \� Æ" segmentssandwi
hed between e and d.



ON FULL ABSTRACTION FOR PCF: I, II AND III 69(ii). Note that u6d is of the form u6x � e � � � d. Sopu6d � Xq = pu6x � Xq � e � d by the indu
tion hypothesis of (ii)= pu(x)6x � Xq � e � d= pu(x)6x � e � d � Xq= pu(d)6d � Xq:Case 2. d is an O-move in B, say in 
omponent X . Hen
e, d is a P-move in thepaired 
omponent Y . Let y be the O-move immediately pre
eding d in 
omponentY . Note that d = y.(i). By the re
ursion / indu
tion hypotheses, we have u(y)6ylu6y, a subsequen
eof the required kind. As u6d = u6y � d, we know that hY (pu6y � Y q) = d. By theindu
tion hypothesis, we know that pu(y)6y � Y q = pu6y � Y q, so pu(d)6y � Y q =pu6y � Y q. Hen
e, by 
onstru
tion, we see that u(d) extends u(d)6y byhY (pu(d)6y � Y q) = hY (pu6y � Y q) = d:This gives the identi�
ation u(d)6d = u(d)6y � d as a subsequen
e of u6d of therequired kind.(ii). Now let e be the P-question in X whi
h expli
itly justi�es d in u and x theO-move immediately pre
eding e.We know by (i) that u(d)6d l u6d is a subsequen
e of a 
ertain kind. Hen
e,sin
e e o

urs in u(d)6d, we infer that x and x both o

ur in u(d)6d be
ause x; x; eand d all o

ur in the same segment \� Æ" whi
h is in u(d)6d. It followsthat x o

urs in s6d so s6x 6 s6d and so u(d) starts like u(x) and in parti
ular,u(d)6x = u(x)6x. By the indu
tion hypothesis, we know that pu(x)6x � Xq =pu6x � Xq, and hen
e,hX(pu(d)6x � Xq) = hX(pu6x � Xq) = e:Thus, not only is u6d of the form u6x � e � � � d but also u(d)6d is of the formu(d)6x � e � � � d. Hen
e,pu6d � Xq = pu6x � Xq � e � d = pu(d)6x � Xq � e � d = pu(d)6d � Xq:To prove Proposition 5.3, the �rst step is to spe
ify the partial fun
tionh : fP-views (of A) C) ending with O-movesg * fP-moves in A) C gthat de�nes the 
omposite inno
ent strategy �f ; �g .Definition 5.4. For any P-view p of A) C ending with an O-move d0, h(p) isde�ned and equal to a P-move a in A) C if and only iffor some expli
itly justi�ed sequen
e t of the arenas (A;B;C), and for some n > 0,there are B-moves d1; � � � dn withu � u(p; �; �) = t � d0 � d1 � d2 � � � � � dn;
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h that hX(pu(d0) � Xq) = a where X is the 
omponent in whi
h dn is an O-move, and the same 
onvention as before governs the meaning of hX .Proof of Proposition 5.3. Suppose s 2 �; � is a legal position whi
h ends withan O-move d0. Note that d0 appears in psq = p as the last move. For any P-movea, by the pre
eding analysis, s � a 2 �; � is equivalent to the following:(1) the un
overing u � u(s; �; �) is �nite; that is to say, for some �nite n > 0,there are B-moves d1; � � � ; dn su
h that u � w � d0 � d1 � d2 � � � dn, for some expli
itlyjusti�ed sequen
e w of the arenas (A;B;C); and(2) (u � Xn) � a 2 �Xn where, as before, we write Xn as the 
omponent in whi
hdn may be regarded as an O-move.Sin
e d0 o

urs in u and p = psq, by Proposition 5.4(i), statement (1) is equivalentto the assertion that u(d0) � u(p; �; �) is �nite, and that u(d0) � v �d0 �d1 �d2 � � � dn,for some expli
itly justi�ed sequen
e v of the arenas (A;B;C). Also, sin
e � and �are inno
ent strategies by assumption, (2) is equivalent tohXn(pu � Xnq) = a;where hXn is de�ned as before. By Proposition 5.4(ii), we have hXn(pu(d0) � Xnq) =a. By de�nition of h, we 
on
lude that (1) and (2) amount pre
isely to the assertionthat h(psq) is de�ned, and equal to a. We have thus proved Proposition 5.3. �5.4. C A : a 
artesian 
losed 
ategory of 
omputational arenasAt long last we have in pla
e the ne
essary data for de�ning a 
ategory. The
ategory C A of 
omputational arenas is de�ned by the following data:� Obje
ts are 
omputational arenas.� Maps between 
omputational arenas A and B are inno
ent P-strategies of thefun
tion spa
e 
omputational arena A) B.The identity map of a 
omputational arena A is just the \tit-for-tat strategy" or\
opy-
at strategy" of the arena A) A. Consider the two 
omponents (or 
opies)of A in A ) A. The strategy may be des
ribed informally as follows: supposeOpponent has just made the move m in one 
omponent, then Player responds bymaking the same move in the other 
omponent. The tit-for-tat strategy is inno
ent:for any n > 0, and for any legal position s of the form a1 �a1 �a2 �a2 � � �an �an �an+1,the representing partial fun
tion of the strategy maps the P-view psq to an+1.Composition of strategies as de�ned in the last subse
tion is asso
iative.Produ
t. For any 
omputational arenas A and B, the 
ategori
al produ
t is justA�B as de�ned earlier. The proje
tion map A�B �! A is the following inno
entstrategy of the arena (A�B)) A whi
h is another \tit-for-tat" strategy: we labelthe two 
opies (or 
omponents) of A as (A1 � B) ) A2. O begins by making aninitial A-move in A2. P responds by making the same initial A-move in A1. Notethat O 
annot swit
h 
omponent. For any O-move in A1, P responds by making the



ON FULL ABSTRACTION FOR PCF: I, II AND III 71same move in A2. Thereafter P responds to any O-move by making the same movebut in the other A-
omponent. To 
he
k the universal property we observe thatthe arena C ) (A � B) is just (C ) A) � (C ) B). So given maps f : C �! Aand g : C �! B, the pairing [f; g℄ : C �! A � B is de�ned by the disjoint unionof the respe
tive strategies.The terminal obje
t 1 is the empty 
omputational arena: it has neither questionnor answer. For any 
omputational arena A, the unique inno
ent strategy of thearena A) 1 (whi
h is just the empty arena 1) is the singleton set f � g as de�nedby the empty (as a graph) inno
ent partial fun
tion.Fun
tion spa
e. For 
omputational arenas A;B, and C, it is easy to see thatthe arenas (C � A)) B and C ) (A ) B) are isomorphi
 (the respe
tive arenasare exa
tly the same as pi
tures). Hen
eC A (C �A;B) �= C A (C;A) B)is an isomorphism natural in A;B and C. We 
an therefore 
on
lude that the
ategory of 
omputational arenas and inno
ent strategies is 
artesian 
losed.It is worth observing that many strategies that denote p
f-terms are \tit-for-tat strategies" in some appropriately general sense. In these strategies, Player'sresponse simply 
onsists in 
opying Opponent's move from one 
omponent of thearena to another. We have already seen two examples; namely, the identity andproje
tion maps. Another is the evaluation map:(A) B)�A ev - Bfor arenas A and B. The map ev is a history-free (and hen
e inno
ent) strategy inthe arena (A ) B) � A ) B whi
h has two 
omponents of the subarena A, onedual to the other; similarly for the subarena B. The strategy ev may be des
ribedsu

in
tly as follows:\if O's move is m in some 
omponent of A (respe
tively B) then P's response ism in the dual 
omponent of A (respe
tively B)".5.5. C A as an enri
hed 
ategoryIn this subse
tion we show that C A is the underlying 
ategory of a 
ategory(whi
h we 
ontinue to 
all C A ) enri
hed over the 
ategory of dI-domains. (Forenri
hed 
ategory theory see [44℄.) For 
omputational arenas B and C, C A (B;C)is the set of all inno
ent strategies of the arena B ) C. We 
onsider the stru
-ture whi
h this set naturally 
arries. Sin
e we 
an readily identify C A (B;C) withC A (1; B ) C) we 
an restri
t attention to sets of the form C A (1; A) for any arenaA. We write A for C A (1; A) the set of all inno
ent strategies of a 
omputationalarena A.For the sake of 
ompleteness we introdu
e some basi
 domain-theoreti
 notions.A 
omplete partial order (
po) is a poset whi
h has a least element and joins of alldire
ted subsets. A subset X of a poset D is said to be 
onsistent if X has an upperbound in D. A 
po D is 
onsistently 
omplete if any of the following equivalent
onditions are satis�ed:
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onsistent pair of elements of D has a join in D;(2) every 
onsistent subset of D has a least upper bound (lub);(3) every subset of D has a greatest lower bound (glb),An element d of a 
po D is said to be prime if for every subset X of D su
h thatFX exists and if d v FX , then there is some element x 2 X su
h that d v x.The element d is said to be 
ompa
t if the above 
ondition holds for X ranging overonly dire
ted subsets of D. A 
po D is said to be algebrai
 if for every elementd of D, the 
olle
tion of all 
ompa
t elements of D dominated by d is dire
ted,and its lub is pre
isely d. Further, D is said to be !-algebrai
 if D has 
ountablymany 
ompa
t elements. By a S
ott domain, we mean a 
onsistently 
omplete,!-algebrai
 
po. A 
onsistently 
omplete 
po D is said to be prime algebrai
 ifevery element d of D is the lub of all prime elements dominated by d. A dI-domain8is a 
onsistently 
omplete, algebrai
 
po that is prime algebrai
 and satis�es axiom(I): every 
ompa
t element dominates only �nitely many elements.We say that a legal position s of an arena A is inno
ent if there is an inno
entstrategy (of A) of whi
h s is an element. Clearly not every legal position is inno
ent:
onsider the legal position [�(1�[1:1�℄1 � [1:1�℄2of the arena (� ) �) ) � whose questions are annotated a

ording to the 
onven-tion introdu
ed in Remark . Sin
e inno
ent strategies are determined by inno
entfun
tions, it is easy to see that a legal position s (whi
h ends in an O-move) isinno
ent if and only if there is an inno
ent fun
tion f su
h that s 2Pf psq. Givenan inno
ent legal position s of an arena A, we de�ne�[s℄ def= the least inno
ent strategy 
ontaining s:Suppose s � m1 �m2 � � �m2n+1. It is easy to see that �[s℄ is �g where the (partial)fun
tion g is de�ned by the following graphf (pm1 �m2 � � �m2l+1q;m2l+2) : 0 6 l < n g:It is routine to verify that f thus de�ned is inno
ent.Example 5.1. Note that �[s℄ may 
ontain legal positions of length greater thanthat of s. Just take s to be the legal position (together with its auxiliary sequen
eof justi�
ation indi
es): [�(1�[1:1�℄�)�℄ 0 � 1 � 2 � 3 � 2 � 1of the arena (�) �)) �. The least inno
ent strategy generated by s is de�ned bythe following inno
ent fun
tion: [ 7! (1[ � (1�[1:1 7! ℄[ � (1�) 7! ℄8We do not in
lude !-algebrai
ity in the de�nition of dI-domain.
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ontains the following family of legal positions: for ea
h n > 0,[ � (1� [1:1�℄ � � � � � [1:1�℄| {z }2n �)�℄ 0 � 1 � 2 � 3 � 2 � 5 � � � � � 2 � 2n+ 1| {z }2n �2 � 1;so the length of legal positions in �[s℄ is unbounded.For any P-view p that ends with an O-move, and for any P-move a, it is easyto see that if p � a is a legal position then it is inno
ent. The inno
ent fun
tionf�[p�a℄, qua graph, is the 
olle
tion of ordered pairs (q; b) su
h that b is a P-moveand q � b 6 p � a. Sin
e P-views are P-view invariant (Lemma 4.3), any two pairs inthe 
olle
tion whi
h agree in the �rst 
omponent ne
essarily agree in the se
ond.Let S be a set of inno
ent strategies of A bounded, say, by � . By Lemma 5.3,for ea
h � 2 S, f� � f� ; and so, S�2S f� � f� . Hen
e F def= S�2S f� is a partialfun
tion. It is straightforward to verify that F is inno
ent. Clearly FS is thestrategy de�ned by F . (Note that in general FS is not S�2S �, though of 
ourseS�2S � � FS.) We have shown that the poset of inno
ent strategies A is bounded
omplete.Lemma 5.4.(i)An inno
ent strategy � 2 A is 
ompa
t if and only if its representing fun
tionf� is a �nite graph.(ii)An inno
ent strategy � 2 A is prime if and only if it is �[p �a℄ for some P-viewp (whi
h ends with an O-move) and for some P-move a su
h that p � a is a legalposition.(iii)A is prime algebrai
.Proof. We prove (ii) and (iii) for an illustration. First observe that for anyinno
ent strategy � of A, G(p;a)2f� �[p � a℄is de�ned and is equal to �. If � is prime then � � �[p �a℄ for some pair (p; a) in f� .But in fa
t � = �[p�a℄, sin
e �[p�a℄ is the least strategy that 
ontains p�a. The otherdire
tion is now immediate; so is (iii).Supposing the arena A is 
ountable (i.e. A has 
ountably many questions and an-swers), then A has only 
ountably many P-views. Sin
e 
ompa
t inno
ent strategiesare �nite subsets (of a 
ertain kind) of the 
ountable set fP-viewsg� fP-movesg,there are only 
ountably many su
h strategies. Therefore A is !-algebrai
. Finallywe observe that axiom (I) is trivially satis�ed for any A.To summarize we have shown thatProposition 5.5.(i)The 
olle
tion A of inno
ent strategies ordered by in
lusion is a dI-domain.(ii)In parti
ular, if A is a p
f-type, then A is !-algebrai
. �
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on
lude from the pre
eding proposition that ea
h C A (B;C) 
arries the stru
-ture of a dI-domain. It follows easily from the de�nition of identities, 
omposition,produ
ts and fun
tion spa
es that the 
orresponding maps (natural isomorphismsin the last two 
ases) 1 - C A (A;A)C A (A;B)� C A (B;C) - C A (A;C)C A (C;A) � C A (C;B) - C A (C;A �B)C A (C �A;B) - C A (C;A) B)are 
ontinuous maps of dI-domains (but they are not ne
essarily stable). Hen
e wehave the main result of this se
tion:Theorem 5.1. The 
ategory C A of 
omputational arenas and inno
ent strategiesis a 
artesian 
losed 
ategory whi
h is enri
hed over dI-domains. �5.6. Re
ursive strategiesNow we 
onsider 
omputational arenas whi
h are in some sense re
ursively pre-sented. For simpli
ity we suppose that the forest of questions of A is a �nite tree.(We 
ould pro
eed with an enumeration of a 
ountable tree, but the de�nition ismore 
umbersome and we have no need of that generality.)Definition 5.5. Let A be a 
omputational arena with a �nite tree of questionsand a 
ountable (�nite or denumerable) set of answers. Then a re
ursive presenta-tion of A 
onsists of an enumeration of the 
ountable set of answers 
orrespondingto ea
h question: for ea
h q 2 Qn(A) we have a bije
tionqn�1(q) �! Nor qn�1(q) �! Nn = f i : i < n g:We 
all a 
omputational arena equipped with a re
ursive presentation a re
ursivelypresented 
omputational arena (rp
a).Example 5.2.(i) The 
omputational arenas N and B of Example 4.1 have natural re
ursivepresentations. (N also has perverse re
ursive presentations.)(ii) Clearly the 
omputational arena 1 is trivially re
ursively presented. And ifA and B are re
ursively presented then so are A � B and A ) B in an obviousway.
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ould 
onsider a 
ategory with obje
ts rp
as and maps inno
ent strategies.This is hardly worth naming as it is equivalent to a sub
ategory of C A : the forgetfulfun
tor is full and faithful. Rather we want to use the enumerations (
odings) ofanswers to enable us to talk of re
ursive strategies. Now given an rp
a A we 
an
on
o
t natural 
odings for P-moves and for P-views in A. (Of 
ourse the 
odingin
ludes information about the justi�
ation indi
es.) If a is a P-move (u a P-view)we write #a (#u) for its numeri
al 
ode. Re
all that an inno
ent strategy � is
ompletely determined by a representing inno
ent fun
tion f� whi
h maps P-viewsto P-moves. We 
an 
ode f� as a partial numeri
al fun
tion �� wheref�(u) = a () ��(#u) = #a:(If we are sensible the set of 
odes for P-view will be re
ursive; and we may as wellassume �� not de�ned on numbers whi
h do not 
ode P-views.) The set of partialfun
tions from N to N, in whi
h the 
odes �� for strategies lie, is so importantthat we need a spe
ial symbol for it; we write P for the set of partial numeri
alfun
tions.Definition 5.6. An inno
ent strategy � in a re
ursively presented arena is re-
ursive just when �� is a partial re
ursive fun
tion.Clearly the identity or tit-for-tat strategy in A) A is re
ursive for any rp
a A.Also the 
omposition of two re
ursive strategies is re
ursive. This re
e
ts the fa
tthat the proof of Proposition 5.3 is 
onstru
tive. (The reader need only understandthis in the intuitive sense: if �; � are inno
ent strategies for A ) B and B ) Crespe
tively, then f�;� 
an be 
onstru
ted from f� and f� .) In fa
t one 
an read o�from De�nition 5.4 the proof of the following pre
ise result whi
h we use later.Proposition 5.6. Given rp
as A, B and C there is a re
ursive operator9 Mof two arguments M : P� P �! P su
h that if � : A �! B and � : B �! C areinno
ent strategies then M(�� ; �� ) = ��;� : �It follows in parti
ular that we 
an de�ne a 
ategory using re
ursive strategies.Then 
ategory RA of re
ursive arenas is de�ned by the following data:� obje
ts are re
ursively presented 
omputational arenas,� maps between rp
as A and B are re
ursive strategies in A) B.The identity, 
omposition, produ
t and fun
tion spa
e arenas are as in C A . So RAis a 
artesian 
losed 
ategory.Finally perhaps we should 
onfess to a degree of overkill in our des
ription ofthe 
ategory RA . Consider the 
omputational arenas N as in Example 4.1 and9In the sense of [64, p. 148℄.



76 HYLAND AND ONGNn (n > 0) where Nn is like N save that only replies i < n are permitted. (SoN 2 is isomorphi
 to B of Example 4.1.) These obje
ts have 
anoni
al re
ursivepresentations. Close this 
olle
tion of obje
ts under the standard terminal obje
t,produ
t and fun
tion spa
e in RA . Then any obje
t in RA is isomorphi
 to anobje
t whi
h results. (This is be
ause we insisted on a �nite tree of questions.)Thus RA as we de�ned it is (up to equivalen
e) a very simple 
ategory indeed.
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all the standard notion ofobservables for the 
ategory C A of 
omputational arenas and inno
ent strategies(see the dis
ussion after Proposition 3.2). If an inno
ent strategy � of the arena� has an answer (n say) to O's opening question { in whi
h 
ase, � is the setf \["; \[�n" g { then we write � + n; otherwise we write �*. We shall write �+ tomean that for some n, � + n. Following the same pattern as Example 3.1, for ea
harena A and ea
h inno
ent strategy f of the arena A) �, we de�neRf def= f a : 1 �! A j a; f+g:The 
olle
tion OA of observables of type A 
onsists of all subsets of C A (1; A) ofthe form Rf . Sin
e for any g : B �! � and f : A �! B, f�Rg is just Rf ;g , theasso
iation A 7! OA equips C A with a notion of observables (whi
h we shall referto as the standard su
h notion). As C A is 
artesian 
losed, the asso
iated notions ofobservational preorder . and observational quotient ^C A (see x3.1) are well-de�ned.6.1. Context lemma for C AIt is a familiar fa
t that the 
ontext lemma holds for p
f. The main result of thisse
tion is that the 
ontext lemma also holds for the 
ategory C A of 
omputationalarenas and inno
ent strategies with respe
t to the standard observational preorder.Re
all (from x3.3) that this is the same as saying that the observational quotient^C A is order-extensional.Theorem 6.1 (Context lemma). The observational quotient of the 
ategory ofarenas and inno
ent strategies is order-extensional, with respe
t to the standardobservational preorder. That is to say, for any inno
ent strategies �; � of the arenaA) B,� . � () a;� . a; � for all inno
ent strategies a of arena A: �We devote the rest of the se
tion to the proof. One dire
tion (\)") of the proofis almost obvious. For the other dire
tion, we appeal to a 
orresponden
e resultbetween 
ompa
t strategies and a 
lass of synta
ti
 obje
ts 
alled �nite 
anoni
alforms. 6.2. Proof of the 
ontext lemma for C AW.l.o.g. we shall assume that � is the only program type. We �rst prove thedire
tion \)" of the 
ontext lemma. The argument is essentially a 
onsequen
eof the 
artesian 
losed stru
ture of the 
ategory C A . For any inno
ent strategies� and � of the arena A ) B, take any maps x : 1 �! A and Æ : B �! �. Bythe universal property of the fun
tion spa
e 
onstru
tion, we have the following



78 HYLAND AND ONGequation of maps: 1 x - A � - B= 1 �- (A) B) h id;!;x i- (A) B)�A ev - B:Let � : (A) B) �! � be the following 
omposition of maps:(A) B) h id;!;x i- (A) B)�A ev - B Æ - �:Clearly x;�; Æ = �;�: By exa
tly the same reasoning, we also have x; � ; Æ = � ;�:Hen
e if �;�+ implies � ;�+ for every � : (A ) B) �! �, then x;�; Æ+ impliesx; � ; Æ+ for ea
h x : 1 �! A and Æ : B �! � as required.6.3. The harder dire
tionWe shall now 
onsider the other, harder, dire
tion. Our proof appeals to the
orresponden
e between 
ompa
t inno
ent strategies and a 
lass of synta
ti
 obje
tsknown as �nite 
anoni
al forms as set out in x7.3 and x7.6. The reader is thusadvised to take the Context Lemma on trust, skip the proof in this se
tion on �rstreading, and return to it after reading x7.Take a 
ompa
t inno
ent strategy � of an arena A. Observe that only the ques-tions and some of their asso
iated answers of a 
ertain subarena of A appear in the
orresponding game tree of �. The de�nition of the graph of the inno
ent fun
tionf� { being a �nite 
olle
tion of pairs of the form \(P-view, P-move with pointer)"{ depends only on a �nite subarena of A. In x7.6 we de�ne the �-subarena of A tobe the (ne
essarily �nite) subarena of A 
onsisting pre
isely of those questions andall asso
iated answers that appear in the graph of the inno
ent fun
tion f�.Take arbitrary arenas A and B, and inno
ent strategies � and � of arena A) Bas in the statement of the Context Lemma. To prove the dire
tion \(", be
auseof 
ontinuity, there is no loss of generality in 
onsidering 
ompa
t strategies � and� . For any �xed 
ompa
t strategies � and � , a moment's thought should revealthat it suÆ
es to prove the Lemma by regarding � and � as 
ompa
t strategies ofany �nite subarena of A ) B that 
ontains both the �-subarena and � -subarenaof A) B. Thus it is enough to prove the following proposition.Proposition 6.1. For 
ompa
t inno
ent strategies � and � of a �nite arenaA = (A1 ) A0), if �;� . �; � for every � : A1 then � . � .Proof. Write � .� � for the relation �;� . �; � for every � : A1. We shallprove the proposition by indu
tion on the size of A = (A1 ) A0). The base 
ase isobvious. Suppose the proposition holds for arenas smaller than A.Claim Let � be a 
ompa
t inno
ent strategy of arena A. Suppose � .� � : A. Forany arenas ~B = B1; � � � ; Bk, ea
h of whi
h is smaller than A, and for any 
anoni
alform f : A; g1 : B1; � � � ; gk : Bk ` C[f ;~g℄ : �
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orresponding pre
isely to an inno
ent strategy of the arena A�B1�� � ��Bk ) �),then C[�; ~�℄ + n =) C[� ; ~�℄ + nfor all inno
ent strategies ~� : ~B.Proof of the Claim By 
ontinuity, it suÆ
es to 
onsider only �nite 
anoni
alform (f
f) C[f ;~g℄ and 
ompa
t strategies �i. We shall prove the 
laim by indu
tionon the size of the f
f C[f ;~g℄. Consider the shape of C[f ;~g℄. SupposeC[f ;~g℄ � 
ase f(� ~h1 : ~D1:a1[f ;~g; ~h1℄) � � � (� ~hm : ~Dm:am[f ;~g; ~hm℄) [dk[f ;~g℄℄06k6rwhere for ea
h i, ~Di = Di1; � � � ; Diri andf : A;~g : ~B; ~hi : ~Di ` ai[f ;~g; ~hi℄ : �:Sin
e the f
f a1[f ;~g; ~h1℄ is smaller than C[f ;~g℄ (and ea
h of ~D1 is a subarena ofA), by the indu
tion hypothesis of the 
laim, for any ~Æ : ~D1,a1[�; ~�;~Æ℄ + n =) a1[� ; ~�;~Æ℄ + n:Sin
e D11 � � � � �D1r1 ) � is smaller than A, by the indu
tion hypothesis of theproposition, we dedu
e that� ~h1 : ~D1:a1[�; ~�; ~h1℄ . � ~h1 : ~D1:a1[� ; ~�; ~h1℄ : ~D1 ) �: (5)Consider the 
ompa
t inno
ent strategy represented byl : ~D1 ) � ` �l(� ~h2 : ~D2:a2[�; ~�; ~h2℄) � � � (� ~hm : ~Dm:am[�; ~�; ~hm℄) : �:(Stri
tly speaking, we should prove that the above synta
ti
 expression, whi
h is nota f
f, properly de�nes a 
ompa
t inno
ent strategy.) Let l : ~D1 ) � ` E[l℄ : � be thef
f representing the strategy. Suppose E[� ~h1 : ~D1:a1[�; ~�; ~h1℄℄ + k; then by (5), wehave E[� ~h1 : ~D1:a1[� ; ~�; ~h1℄℄ + k. Repeat this for holes of types ~D2 ) �; � � � ; ~Dn ) �su

essively, we get�(� ~h1 : ~D1:a1[� ; ~�; ~h1℄) � � � (� ~hm : ~Dm:am[� ; ~�; ~hm℄) + k:Note that ~D1 ) � is a subarena of A1. Sin
e � .� � by assumption, we 
an dedu
ethat �(� ~h1 : ~D1:a1[� ; ~�; ~h1℄) � � � (� ~hm : ~Dm:am[� ; ~�; ~hm℄) + k:Now suppose C[�; ~�℄ + n. Then for some 0 6 k 6 r,�(� ~h1 : ~D1:a1[�; ~�; ~h1℄) � � � (� ~hm : ~Dm:am[�; ~�; ~hm℄) + k and dk[�; ~�℄ + n:As dk [f ;~g℄ is smaller than C[f ;~g℄, by the indu
tion hypothesis of the 
laim, dk[� ; ~�℄ +n. Hen
e we 
on
lude that C[� ; ~�℄ + n; and this establishes the 
laim. �We 
an now 
on
lude from � .� � that � . � .This 
ompletes our proof of the Context Lemma.
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Part III. A fully abstra
t and universal gamemodel



ON FULL ABSTRACTION FOR PCF: I, II AND III 817. A FULLY ABSTRACT DIALOGUE GAME MODEL OF PCFIn this se
tion we show how p
f may be interpreted in the 
ategory C A of
omputational arenas and inno
ent strategies. This interpretation is 
omputation-ally adequate and the derived interpretation in the observational quotient 
C A isorder (or inequationally) fully abstra
t for p
f. Full abstra
tion is obtained asa 
onsequen
e of a strong de�nability result: not only are all 
ompa
t inno
entstrategies (of p
f-types) de�nable in P, but the valuation map a
tually gives anorder-isomorphism between syntax (a 
lass of �nite 
anoni
al forms of a p
f-variant
alled P ordered by the standard 
-mat
hing) and semanti
s (
ompa
t inno
entstrategies ordered by set in
lusion). The language P is just p
f extended by afamily of de�nition-by-
ases 
onstru
ts. We 
on
lude this se
tion by examining insome detail two instru
tive examples: the inno
ent strategies de�ned by a type-2and a type-3 fun
tional respe
tively.7.1. Semanti
s of p
f in C APCF-types. For any p
f-type A we de�ne the interpretation [[A ℄℄ as a 
ompu-tational arena re
ursively as follows:[[ o ℄℄ def= B ;[[ � ℄℄ def= N;[[A1 ) A2 ℄℄ def= [[A1 ℄℄) [[A2 ℄℄;where N and B are the natural numbers and boolean 
omputational arenas de�nedin Example 4.1. Note that the forest of questions of an arena whi
h is a p
f-typeis an (inverted) �nite tree i.e. a �nite poset with a unique top element (the initialquestion) su
h that the upper set of ea
h element is a �nite linear order. Furtherall questions are just \
opies" of the initial question at program type, and answersare \
opies" of the natural numbers and / or booleans.Convention. In the following we shall often 
onfuse syntax (of both p
f-types andterms) with semanti
s and write the interpretation of a p
f-type A also as A (andsimilarly for p
f-terms s) provided it is safe to do so. If there is a possibility of
onfusion, we shall denote the dialogue game interpretation as [[A ℄℄CA (and [[ s ℄℄CA ).Thus we 
an reserve N for the usual natural numbers of mathemati
s.PCF-terms. For ea
h p
f-type A, the (intensional) domain of type A is the setof global se
tions of the arenaA. As we have seen earlier, this is just the 
olle
tion ofinno
ent strategies of the arena A ordered by set in
lusion. The domain of type � isthe standard 
at 
po of natural numbers: the least element is the \empty strategy"| one that has no response to O's opening question. The denotation of a naturalnumber n is the strategy that returns the answer \℄�n" to O's opening question \[�".(We shall write \℄�n" variously as \℄n" or simply n whenever the type informationis 
lear from the 
ontext.) We shall just state an elementary observation.Proposition 7.1. This interpretation of p
f is standard in the sense of Plotkin[61℄. �
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FIG. 6. Trees of questions of arenas (�; �) and (o; �; �; �).The basi
 arithmeti
 
onstants are straightforwardly interpreted as inno
entstrategies. We 
onsider the interpretation of the su

essor and 
onditional forillustration. Questions of the respe
tive arenas are annotated with their respe
tiveo

urren
es as in Figure 6. The inno
ent strategy [[ su

 ℄℄ : (�; �) is de�ned by thefollowing inno
ent fun
tion: for n > 0,8<: [ 7! (1[ � (1�)n 7! ℄n+1:The inno
ent strategy [[ 
ond� ℄℄ : (o; �; �; �) is de�ned by the following inno
ent fun
-tion: for n ranging over the natural numbers,8>>>>>>>>>><>>>>>>>>>>:

[ 7! (1[ � (1�)t 7! (2[ � (1�)f 7! (3[ � (1�)t � (2�)n 7! ℄n[ � (1�)f � (3�)n 7! ℄n:The interpretation of �-abstra
tion and appli
ation is 
ompletely determined bythe 
artesian 
losed stru
ture of the 
ategory C A . We regard this as standard andrefer the reader to [49, 21℄ for a systemati
 treatment.Remark.(i) Any partial fun
tion 
an be numeralwise represented in C A in the way thatsu

essor 
an. For simpli
ity we restri
t to the 
ase of one variable. If � : N �! Nis a partial fun
tion we have an inno
ent strategy [[� ℄℄ de�ned by the inno
entfun
tion: 8<: [ 7! (1[ � (1�) 7! ℄�(n) whenever �(n) is de�ned.(ii) For any partial fun
tion (and in parti
ular for su

essor) there are manydi�erent 
hoi
es of inno
ent strategies whi
h will numeralwise represent � (in thestrong sense). We 
all [[� ℄℄ de�ned in (i) the standard representation of �.



ON FULL ABSTRACTION FOR PCF: I, II AND III 837.2. Fixed pointsWe give two di�erent presentations of the interpretation of �xed-point operatorsas inno
ent strategies. The �rst, a Tarski-Knaster style argument, follows more orless standard lines in denotational semanti
s. The se
ond highlights the observationthat the family of inno
ent strategies that 
orrespond to �xed-point operators be-have in a \parametri
" way: they do nothing more than 
opying moves in a highlyuniform way. Our a

ount of the se
ond approa
h is informal. While it may seemmore tedious to des
ribe than the �rst, the idea is a
tually simpler!A standard denotational approa
h. We say that a 
artesian 
losed 
ategory has�xed points if it has a family of maps YA : (A ) A) �! A for ea
h obje
tA satisfying the 
ommuting diagram in De�nition 2.1(ii). For ea
h type A the
ommuting �xed-point diagram is the following equationYA = �f : A) A:f(YAf):Take a 
artesian 
losed 
ategory C whi
h is enri
hed over 
pos (so that notjust 
omposition but also the respe
tive natural isomorphisms whi
h 
hara
terizeprodu
ts and fun
tion spa
es are 
ontinuous). We refer to the enri
hing orderingof the homsets as the given ordering. In su
h a 
ategory, �xed-point operatorsYA may be interpreted as the least (with respe
t to the given ordering) �xed pointof the following simply-typed �-term:F = �F : (A) A)) A:�f : A) A:f(Ff)whi
h has type ((A ) A) ) A) ) (A ) A) ) A. Sin
e C is 
artesian 
losed, Fhas interpretation as a map from (A ) A) ) A to itself. Writing the details outin full, we de�ne F0 def= ?(A)A))AFn+1 def= �f : A) A: f(� � � (f| {z }n+1 ?A) � � �);where ?A is the least element of the homset C (1; A). By assumption the lubFn2! Fn with respe
t to the given ordering (whi
h we write as YA) is a well-de�ned map (A) A) �! A. For any map g : (A) A) �! A and a : A �! A, wewrite appli
ation g � a to mean h g; a i; ev. (We shall blur the distin
tion betweena map g and its fun
tion spa
e transpose g.) In su
h a 
ategory, appli
ation is
ontinuous (G gn) � a = G(gn � a)be
ause pairing, transpose and 
omposition are. Note that we do not need order-extensionality.



84 HYLAND AND ONGTo see that the �xed-point diagram 
ommutes in C , we have�f : A) A:f � (YA � f) = �f : A) A:F f(� � � (f| {z }n+1 ?) � � �)= F�f : A) A: f(� � � (f| {z }n+1 ?) � � �)= YA:Hen
e C has �xed points.Suppose C is equipped with an observational preorder (de�ned with respe
t to anotion of observables). By Proposition 3.1 the observational quotient bC is an order-enri
hed 
ategory whi
h inherits the 
artesian 
losed stru
ture from C . Howeverthe enri
hing stru
ture need not be a 
po. Nonetheless sin
e the observationalpreorder is preserved by 
omposition, the �xed-point diagram in bC 
ommutes ifand only if the following equation (of equivalen
e 
lasses) holds:[YA℄ = [�A�A; id �YA; ev℄:This equation follows trivially from the �xed-point equation in C .To summarize we have shown that:Proposition 7.2. Any 
artesian 
losed 
ategory C enri
hed over 
pos has �xedpoints. With respe
t to any observational preorder the derived quotient bC also has�xed points. �As an immediate 
orollary we 
an 
on
lude that both C A and its observationalquotient 
C A have �xed points.Fixed-point operators as uniform strategies. For any arena (not just those whi
hare p
f-types) A we des
ribe a strategy in (A ) A) ) A. First we need todistinguish between moves in the di�erent 
opies of A as in Figure 7:� The main O-
omponent. These are moves hereditarily justi�ed by the openingO-move in A (on the right) only. That is to say, they are not hereditarily justi�edby P-moves whi
h are opening moves in the 
opy of A in the middle.� The P-
omponents. These are moves whi
h are hereditarily justi�ed by aninstan
e of an opening move in A made by P, but not by opening A-moves madeby P dependent on it. There may be many su
h.� Subsidiary O-
omponents. Moves hereditarily justi�ed by a sequen
e of threeinitial moves in A [�(�[.In a game a

ording to the strategy we des
ribe there will be a 
orresponden
ebetween O- and P-
omponents. The �rst P-
omponents to o

ur is the dual ofthe main O-
omponent. The others in order are the duals of the subsidiary O-
omponents in order. At any stage after P has moved the duals will be 
opies ofea
h other. The strategy 
an be su

in
tly des
ribed as follows: suppose O has justmoved:
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)(

subsidiary P-
omponents main O-
omponent
A)A)A

O-
omponents FIG. 7. Components of YA : (A) A)) A.� Case 1. Opening move: we 
opy to 
reate �rst P-
omponent.� Case 2. O opens a new subsidiary 
omponent: we 
opy and 
reate new P-
omponent.� Case 3. O moves in some existing O- / P-
omponent: we 
opy the move in thedual P- / O-
omponent.Arguing indu
tively it is easy to see this makes sense. The question is:� is it an inno
ent strategy?� does it satisfy the �xed-point equation / diagram?The usual situation after an O-move is that the play has been p � (�r � [ | where\(" expli
itly justi�es \[", or p � (�r�) | where \(" expli
itly justi�es \)"; and so theP-view is ppq � (�[ or ppq � (�) where the moves (�[ or (�) are in the same 
omponent.Then the P-move \(" displayed is a 
opy of an O-move \[1" in the dual 
omponent,and this O-move \[1" o

urs at the end of ppq; hen
e the 
opy reply \(1" or \℄1" isa legitimate move independent of the way we rea
hed the parti
ular P-view, so we
an safely reply ppq � (�[�(1 or ppq � (�)�℄1 as appropriate on the basis of the view.The 
omposition(A) A) �- (A) A)� (A) A) 1�Y- (A) A)� A ev - A
an be \represented" in parallel 
omposition and hiding form as in Figure 8. Wedraw some 
opying paths through the pi
ture in Figure 9.It does not seem a

idental that these three paths (in Figure 9) \partition" thewhole pi
ture. In the 
omposed game we use the terminology (main O-
omponent,P-
omponents, subsidiary 
omponents, the dual of a 
omponent) already intro-du
ed. Now we 
an tie down the behaviour of the 
omposed strategy by makingthe following observations.
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FIG. 9. Copying paths.
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omponent, P 
opies along path (1)(with referen
e to Figure 9) to give a reply in the �rst P-
omponent (the dual ofthe main O-
omponent). Thereafter any O-move in either of the two 
omponentsis answered by 
opying along path (1) (in either dire
tion) to give a P-reply (whi
his just a \
opy") in the dual 
omponent.2. After the �rst O-move (if any) in the �rst subsidiary O-
omponent, P 
opiesalong path (2) to give a reply in the se
ond P-
omponent (its dual). Thereafterany O-move in either of these two 
omponents is answered by 
opying along path(2) (in either dire
tion) to give a P-reply (just a \
opy") in the dual 
omponent.Furthermore exa
tly the same applies mutatis mutandis in the 
ase of any sub-sidiary O-
omponent whi
h begins with an O-move justi�ed by the opening P-movein the �rst P-
omponent. [Perhaps it is worth noting that ea
h of these further O-
omponents involves P opening a fresh version of Y on the hidden sket
h pad i.e.the \returning" portion of path (2) involves a fresh version of Y in ea
h new 
ase.℄3. After the �rst O-move (if any) in a subsidiary O-
omponent not as in 2, P 
opiesalong path (3) to give a reply in a new P-
omponent (its dual). Thereafter anyO-move in either of these two 
omponents is answered by 
opying along path (3)(in either dire
tion) to give P-reply (just a \
opy") in the dual 
omponent.It follows from the three observations that the 
omposed strategy behaves exa
tlylike Y: that is (A) A)� (A) A) 1�Y- (A) A)� AA) A�6 Y - Aev ?
ommutes.Remark. We have seen two ways of representing inno
ent strategies formally:�rst as a 
olle
tion of paths (legal positions) of the 
orresponding game tree, andse
ondly as an inno
ent fun
tion. Even for relatively simple p
f-terms, pre
isedes
ription of their denotations as inno
ent strategies in either style very qui
klybe
omes unwieldy and opaque. Neither style is optimised for 
apturing the uni-form10 or parametri
 nature of (most) inno
ent strategies whi
h are denotations ofp
f-terms. Intuitively a uniform strategy is one whose behaviour does not dependon the type to whi
h it is instantiated. For example the identity strategy of thearena A) A 
opies moves from one 
omponent of A to its dual 
omponent regard-less of the 
omplexity of the arena A. It would be highly desirable if an expressive
al
ulus whi
h lent itself to a su

in
t des
ription of su
h uniform strategies wereavailable.Using the pre
eding analysis of the interpretation of �xed-point operators as aguide, we seek a 
al
ulus for des
ribing strategies with the following 
apabilities:1. generating new names,10The 
onnotation here is with parametri
 (as opposed to ad ho
) polymorphism in the senseof Stra
hey (see e.g. [73, 63℄).
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opying moves,3. 
ommuni
ation in the style of message passing,3. private links (so that there is no ambiguity as to whi
h pending question weare answering),4. bran
hing 
onstru
tor (
orresponding to de�nition-by-
ases),5. repli
ation.In addition there should be a polymorphi
ally typed-version of su
h a 
al
ulus tohandle uniform strategies. It is worth noting that despite being models of higher-type fun
tions, moves of our games are just 
opies of program-type obje
ts. Hen
eif moves are the only things we 
ommuni
ate, a pro
ess 
al
ulus whi
h passesprogram-type signals (e.g. names) as opposed to more 
ompli
ated obje
ts (e.g. pro-
esses) would suÆ
e as a �rst attempt. This naturally brings to mind the �-
al
ulus[54℄. We have a way of expressing inno
ent strategies as terms of an appropriatelysorted polyadi
 �-
al
ulus (see [53℄). This representation re
e
ts the behaviour ofthe inno
ent strategy exa
tly. At the same time this gives an apparently new en-
oding of p
f (and hen
e the simply-type �-
al
ulus) in the �-
al
ulus. This andfurther developments are presented in [40℄.7.3. Chara
terization of 
ompa
t inno
ent strategies of PCF-arenasA major result in this se
tion 
hara
terizes 
ompa
t inno
ent strategies in termsof (a 
lass of) �nite 
anoni
al forms (f
f) of a language whi
h is essentially p
fextended by a family of de�nition-by-
ases 
onstru
ts. This 
hara
terization is verytight: there is a one-to-one 
orresponden
e between 
ompa
t inno
ent strategiesand f
fs. More pre
isely the valuation map whi
h takes f
fs to 
ompa
t inno
entstrategies gives an isomorphism between syntax { ordered by the 
-mat
h ordering{ and semanti
s. An important 
onsequen
e of this 
orresponden
e is the fullabstra
tion result for p
f.PCF extended by de�nition-by-
ases. We introdu
e a language 
alled P (forPlatek or Plotkin) whi
h is obtained from p
f by adding a family of de�nition-by-
ases 
onstru
ts. Ea
h su
h 
onstru
t is indexed by a natural number (whi
hwe shall often omit in the interest of readability) 
orresponding to the number of
ases 
onsidered by the de�nition. Formally the language P is de�ned by addingthe following typing rule to those that de�ne p
f: for ea
h program type � andk > 0: t0 : � � � � tk : � s : �
ase�k s = [0) t0j1) t1j � � � jk ) tk℄ : �Notation. There is no harm in assuming that � is the only program type and weshall do so in the rest of this se
tion. Also we shall use two kinds of shorthandfreely.� First we write 
ase s[t0j � � � jtk℄ to mean the notationally 
umbersome
ase�k s = [0) t0j1) t1j � � � jk ) tk℄:
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ondly for r1 < � � � < rk = l, we write 
ase s[r1 ) t1j � � � jrk ) tk℄ to mean
ase s[u0j � � � jul℄, where for ea
h 0 6 i 6 lui is 8<: tj if i = rj , for some j,
 otherwise.The operational semanti
s of the language P is obtained from that of p
f byadding the following rules: s + j tj + v
ase s[t0j � � � jtk℄ + v 0 6 j 6 k.The 
ase 
onstru
tx : �; y0 : �; � � � ; yn : � ` 
ase x[y0j � � � jyn℄ : �has an obvious interpretation as an inno
ent strategy of the arena (�; � � � ; �| {z }n+3 ) repre-sented by the following inno
ent fun
tion:8>>><>>>: [ 7! (1[ � (1�)i 7! (i+1[ � (1�)i � (i+1�)m 7! ℄mWe de�ne the 
-mat
h ordering 6
 over terms of P as follows: for any n > 0,and for any P-
ontext11 C[X1; � � � ; Xn℄, we haves � C[
; � � � ;
℄ 6
 twhenever t � C[u1; � � � ; un℄ for someP-terms u1; � � � ; un. For any k0 > 0, we identifythe term 
ase s[t0j � � � jtk℄ with
ase s[t0j � � � jtkj
j � � � j
| {z }k0 ℄:It is easy to see that 6
 is a partial order over terms of the language P.Finite 
anoni
al form. For any p
f-types A1; � � � ; An where n > 0, we de�nethe 
olle
tion FCF[f1 : A1; � � � ; fn : An℄of (program-type) �nite 
anoni
al forms (f
fs) of P with free variables appear-ing in the list f1; � � � ; fn as follows:11The raw P-
ontexts are de�ned as follows:C ::= X j x j 
 j �x : A:C j C1 �C2 j Y(C) j 
ase C[C0j � � � jCl℄;where X ranges over meta-variables for \holes" and 
 over 
onstants of PCF. A P-
ontext is araw 
ontext whi
h is type-
orre
t.
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 and n > 0 are in FCF[~f : ~A℄.� For any ~f : ~A � f1 : A1; � � � ; fn : An and for any 1 6 i 6 n whereAi � (C1; � � � ; Cm; �) and whereCj � (Dj1; � � � ; Djpj ; �) for ea
h 1 6 j 6 m;if r
 2 FCF[~f : ~A℄ for ea
h 0 6 
 6 k and if tj 2 FCF[~f : ~A; ~yj : ~Dj ℄ for ea
h1 6 j 6 m, then
ase fi(� ~y1 : ~D1:t1) � � � (� ~ym : ~Dm:tm)[r0j � � � jrk ℄ 2 FCF[~f : ~A℄:Note that a f
f is by de�nition of program type; and it is either 
, or a numbern, or a de�nition-by-
ases 
onstru
t.A map from �nite 
anoni
al forms to 
ompa
t inno
ent strategies. For p
f-types A = (A1; � � � ; An; �) and for any s 2 FCF[f1 : A1; � � � ; fn : An℄, we de�ne byre
ursion a partial fun
tion�[�~f : ~A:s℄ : fP-views of A g �! fP-moves of A gand prove simultaneously that �[�~f:s℄ is a 
ompa
t inno
ent fun
tion. There arethree 
ases.Case 1: s is 
. The fun
tion �[�~f :
℄ is the everywhere unde�ned partial fun
tion.Case 2: s is a number n. The fun
tion �[�~f:n℄ is the least partial fun
tion thatmaps the initial question \[A" of A to the answer n.Case 3: s is the 
ase-
onstru
t 
ase fi(�~y1:t1) � � � (� ~ym:tm)[r0j � � � jrk℄ where i is anumber between 1 and n whereAi � (C1; � � � ; Cm; �)Cj � (Dj1; � � � ; Djpj ; �)with r
 2 FCF[~f : ~A℄ for ea
h 0 6 
 6 k; and tj 2 FCF[~f : ~A; ~yj : ~Dj ℄ for ea
h1 6 j 6 m. Write Bj � ( ~A; ~Dj ; �). By the re
ursion hypothesis �[�~f:r
℄ and�[�~f ~yj :tj ℄ are 
ompa
t inno
ent fun
tions. We then de�ne �[�~f :s℄ as the leastpartial fun
tion satisfying the following:� �[�~f:s℄ maps \[A" to the initial question \(Ai" of Ai in A� for ea
h 1 6 j 6 m, if �[�~f ~yj :tj ℄ maps [Bj �p tom then �[�~f:s℄ maps [A �(Ai �[Cj �pto m� for ea
h 0 6 
 6 k, if �[�~f :r
℄ maps [A�p to m then �[�~f:s℄ maps [A � (Ai �)Ai
 � pto m;where we write \(Ai" and \[Cj" to denote the initial questions of Ai and Cj re-spe
tively as they o

ur in A, and where \)Ai
 " is the answer 
 asso
iated with thequestion \(Ai". For the de�nition to be sound, we need the following lemma whoseproof is straightforward and we omit it.



ON FULL ABSTRACTION FOR PCF: I, II AND III 91Lemma 7.1.(i)If [A�(Ai �[Cj �p is a P-view of A then [Bj �p is a P-view of Bj . Further ifthe legal position [Bj �u of Bj , in whi
h the question \[Bj" is not expli
itly an-swered, is in P[Bj �p �[�~f ~yj :tj ℄ then [A�(Ai �[Cj �u is a legal position of A, and is inP[A�(Ai �[Cj �p �[�~f:s℄.(ii)If [A�(Ai �)Ai
 � p is a P-view in A, then [A�p is a P-view of A. �It remains to show that �[�~f :s℄ thus de�ned is an inno
ent fun
tion; its �nitenessis obvious. Suppose �[�~f :s℄ maps the P-view [A�(Ai �[Cj �p (say) of A to a P-movem. By de�nition of �[�~f :s℄, �[�~f ~yj :tj ℄ maps the P-view [Bj �p of Bj to m. By there
ursion hypothesis (�[�~f ~yj :tj ℄ is inno
ent), P[Bj �p �[�~f ~yj :tj ℄ is non-empty; andso, by (i) of the pre
eding lemma, so isP[A�(Ai �[Cj �p �[�~f:s℄. Take any legal position[A�(Ai �u 2 P[A�(Ai �[Cj �p �[�~f:s℄. Sin
e the inno
ent fun
tion �[�~f ~yj :tj ℄ maps [Bj �pto m, we know that m is expli
itly justi�ed by some unanswered question whi
happears in the P-view [Bj �p. By the pre
eding Lemma, m is expli
itly justi�ed bysome question whi
h appears in [A�(Ai �[Cj �p whi
h by assumption is the P-view of[A�(Ai �u. Hen
e we infer that [A�(Ai �u �m is a legal position of A, and we are done.For f
fs s and s0 in FCF[f1 : A1; � � � ; fn : An℄ suppose �[�~f :s℄ � �[�~f :s0℄. W.l.o.g.,we may assume that s is a de�nition-by-
ases 
onstru
t de�ned as in the pre
eding.Sin
e �[�~f :s℄ maps \[A" to \(Ai" and that �[�~f:s℄ � �[�~f:s0℄, by de�nition of�[�~f:s0℄, we infer that s0 is a de�nition-by-
ases 
onstru
t of the shape�~f:
ase fi(�~y1:t01) � � � (� ~ym:t0m)[r00j � � � jr0k℄:We 
laim that �[�~f ~yj :tj ℄ � �[�~f ~yj :t0j ℄. To see this, suppose �[�~f ~yj :tj ℄ maps the P-view [Bj �p to some move m. By de�nition of �[�~f ~yj :tj ℄, this must mean that �[�~f :s℄maps [A�(Ai �[Cj �p to m. By supposition �[�~f:s℄ � �[�~f:s0℄, and by the de�nitionof �[�~f :s0℄, we infer that �[�~f ~yj :t0j ℄ also maps [Bj �p to m. Hen
e, by the re
ursionhypothesis, we have tj 6
 t0j . Essentially the same reasoning justi�es r
 6
 r0
.Hen
e we have s 6
 s0.To summarize we have proved:Proposition 7.3. For any f
f s; s0 2 FCF[f1 : A1; � � � ; fn : An℄,(i)the partial fun
tion �[�~f :s℄ is a 
ompa
t inno
ent fun
tion of the arena A �(A1; � � � ; An; �).(ii)s 6
 s0 if and only if �[�~f:s℄ � �[�~f:s0℄. �A map from 
ompa
t inno
ent strategies to �nite 
anoni
al forms. We show thatall 
ompa
t inno
ent strategies of p
f-types are de�nable in p
f by indu
tion onthe size of the de�ning inno
ent fun
tion.Proposition 7.4. For any p
f-type A = (A1; � � � ; An; �) and any 
ompa
t inno-
ent strategies � and �0 of A,



92 HYLAND AND ONG
[

( ((

[ [[

( (

.. . . ..

.. ... .

...
Dj1 DjpjC1 Cj CmA1 Ai An

FIG. 10. Shape of arena A.(i)there is a f
f s� 2 FCF[f1 : A1; � � � ; fn : An℄ of P su
h that �~f : ~A:s� de�nes�.(ii)� � �0 if and only if s� 6
 s�0 .Proof. For � = �f ranging over 
ompa
t inno
ent strategies, we de�ne the f
fs� 2 FCF[f1 : A1; � � � ; fn : An℄asso
iated with � by re
ursion on the size of the domain of f . Suppose � = �f isa 
ompa
t inno
ent strategy of p
f-type A = (A1; A2; � � � ; An; �). The trivial 
asesare:� the strategy � does nothing, in whi
h 
ase, the term �~f:
 de�nes �;� the strategy � immediately outputs a number l, in whi
h 
ase, the term �~f:lde�nes �.There are two 
ases, depending on whether A1 is the program type. We 
onsiderthe non-trivial indu
tive 
ase. Suppose in response to Opponent's �rst move (whi
hmust be the initial A-move \[A"), � asks an A1-question, \(A1" say.A1 � (C1; C2; � � � ; Cm; �):We imagine that Opponent 
hooses initially to 
ompute in Cj by posing a Cj-question \[Cj", so the P-view at this point is [A�(A1 �[Cj . Of 
ourse, Opponentmay subsequently swit
h from Cj and bring in other Cj0 ; but the P-strategy inquestion is determined independently of that for whenever Opponent raises theinitial question in Cj0 , Player's view immediately 
ollapses to [A�(A1 �[Cj0 .Suppose that Cj � (Dj1; Dj2; � � � ; Djpj ; �) and 
onsider the ensuing moves andthe e�e
t on Player's view. The P-question moves are of two kinds, see Figure 10:� (A1 ; � � � ; (An and questions whi
h are hereditarily justi�ed by them;� (Dj1 ; � � � ; (Djpj and questions whi
h are hereditarily justi�ed by them.
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an be regarded as a P-view in the arena
orresponding to: (Dj1; � � � ; Djpj ; A1; � � � ; An; �):Thus we derive from our strategy � a strategy �j in su
h an arena. Note that f�jis smaller than f� | f�j is de�ned on the P-view [A�p if and only if f� is de�nedon [A�(A1 �(Cj �p. Hen
e, by the indu
tion hypothesis, we have a term�yj1 : Dj1: � � � :�yjpj : Djpj :�f1 : A1 � � � :�fn : An:tj(~yj ; ~f)whose interpretation is �j . In the 
ase where Cj is the program type �, then the
orresponding term is �f1 : A1 � � � fn : An:tj(~f).Note that the �j 's 
ompletely determine the a
tion of � up to the moment thatOpponent answers the question \(A1". Now 
onsider the position on
e \(A1" isanswered by an O-answer \)": the P-view is [A�(A1 �). The O-answer ranges over a�nite number of possible natural numbers, say 
1; � � � ; 
k in in
reasing order. Whenwe 
ontinue (Opponent will have \forgotten all that has happened"), Player's viewwill thereafter always start with [A�(A1 �); so for ea
h value 
1; � � � ; 
k, we get smallerstrategies �1; � � � ; �k telling us how � 
ontinues. We get by the indu
tion hypothesisthe 
orresponding terms: �f1 : A1: � � � :�fn : An:u1(~f);...�f1 : A1: � � � :�fn : An:uk(~f);whose interpretations are �1; � � � ; �k respe
tively.We write ~yj � yj1; � � � ; yjpj . Now 
onsider the term:�~f : ~A:
ase f1(�~y1:t1) � � � (� ~ym:tm)[
1 ) u1(~f)j � � � j
k ) uk(~f)℄:It is easy to see that � is the interpretation of the above term.The se
ond part of the Theorem is proved by indu
tion on the size of the strate-gies. We leave the essentially straightforward details to the reader.Putting the two pre
eding results together we 
an say the following.Theorem 7.1 (Strong de�nability). There are maps in opposite dire
tions: forany p
f-type A = (A1; � � � ; An; �)FCF[f1 : A1; � � � ; fn : An℄ -� f 
ompa
t inno
ent strategies of A gf1 : A1; � � � ; fn : An ` s - �[�~f:s℄f1 : A1; � � � ; fn : An ` s� � �(the 
hoi
e of variables ~f : ~A in the above is of 
ourse immaterial). The pair ofmaps de�nes a bije
tion and hen
e (by the two pre
eding propositions) an isomor-phism between �nite 
anoni
al forms and 
ompa
t strategies. It is straightforward



94 HYLAND AND ONGto see that for any s 2 FCF[~f : ~A℄, the 
ompa
t inno
ent strategy asso
iated with s
oin
ides with its denotation in C A ; that is to say�[�~f:s℄ = [[�~f:s ℄℄CA : �Remark.(i) In Proposition 7.1 we only 
onsider the 
ase of p
f generated from one pro-gram type �. Nevertheless it is entirely straightforward to extend the same argumenttherein to deal with p
f proper i.e. where both � and o are program types. Theboolean 
onditionals would then play exa
tly the same role as that of de�nition-by-
ases 
onstru
ts.(ii) The strong de�nability result 
an be straightforwardly extended to inno
entstrategies in general. Of 
ourse the 
orresponden
e would then be with possiblyin�nitary 
anoni
al forms.We 
an take advantage of the Strong De�nability Theorem as a representationdevi
e to explain the stru
ture of the dialogue game model. For example it is easyto see that the arena o) o is in�nite: the following represents a family of distin
tstrategies: �x : o 
ond x (
ond x (� � � (
ond| {z }n x t 
) � � �)
) 

orresponding to the prime inno
ent strategy generated by[� (1�)t � � � (1�)t| {z }n 7! ℄t7.4. Strong adequa
y and order full abstra
tionBuilding on the de�nability result we 
an now prove that dialogue games and in-no
ent strategies give an order-extensional, order (or inequationally) fully abstra
tmodel for p
f.Proposition 7.5 (Strong adequa
y). For any P-program s, and for any valuev, s + v if and only if [[ s ℄℄ + v (in the 
ategory C A ).Proof. Our proof is similar to Plotkin's proof of adequa
y of the S
ott fun
-tion spa
e model for p
f. Plotkin used a redu
ibility-style argument pioneered byTait [74℄ and Girard [31℄. Sin
e the argument is standard and well-do
umented(see Plotkin's proof in [61℄; see also [34℄ for an exposition), we omit it here.Proposition 7.6. For any p
f-terms s and t of the same type, s �� t in p
f ifand only if s �� t in the extended language P.
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onsider a translation of terms from P to p
f s 7! sde�ned by re
ursion as follows:st def= st�x : A:s def= �x : A:sY(s) def= Y(s)
ase s[t0j � � � jtk℄ def= 
ond(eqs0)t0(
ond(eqs1)t1 � � � (
ond(eqsk)tk
) � � �);where eq is a p
f-term of type (�; �; o) satisfying� equv+ if and only if both u+ and v+, and further,� equv + t if and only if u + n and v + n, for some natural number n.In addition the translation preserves variables, 
onstants and all p
f-terms. Notethat for any P-terms s and t, s[t=x℄ � s[t=x℄.Lemma 7.2. For any 
losed term s of the language P, and for any value v (whi
hmay be an abstra
tion), s + v (in P) if and only if s + v (in p
f).Proof. We sket
h the proof of the dire
tion \(" as an illustration; the otherdire
tion may be proved in a similar way. The proof is by indu
tion over the rulesthat de�ne the relation s + v. The base 
ases are trivial. Consider the 
ase of thefollowing rule: s + j tj + v
ase s[t0j � � � jtk℄ + v 0 6 j 6 kSuppose 
ase s[t0j � � � jtk℄ + v in p
f. Sin
e 
ase s[t0j � � � jtk℄ is
ond(eqs0)t0(
ond(eqs1)t1 � � � (
ond(eqsk)tk
) � � �);this 
an only be so provided eqsi + t (or equivalently s + i) and ti + v, for some i. Bythe indu
tion hypothesis, s + i and ti + v; and so, by the rule in question, we have
ase s[t0j � � � jtk℄ + v.The dire
tion \(" of Proposition 7.6 is immediate sin
e a program 
ontext ofp
f is also a program 
ontext of P. To prove the other dire
tion, take a program
ontext C[X ℄ of P su
h that both C[�~f:s℄ and C[t℄ are programs, where s andt are p
f-terms. Suppose C[�~f:s℄ + v. Sin
e C[�~f :s℄ is C [�~f:s℄ and v is v, byLemma 7.2, C[�~f:s℄ + v in p
f. Assuming s �� t, we have C [t℄ + v. Hen
e, byLemma 7.2 again, C[t℄ + v in P. This 
on
ludes the proof of Proposition 7.6.Take any (
losed) p
f-terms s and t of the same type, A say. Write [[ s ℄℄ for thedenotation of s in the C A . By de�nition [[ s ℄℄ . [[ t ℄℄ means that for any inno
entstrategy � of the arena A) �, for any number n,[[ s ℄℄; � + n =) [[ t ℄℄; � + n:
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[
FIG. 11. Tree of questions of arena ((o; o; o); o).Sin
e the map � 7! [[ s ℄℄; � from A) � (the dI-domain of all inno
ent strategies ofA) � ordered by in
lusion) to � is a 
ontinuous fun
tion between 
pos, [[ s ℄℄; � + nif and only if [[ s ℄℄; � + n for some 
ompa
t approximant � of �. Hen
e it suÆ
es to
onsider only 
ompa
t inno
ent strategies � of the arena A) �.So suppose s �� t in p
f, and suppose for some 
ompa
t inno
ent strategy �,[[ s ℄℄; � + n. By the P-de�nability of 
ompa
t inno
ent strategies (Proposition 7.1),there is a f
f h 
orresponding to � su
h that [[hs ℄℄ + n. Sin
e C A is stronglyadequate for P (Proposition 7.5), this is equivalent to hs + n in the extendedlanguage P. Sin
e s �� t in p
f, by Proposition 7.6, s �� t in the extended languageP. Hen
e ht + n whi
h is equivalent to [[ht ℄℄ + n in C A , by the same adequa
yresult as before. To summarize we have proved:Theorem 7.2 (Full abstra
tion). The observational quotient 
C A of the 
ate-gory C A gives rise to an order-extensional, order fully abstra
t model of p
f. �7.5. Examples and 
ounter-examplesA type-2 strategy. Consider the type-2 p
f-term (see e.g. [11, p. 129℄ or [24℄)F = �f : (o; o; o):f(ft
)(f
t) : ((o; o; o); o)For ease of explanation we label the questions of the arena ((o; o; o); o) as in Fig-ure 11. We des
ribe the inno
ent strategy denoted by F informally in terms (seeFigure 12) of its intera
tion with the inno
ent strategy \left or" l-or whi
h 
orre-sponds exa
tly (in the sense of Theorem 7.1) to the p
f-terml-or = �x : o:�y : o:
ondxt(
ondytf) : (o; o; o):The legal position in Figure 12 is pre
isely the tra
e of the 
omputation F � l-or.Formally it is the un
overing of the maximal legal position \[o�℄t" in a

ord with1 hF; l-or i- ((o; o; o); o) � (o; o; o) ev - o:The dotted arrows pointing \ba
kwards" are the justi�
ation pointers. We num-ber the moves from 1 to 10 for ease of identi�
ation. In response to the opening
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FIG. 12. Tra
e of F � l-or.
move \[", Player makes the move \(1" 
orresponding to the head variable f of F .Opponent, playing l-or and regarding \(1" as its opening move, raises the question\[1:1" 
orresponding to the head variable x (left argument) in l-or. From this pointonwards until the 3rd move is answered (in the 8th move), Player plays the substrat-egy F1 = �f : (o; o; o):ft
 
orresponding to the subterm ft
 of F . The strategyF1 regards the 3rd move \[1:1" as its opening move, and responds by raising thequestion \(1" (4th move) 
orresponding to the head variable f in F1. Opponentregards the 4th move as an opening move (distin
t from the 2nd move) of a newplay. He responds as before by raising the question \[1:1" (5th move) 
orrespondingto the left argument in a

ord with l-or. This 
orresponds to querying the �rst ofthe two arguments of the head variable in F1 = �f:ft
, so Player supplies theanswer \℄t" (6th move). The strategy l-or now has enough information to supplythe answer \)t" to Player's earlier question (4-th move). In response Player 
on-
ludes the substrategy F1 by supplying the answer \℄t" to Opponent's question inthe 3rd move. Opponent 
an now respond to Player's question in the 2nd move byreturning the answer \)t"; whereupon Player 
on
ludes the play by \℄t", e
hoingthe pre
eding move.Remark. There 
an be no inno
ent strategy of the arena ((o; o; o); o) whi
h tellsl-or and r-or apart, say, by mapping the former to t and the latter to f. This is justas well in view of Curien's observation in [24, p. 358℄:
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ft1:1 1 11:2FIG. 13. G1, a (non) strategy that tells left-or and right-or apart.
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FIG. 14. G2, another (non-inno
ent) strategy that tells left-or and right-or apart.The type-2 fun
tion of type ((o; o; o); o) whi
h sends the left-or to t and the right-orto f is not p
f-de�nable.Curien's observation highlights an important feature of p
f-style higher-type se-quential 
omposition: higher-order fun
tionals intera
t extensionally with theirfun
tional arguments.One way to see why the pre
eding type-2 fun
tion is not de�nable as an inno
entstrategy is to appeal to the 
orresponden
e between 
ompa
t inno
ent strategiesand �nite 
anoni
al forms (f
f) of the language P, and then argue synta
ti
allyfollowing Curien. It is instru
tive however to sket
h an explanation from �rstprin
iples in terms of the de�nition of inno
ent strategy. Consider the strategiesG1 and G2 de�ned informally in Figures 13 and 14 respe
tively. The question-movestherein (all from arena ((o; o; o); o)) are annotated with o

urren
es as in Figure 11.It is easy to see that both G1 and G2 take l-or to t and r-or to f. Fortunately neitheris an inno
ent strategy.� G1's response in the 4th move (see Figure 13) violates the last-asked-�rst-answered 
ondition so that the two sequen
es of moves are not even legal posi-tions. This is essentially the 
at
h (and throw) fa
ility whi
h has been studied byCartwright, Curien and Felleisen in [18℄.� In the 
ase of G2, both sequen
es of moves in Figure 14 are legal positions, andwe de�nitely have a strategy. However G2 is not inno
ent be
ause its response atthe 6th move is di�erent in the two 
ases despite the fa
t that both legal positionshave the same P-view (whi
h is \[�(1�)t") when trun
ated at the 5th move.
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[

(

[((((�, �), �)�),11:11:1:1FIG. 15. Tree of questions of arena (((�; �); �); �).The (
ounter-) example G2 illustrates well the rationale for studying strategieswhi
h are invariant over P-views. This is the essen
e of inno
en
e. �A type-3 strategy. As another example we 
onsider (mu
h more brie
y) theinterpretation of the following type-3 terms:F1 def= �f : ((�; �); �):f(�y : �:f(�x : �:y)) : (((�; �); �); �)F2 def= �f : ((�; �); �):f(�y : �:f(�x : �:x)) : (((�; �); �); �):We illustrate the strategies de�ned by F1 and F2 respe
tively in terms of theirintera
tion with the termG def= �g : (�; �):g1 : ((�; �); �)The questions of the arena (((�; �); �); �) are annotated with o

urren
es as in Fig-ure 15. We present the play 
orresponding to F1G and F2G in Figure 16. We haveomitted the justi�
ation pointers of all moves ex
ept the 6-th. Note that F1 andF2 are only subtly di�erent: in their respe
tive intera
tion with G, the underlyingsequen
es of moves (as a tra
e of the play) are identi
al, they only di�er in the waythe 6-th move is justi�ed. This example was 
ommuni
ated to us by Gandy andPani.7.6. Representation of inno
ent strategies as 
anoni
al forms revisitedWe have seen in x7.3 and espe
ially in the proof of the Strong De�nability The-orem 7.1 how 
ompa
t inno
ent strategies of p
f-arenas may be given pre
iserepresentation as �nite 
anoni
al forms (f
f). Now we turn to the problem ofrepresenting (
ompa
t) inno
ent strategies of an arbitrary arena A.The forest of questions of A may be in�nite and in�nitely bran
hing. Call anarena pointed if its forest of questions is a tree; and 
all it basi
 if its forest ofquestions is a singleton tree. It is worth noting the following fa
t 
on
erning thestru
ture of arenas.� Every arena A 
an be expressed as a (possibly in�nite) produ
t Qi2I Pi ofpointed arenas Pi.
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FIG. 16. Two subtly di�erent strategies.� Every pointed arena 
an be expressed as a fun
tion spa
e arena A ) � whereA is an arena and � a basi
 arena.Correspondingly ea
h inno
ent strategy � of an arena A is a tuple h�i j i 2 I i of
omponent strategies �i of pointed arenas. We shall just show how a 
ompa
tinno
ent strategy of a pointed arena 
an be given a pre
ise representation in termsof a 
lass of synta
ti
 obje
ts.Take a 
ompa
t inno
ent strategy � of A. Observe that only the questions (andsome of their respe
tive asso
iated answers) of a 
ertain subarena of A appear in the
orresponding game tree of �. The de�nition of the graph of the inno
ent fun
tion(
orresponding to) � { being a �nite 
olle
tion of pairs of the form \(P-view, P-move with pointer)" { depends only on a �nite subarena of A. We shall 
all the(ne
essarily �nite) subarena of A 
onsisting only of questions and all asso
iatedanswers that appear in graph of the inno
ent fun
tion f� the �-subarena of A.The tree of questions of a pointed arena A = (Qi2I Ai) ) �1 has the generalshape in Figure 17. There are three ways by whi
h �, a 
ompa
t inno
ent strategyof A, 
an respond to the opening question \[�1".(1) � has no response(2) � returns an answer 
, say; or(3) � raises the question \(A1", say. Suppose A1 has the form (Qj2J Cj) ) �where ea
h Cj is a pointed arena.
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FIG. 17. Forest of questions of arena A.Consider 
ase (3). We shall assume that of the \level C" questions (see Figure 17),Player has a non-trivial response only to O-questions [C1 ; � � � ; [Cm (so these arethe only ones that o

ur in the graph of the inno
ent fun
tion of �). For ea
h1 6 j 6 m, suppose Cj has the shape Dj ) � where Dj =Qk2KDjk and ea
h Djkis a pointed arena.Following the argument of the proof of Theorem 7.1 in 
onstru
ting the 
anoni
alform 
orresponding to �, we would then arrive at an expression of the shape:�fQi2I Ai :
ase pA1(f)h�y1D1 :a1[f; y1℄; � � � ; �ymDm :am[f; ym℄ j ~
 i [dk[f ℄℄k2Pwhere� P is a �nite subset of the answers asso
iated with \(A1"� f : Qi2I Ai ` pA1(f) : A1 where pA1(f) is the proje
tion onto the A1-
omponent of the produ
t arena Qi2I Ai� h�y1D1 :a1[f; y1℄; � � � ; �ymDm :am[f; ym℄ j ~
 i is a tuple of type Qj2J Cj su
hthat the only non-
 
omponents are the ones on the l.h.s. of the verti
al bar.We shall 
all this expression the �nite 
anoni
al form of �. We shall not elabo-rate on the formal syntax of �nite 
anoni
al form introdu
ed here; suÆ
e it to saythat it is a slight variant of that de�ned earlier in x7.3, adapted in the obvious wayto des
ribe strategies of an arbitrary arena.Though we have not spelt out in an entirely formal way, it should be 
lear how thesame representation s
heme 
an be extended to a 
orresponden
e between inno
entstrategies in general on the one hand, and in�nitary 
anoni
al forms on the other.
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tion we extend the full abstra
tion result (Theorem 7.2) by showingthe following:(i) every map between p
f-types in 
C A is p
f-de�nable in some (partial) fun
-tion parameter;(ii) every map between p
f-types in 
RA is p
f-de�nable.(Re
all from x5.6 the de�nition of the 
ategory RA of 
omputational arenas andre
ursive inno
ent strategies). Results of this kind are often 
alled universalitytheorems.To establish the results we show that for every p
f-type A there is a p
f-termuA : (�) �)) A(we shall suppress the dependen
e of u on A) with the following property.Suppose that � is an inno
ent strategy of type A with 
oding fun
tion �� as indi-
ated in x5.6. Let �� be the 
anoni
al strategy in �) � asso
iated to �� 2 P. Then� is observationally equivalent to �� ; [[ u ℄℄, where [[ u ℄℄ is the interpretation of u inC A .It should 
ause little 
onfusion to drop the bra
kets and the bar; so hen
eforth wewrite the more natural equivalen
e as u(��) ' �.Of 
ourse the existen
e of a u as des
ribed immediately gives (i). (Note thatde�nition in a partial fun
tion 
omes out of the proof but it is not diÆ
ult torepla
e it with a total fun
tion if preferred.) For (ii) we know that if � is inRA , then �� is partial re
ursive. Now by Proposition 7.5 C A is 
omputationallyadequate. So by Proposition 2.9 �� is representable in the strong sense in C A bythe interpretation of a p
f-term s say. It follows (from the 
ontext lemma for C A )that �� ' s. Hen
e u(s) ' � and we have (ii).8.1. Retra
ts of pure typesThe 
onstru
tion of (generalized versions of) the term u just des
ribed involvesa pretty standard \use of the re
ursion theorem" (here the �xed point operator).However it seems right to sket
h a proof in some detail. We do this in the notation-ally simple 
ase when A is a pure type (see below). There is no loss of generality asthe full result follows in view of simple 
oding fa
ts. (However some best possibleestimates on the use of Y are lost in this approa
h.)We start our simplifying s
heme by introdu
ing the notion of pure types whi
hare 
onventionally denoted by natural numbers n: the pure type (denoted by) n isa parti
ularly simple (p
f-) type of height n. For the rest of this se
tion we shallassume that � is the only ground type.Definition 8.1. The pure types 0; 1; 2; � � � are de�ned re
ursively by:0 def= �n+ 1 def= (n) 0):
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onfusion should arise from the (overloading) use of numbers both aselements of N (and indeed strategies in C A ) and as (names for) pure types. Weshall need a simple lemma.Lemma 8.1. Any pure type n is a retra
t of the pure type n+1 by p
f-de�nablemaps. Thus n / n+ 1 in T.Proof. We have 0 / 1 via n : 0 7! �x : �:n : 1f : 1 7! f(0) : 0;and then pro
eed indu
tively.When studying total type theories over the natural numbers, re
ursion theoristsstandardly exploit the fa
t that any type A is re
ursively a retra
t of the pure typeht(A). However in the 
ase of partial type stru
tures the situation is more subtle.We de�ne by re
ursion the notion of the rank rk(A) of a p
f-type A.rk(�) def= 0rk(A0; � � � ; Ak�1; �) def= 8<: rk(A0) + 1 if k = 1max(rk(A0); � � � ; rk(Ak�1)) + 2 if k > 2.Proposition 8.1. Any p
f-type of rank n is a retra
t by p
f-de�nable maps12of the pure type n. (So for any p
f-type A there is an n with A / n in T.)Proof. We start by establishing the following:Lemma 8.2. Any �nite produ
t of a pure type n is a retra
t of n+ 1.Proof. By indu
tion on n. In 
ase n = 0 we have 0� � � � � 0 / 1 via(n0; � � � ; nk�1) 7! �x : �:
ond(eqx0)n0(
ond(eqx1)n1 � � �)f 7! (f(0); � � � ; f(k � 1)):12Here we mean maps of the p
f-type theory T (see Remark 2.3).
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tion step, assume the result for r and let n be r + 1. Thenn� � � � � n = (r ) 0)� � � � � (r ) 0)�= (r ) 0� � � � � 0) 


 isomorphism/ (r ) (0) 0))�= (r � 0) 0) 


 isomorphism/ (r � r)) 0 Lemma 8.1/ (r + 1) 0) indu
tive hypothesis= n+ 1:Now we prove the proposition by indu
tion on the stru
ture ofA = (A0; � � � ; Ak�1; �):Suppose k = 1 and rk(A) = r + 1 then by the indu
tion hypothesisA = (A0 ) �) / r ) 0 = r + 1:Suppose k > 2 and A has rank r + 2. Then by de�nition rk(Ai) 6 r for ea
h i.Hen
e A0 � � � � �Ak�1 ) � / r � � � � � r ) 0 by indu
tion hypothesis/ (r + 1)) 0 by pre
eding Lemma= r + 2:8.2. Preamble to the main 
onstru
tionSuppose that � : m0 � � � � � mk�1 �! � in C A is an inno
ent strategy whosearguments are all pure types mi 6 n+ 2. Then we have the following three 
ases:Unde�ned 
ase. � does not respond to the initial question \[".Constant 
ase. � responds to the initial question \[" with an immediate answer\℄
" for some value 
.Indu
tive 
ase. � responds to the initial question \[" with the initial question \(" inthe i-th gamemi (0 6 i 6 k�1). Now the general 
ir
umstan
e is when mi = m+2is at least 2 and we analyze this �rst. The only interesting response for O is theinitial question in (m + 1) whi
h is now justi�ed. The play until that question isanswered is (e�e
tively) a play in the gamem�m0 � � � � �mk�1 ) 0;and we write �0 for the strategy in this game derived from �. (See below for thesimple relation between the representing inno
ent fun
tions.) The spe
ial 
ir
um-stan
es when mi = 1 or mi = 0 are simpler. In 
ase mi = 1, the only interesting



ON FULL ABSTRACTION FOR PCF: I, II AND III 105response for O is the initial question in 0 whi
h is now justi�ed. The play until thatquestion is answered is e�e
tively a play in the game m0 � � � � �mk�1 ) 0 and wewrite �0 for the strategy in this game derived from �. Finally in 
ase mi = 0, O 
anonly give an uninteresting immediate answer 
 to P's question. In all three 
ir
um-stan
es, the analysis now 
ontinues in the same fashion. At some stage (possibly aton
e | the \uninteresting" response, possibly after many 
ompleted plays against�0) O may reply to P's initial question in mi. If the answer is the value 
, then theP-view will be \[�(�)
" and P is then essentially ba
k in the position of playing ina game m0 � � � � �mk�1 ) 0 again. We write �
 for the strategy obtained from �for the su

eeding play. (Again see below for the relation between the representinginno
ent fun
tions.)We 
onsider the output behaviour of � in these three 
ases. Let �0 : m0; � � � ; �k�1 :mk�1 be k inno
ent strategies of pure type. Then the 
omposite(�0; � � � ; �k�1);� = �(�0; � � � ; �k�1) : 0is a strategy in �. So it is either the unresponsive strategy or else dire
tly respondswith answer a natural number.In 
ase 1, �(�0; � � � ; �k�1) is the unresponsive strategy.In 
ase 2, �(�0; � � � ; �k�1) responds with some natural number 
.In 
ase 3, �(�0; � � � ; �k�1) is the unresponsive strategy unless(a) the interpretation of �i(�a:�0(a; �0; � � � ; �k�1)) (in the general 
ir
umstan
es),or �i(�0(�0; � � � ; �k�1)) in 
ase mi = 1, or �i in 
ase mi = 0, is some natural number
, and(b) �
(�0; � � � ; �k�1) responds with some number d, in whi
h 
ase �(�0; � � � ; �k�1)responds with d.Clearly the strategy �0 and sequen
e of strategies �
 depend in a simple wayon �: omitting justi�
ation indi
es and 
oding details the representing inno
entfun
tions satisfy: f�0(u) = a () f�(\[ � (�u") = af�
(\[�v") = a () f�(\[ � (�)
 � v") = a:This dependen
e is re
e
ted in terms of the 
odes �� for � introdu
ed in x5.6:there are (least) re
ursive operators �0 : P �! P and � : N � P �! P (where P isthe set of all partial fun
tions from N to N) su
h that for all � : m0�� � ��mk �! 0in C A , �0(��) = ��0 and �(
; ��) = ��
 :We suppress the dependen
e of � and �0 on the sequen
e (m0; � � � ;mk�1), and shallwrite �(
; �) in its 
urried form �
(�). We need an expli
it 
hoi
e of �0 and �.The natural 
hoi
e to make is of the least su
h re
ursive operators, so we set�0(�) = [f�� 0 : � is a (�nite) inno
ent strategy with �� � � gand �(�; 
) = [f��
 : � is a (�nite) inno
ent strategy with �� � � g:
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ursive operatorsIt does not seem pro�table to extend ideas of numeralwise representability tohigher types; but in x8.2 we de
omposed 
odes �� using 
ertain re
ursive operatorsso one minor extension proves useful in the proof of universality.We write P for the set of all partial fun
tions from N to N. We shall need to usethe fa
t that 
ertain (simple) re
ursive operators � : P �! P 
an be representedin a suitable sense in p
f. More generally we should 
onsider � : Pk � Nl �! Nand � : Pk � Nl �! P. The idea is to use the type � ) � as a substitute for P,sin
e every map � �! � in a model will numeralwise represent (in the stri
t sense)a unique partial fun
tion, that is, an element of P. However we fa
e a number ofproblems.1. Not every partial fun
tion need be numeralwise representable in the model.For example in the initial model T the representable fun
tions are exa
tly the partialre
ursive fun
tions.2. The same partial fun
tion may be numeralwise represented by distin
t mapsin the model. For example the 
onstant term �x:0 and the term de�ned impli
itlyby the re
ursive equationf(x) def= if x = 0 then 0 else f(pred0)will generally denote di�erent maps but both will represent the 
onstant fun
tionwith value 0.3. We 
an no longer dodge issues of sequentiality. Some re
ursive operators� : P �! N 
an in no sense be represented in p
f: 
onsider for example�(�) = 0 () either �(0) = 0 or �(1) = 0.As regards point 3. we shall simply have to be 
areful to 
he
k p
f representabil-ity: in the 
ases where we need it, it is quite trivial. (There are in e�e
t a numberof exa
t 
hara
terizations of p
f-de�nability at this level in the literature.) Asregards the �rst two points it seems best to 
ope with them as follows. First re
allfrom Proposition 2.9 that for any �nite partial numeri
al fun
tion we 
an �nd aterm of p
f (in the sense of Remark 2.3) whi
h numeralwise represents the fun
-tion in T. Su
h terms weakly represent their fun
tions in any model but represent(without quali�
ation) them in any adequate model. Se
ondly we 
an restri
t at-tention to (S
ott) 
ontinuous fun
tions: any re
ursive operator is 
ontinuous andso determined by its values on �nite fun
tions; and a p
f-representable operatormust be of this form. This motivates the following de�nition.Definition 8.2. Suppose that C is a 
artesian 
losed 
ategory and that N is anobje
t of C equipped with 0 : 1 �! N and s : N �! N . Take numerals n : 1 �! Nas usual and adopt the notion of (numeralwise) representability of partial fun
tionsfrom x2.4. A map � : Pk�Nl �! N is represented by F : (N ) N)k�N l �! Njust when for any numerals n1; � � � ; nl : 1 �! N in C and maps f1; � � � ; fk : N �! Nin C representing �1; � � � ; �k 2 P we have�(�1; � � � ; �k; n1; � � � ; nl) = m i� F (f1; � � � ; fk; n1; � � � ; nl) =M : 1 �! N:



ON FULL ABSTRACTION FOR PCF: I, II AND III 107A map � : Pk�Nl �! P is represented by F : (N ) N)k�N l �! (N ) N) justwhen the 
orresponding map � : Pk�Nl+1 �! N is represented by the exponentialtranspose F : (N ) N)k �N l+1 �! N in the sense just given.Remark. We have given this de�nition quite generally but it has a 
learer senseif one assumes that all �nite partial fun
tions are representable in C and that weare 
on
erned only with the representability of 
ontinuous �. The reader may wishto re
e
t on the following easy observations about representability in the initialmodel T.Proposition 8.2.(i)For any F : (� ) �)k � �l �! � in T there is a unique re
ursive operator� : Pk � Nl �! N su
h that F represents �.(ii)If � is a 
ontinuous operator represented by F in T then � is the re
ursiveoperator represented by F . �We 
lose this se
tion by showing that a term F , whi
h represents a 
ontinuousfun
tional � in the initial model, does so also in C A . The proof relies on a numberof results whi
h it seems best to 
olle
t together at this stage. First we need somesimple fa
ts about representability of partial fun
tions from x2.4.(1) If C is an adequate model for p
f and f : �k �! � represents � : Nk �! Nin T then f represents � in C . (Proposition 2.9)(2) For any model C of p
f if n . s : � then n = s : �. (Proposition 3.3)(3) For any model C of p
f, if f . g : �k ) � represents �;  : Nk �! N then� �  .(4) Suppose the model C of p
f satis�es the 
ontext lemma and that (the obser-vational quotient) 
C A is standard. If f; g : �k ) � represent �;  : Nk �! N with fstri
t in C A , then � �  if and only if f . g:(Proposition 3.5)We 
an apply these results to C A .(a) C A is standard and (hen
e) so is 
C A .(b) C A is adequate (Proposition 7.5).(
) C A satis�es the 
ontext lemma (Theorem 6.1).Se
ondly the proof depends on some 
ontinuity properties of C A .(5) C A is enri
hed over dI-domains in su
h a way that a �nite element � : �) �is either a 
onstant fun
tion and so p
f-de�nable or stri
t and represents a �nitepartial fun
tion. In either 
ase we 
an �nd g : � ) � in T su
h that if � represents : N �! N in C A then g represents  in T. It follows by (1) above that g represents in C A and hen
e by (4) above that g ' � in C A .



108 HYLAND AND ONGProposition 8.3. Suppose that F : (�) �)k� �l �! � represents the 
ontinuousfun
tional � : Pk � Nl �! N in the initial model T of p
f. Then F represents �in C A .Proof. For simpli
ity we treat the 
ase of F : (� ) �) � � �! � representing� : P� N �! N in T. Take � : (�) �) representing � 2 P in C A .Suppose �rst that �(�)(n) = m in C A . As � is 
ontinuous there is a �nite  � �with �( )(n) = m. Take a stri
t g representing  in T. We have by assumptionF (g)(n) = m in T and hen
e in C A . Applying (4) above to C A we get g . � inC A . But then m = F (g)(n) . F (�)(n) in C A and so by (2) above F (�)(n) = m.Suppose 
onversely that F (�)(n) = m in C A . By (5) above we 
an take � 6 ��nite in � ) � with F (�)(n) = m; and we 
an �nd g : � ) � in T with g ' �in C A , and both g and � representing  : N �! N in C A . We dedu
e thatF (g)(n) = m in C A and hen
e as C A is adequate F (g)(n) = m in T. By as-sumption we dedu
e that �( )(n) = m. Now � 6 � and so a fortiori � . � (Re-mark 3.1), and so by (4) above  � �. As � is 
ontinuous we dedu
e �(�)(n) =m. 8.4. Notational preliminariesBefore starting the main 
onstru
tion we establish some notation.(i) We need a natural number 
odem = hm0; � � � ;mk�1 i for sequen
es of naturalnumbers; and a fun
tion to add a number at the head of a listm � hm0; � � � ;mk�1 i def= hm;m0; � � � ;mk�1 i:(ii) We 
onsider pure types m 6 n + 2. By Lemma 8.1 one is a (p
f-de�nable)retra
t of the other. We write this asem : m �! n+ 2 and pm : n+ 2 �! m:(iii) In analyzing � : m0 � � � � �mk�1 �! 0 we are led to 
onsider�0 : m�m0 � � � � �mk�1 �! 0as we 
annot (of 
ourse) keep �xed the number of arguments of \substrategies".Hen
e we are led to represent elements ofm0�� � ��mk�1 as elements of (�) n+2).We do this by means of p
f-de�nable retra
tions:fun : m0 � � � � �mk�1 �! (�) n+ 2)tup : (�) n+ 2) �! m0 � � � � �mk�1where fun(a0; � � � ; ak�1) = �x : �:
ond(eqx0)(em0a0)(
ond(eqx1)(em1a1) � � �)tup(F ) = (pm0(F (0)); � � � ; pmk�1(F (k � 1))):
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f-de�nition. If F : �) A and a : A de�ne a�F : �) Aby a � F def= �x : �:
ond(eqx0)a(F (predx)):The �nal pie
e of notation that we need arises from a basi
 lemma whi
h we needfor the proof of universality. Re
all the re
ursive operators �0 and � from x8.2.Proposition 8.4. There exist p
f-terms H 0 and H that represent �0 and � inthe initial model T.Proof. In prin
iple this is easy as we have simple equations:f�0(u) = f�(\[ � (�u")f�
(\[ � v") = f�(\[ � (�)
 � v")determining f�0 and f�
 in terms of f�; however the equivalen
e required for rep-resentability requires a little thought. We treat the 
ase of H 0; the 
ase of H issimilar.First we need to observe in e�e
t that being a �nite play in a

ord with a strategyis semi-de
idable. One 
an readily de�ne using �xed points a terma

ord : (N ) N)�N �! Nwhi
h represents the operator a

ord : P� N �! N de�ned bya

ord(�; n) = 0 i� 8<: n = #u for some play u in a

ord with a�nite inno
ent strategy � with �� � �.(The ideas used in the de�nition of a

ord were introdu
ed in x5.6.) Then we 
ande�ne H 0 in a proto-p
f byH 0(h)(n) = if (n = #u and a

ord(h;#\[ � (�u") = 0) then h(#\[ � (�u"):To show that H 0 represents �0 take f : N �! N in T representing � : N �! N andn 2 N.Suppose �rst that �0(�)(n) = m. Then there is �� � �, � a �nite inno
entstrategy and �� 0(n) = m. In parti
ular it follows that n = #u where u is play ina

ord with � 0, so that \[ � (�u" is a play in a

ord with � . As a

ord representsa

ord we dedu
e that a

ord(f;#\[ � (�u") = 0 and so H 0(f)(n) = f(#\[ � (�u").But �� (#\[ � (�u") = �� 0(n) = m so that �(#\[ � (�u") = m and so f(#\[ � (�u") = mas f represents �. Thus H 0(f)(n) = m.Conversely suppose thatH 0(f)(n) = m. Then n = #uwhere a

ord(f;#\[ � (�u") =0 and f(#\[ � (�u") = m. Aso a

ord represents a

ord and f represents � we havea

ord(�;#\[ � (�u") = 0 so that #\[ � (�u" is a play in a

ord with some �nite inno-
ent � with �� � �. But also �(#\[ � (�u") = m so we 
an extend � to � with �� � �and �� (#\[ � (�u") = m. But then �� 0(n) = �� 0(#u) = m so that �0(�)(n) = m.



110 HYLAND AND ONG8.5. A universal fun
tionThe argument for universality rests on the 
onstru
tion of a suitable universalfun
tion. We shall show how to de�ne, for ea
h natural number n, a p
f-termU : �� (�) �)� (�) (n+ 2))) �with a property whi
h we now spell out.Suppose we have the following data:(i) A 
ode m = hm0; � � � ;mk�1 i for a sequen
e m0; � � � ;mk�1 6 n + 2 of puretypes. We write m also for the 
orresponding strategy in the arena �.(ii) An inno
ent strategy � : m0�� � ��mk�1 �! 0 in C A ; f� is the representinginno
ent fun
tion and �� the partial fun
tion 
ode (explained in x5.6). We write�� also for the standard representation of �� as an inno
ent strategy in the arena�) � (see Remark ).Consider the 
omposite in C A(�) (n+ 2)) tup- m0 � � � � �mk�1 � - �:The universal property of U is that this is observationally equivalent to (the trans-pose of) �F : (�) (n+ 2)):U(m;�� ; F ) : (�) (n+ 2))) �:If we introdu
e a free variable F of type (�) (n+2)) and unravel the de�nition oftup, we 
an write the required property asU(m;�� ; F ) ' �(pm0F (0); � � � ; pmk�1F (k � 1)) : (�) (n+ 2)) �! �Proposition 8.5. For ea
h natural number n there is a p
f-termU : �� (�) �) � (�) (n+ 2))) �so that for any m = hm0; � � � ;mk�1 i and � : m0 � � � � �mk�1 �! 0 in C A ,(y) U(m;�� ; F ) ' �(pm0F (0); � � � ; pmk�1F (k � 1)) : (�) (n+ 2)) �! �:Proof. De�ne U using the �xed-point operator to satisfy the following informalequation:U(m;�; F ) = 8<: if �(\[") = \℄d" then d elseif �(\[") = \(" { the initial question in the i-th game mi then� either (in the general 
ase that mi = m + 2) if pmi(F (i))(�a : m:U(m �m;H 0(�); em(a) � F ) = 
 then U(m;H
(�); F )� or (in 
ase mi = 1) if pmi(F (i))(U(m;H 0(�); F )) = 
 then U(m;H
(�); F )
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ase mi = 0) if pmi(F (i)) = 
 then U(m;H
(�); F );whi
h we have written in a kind of proto-p
f using notation introdu
ed in theprevious se
tion. It is easy to translate this (in an \up to observational equivalen
e"sense) into true p
f; the only unobvious point of detail is made 
lear in the proofbelow.First we note that a simple 
ontinuity argument shows that it suÆ
es to provethat U has the stated property (y) for �nite (
ompa
t) strategies �. Se
ondly notethat the 
ontext lemma for C A turns (y) into what is essentially a point-wise 
laim.To prove (y) for a �nite � we pro
eed by indu
tion on the stru
ture of �. We re
allthe analysis from our preamble. In the unde�ned 
ase when � does not respondand the 
onstant 
ase when � responds at on
e, the result is 
lear. (F does not
ome into it at all.) Hen
e we turn to the indu
tive 
ase.We deal with the indu
tive 
ase in the general 
ir
umstan
es that mi = m+2 >2, leaving the other simpler 
ir
umstan
es to the reader. Take a �nite strategy� : m0 � � � � �mk�0 �! 0. By our indu
tion hypothesis we have the result (y) for�0 and also for ea
h �
. In parti
ular we haveU(m �m;��0 ; G)' �0(pmG(0); pm0G(1); � � � ; pmk�1G(k)) : (�) (n+ 2)) �! �It follows thatU(m �m;��0 ; em(a) � F )' �0(a; pm0F (0); � � � ; pmk�1F (k � 1)) : m� (�) (n+ 2)) �! �and so �a:U(m �m;��0 ; em(a) � F )' �a:�0(a; pm0F (0); � � � ; pmk�1F (k � 1)) : (�) (n+ 2)) �! (m+ 1):Applying pmi(F (i)) we dedu
e thatpmi(F (i))(�a:U(m �m;��0 ; em(a) � F ))' pmi(F (i))(�a:�0(a; pm0F (0); � � � ; pmk�1F (k � 1)))as maps (�) (n+ 2)) �! 0.Now we aim to showU(m;�� ; F ) ' �(pm0F (0); � � � ; pmk�1F (k � 1)) : (�) (n+ 2)) �! 0:By the 
ontext lemma for C A it is enough to prove this equivalen
e pointwise, sotake � : �) n+ 2 an inno
ent strategy. Suppose then that�(pm0�(0); � � � ; pmk�1�(k � 1)) = d



112 HYLAND AND ONGa value in C A . First it follows from our analysis of � that we must havepmi�(i)(�a:�0(a; pm0�(0); � � � ; pmk�1�(k � 1))) = 
a value in C A . But then we have just seen that it is a 
onsequen
e of the indu
tionhypothesis that pmi�(i)(�a:U(m �m;��0 ; em(a) � �)) = 
:Now ��0 ' H 0(��) by Proposition 8.3 and Proposition 8.4, so we havepmi�(i)(�a:U(m �m;H 0(��); em(a) � �)) = 
:Se
ondly it follows from our analysis of � that�
(pm0�(0); � � � ; pmk�1�(k � 1)) = d:But then again by the indu
tion hypothesisU(m;��
 ; �) = d:Again ��
 ' H
(��) by Propositions 8.3 and 8.4, so we haveU(m;H
(��); �) = d:Putting these two fa
ts together we see from the de�nition of U thatU(m;�� ; �) = d:We have shown that �(pm0�(0); � � � ; pmk�1�(k � 1)) = d implies U(m;�� ; �) = d,whi
h is enough to show�(pm0F (0); � � � ; pmk�1F (k � 1)) . U(m;�� ; F ) : (�) (n+ 2)) �! �:Now to establish the opposite inequality, take � : � ) n + 2 an inno
ent strategyagain and suppose that U(m;�� ; �) = da value in C A . Now we require that the translation of our proto-p
f in true p
f issu
h that this means thatpmi�(i)(�a:U(m �m;H 0(��); em(a) � �)) = 
is a value in C A , and that U(m;H
(��); �) = d:(This is easy to arrange.)
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an run the argument just given ba
kwards to dedu
e (in viewof our analysis of the output behaviour of �) that�(pm0�(0); � � � ; pmk�1�(k � 1)) = d:This show thatU(m;�� ; F ) . �(pm0F (0); � � � ; pmk�1F (k � 1)) : (�) (n+ 2))) �:Thus we have established (y).Indu
tively we have established (y) for all �nite strategies � and hen
e by 
ontinu-ity for all �. This 
ompletes the proof.We now 
ome to the results whi
h we dis
ussed at the start of this se
tion. In
ase A = n+2 is a pure type, the fun
tion u dis
ussed there is simply a spe
ial 
aseof the fun
tion U of the last proposition. But it follows easily from the fa
t thatany obje
t in T is a retra
t of (the interpretation of) a pure type, that universalityat pure types implies universality at all p
f-types. Hen
e we have established ourmain results.Theorem 8.1 (Universality).(i)Every map between p
f-types in 
C A is p
f-de�nable in some (partial) fun
tionparameter.(ii)Every map between p
f-types in 
RA is p
f-de�nable. �Remark. We 
ould prove a more general version of Proposition 8.5 if we repla
edthe 
ode m = hm0; � � � ;mk�1 iwith some system of 
odes for all possible sequen
e of arguments of height 6 n+2.This would avoid the detour through pure types at the 
ost of some notational
omplexity.



114 HYLAND AND ONG9. CONCLUSIONS AND FURTHER DIRECTIONSIn this work (
omprising Parts I, II and III) we begin by giving a survey ofthe so-
alled full abstra
tion problem for p
f tra
ing its roots to old foundationalproblems in re
ursion theory 
onsidered by Platek and also (in a related but di�er-ent dire
tion) by Kleene, Gandy, and others. We then set out a (
artesian 
losed)
ategory of arenas and inno
ent strategies, and show that this gives rise to anorder-extensional, order fully abstra
t model of p
f.9.1. Comparison with related workThe nature of our approa
h, based on two-person dialogue games, goes ba
k toBerry and Curien in one tradition, and to Kleene and Gandy in another. (See x1.4for a dis
ussion.) We are aware of related work of a similarly 
on
rete nature byseveral people.Sazonov's approa
hIn the 1970's Sazonov (see for example [65℄, [68℄, [67℄, [66℄) outlined a 
on
retema
hine-oriented approa
h to the problem of providing a model for p
f satisfyingthe universality theorem. This work is not as well known as it deserves to be andwe give a brief indi
ation of its nature.In Sazonov's approa
h a (re
ursively sequential) fun
tion of higher type is repre-sented by some Turing ma
hine with ora
le (tmo). A tmo F 
ommuni
ates withits arguments G1; � � � ; Gk (all assumed to be of simple type) by asking for the valueof one su
h (G1 say) on tmo's of types appropriate to be arguments (of G1) 
odesfor whi
h are provided by the tmo F . The arguments of G1 are in e�e
t themselvestmos parametrized by G1; � � � ; Gk. In the published presentations the argumentsprovided by F are expli
itly of the form �~x:t(~G; ~H; ~x) where t is an appli
ative termand 
odes for the subsidiary arguments ~H are provided by the tmo F ; but 
learlythere are other equivalent formulations. Sequentiality of the 
omputation pro
essis ensured by the requirement that a numeri
al answer must be provided (by G1)before F 
an 
ontinue 
omputation. What we e�e
t by the 
ondition of inno
en
eis provided more dire
tly by Sazonov via the requirements that questions essentiallyask for extensional information (that this is so 
an be seen by a straightforwardindu
tive argument) and that the questioning tmo only re
eives the answer andnot how it is got. The several arguments G1; � � � ; Gk of F operate independentlyand when they are 
alled again a fresh 
opy of the tmo is made available.These ideas, while hard to formalize (for example the interpretation of the tmosas extensional fun
tions of �nite type is given dire
tly by a least �xed point), areif anything more immediately intuitive than those involved in our more abstra
tsetting of games and inno
ent strategies. On the other hand Sazonov's approa
hhas a lurking synta
ti
 quality: his questions have a spe
i�
 synta
ti
 form involv-ing appli
ation in p
f. There is a sense however in whi
h the relation of Sazonov'sapproa
h with ours is very 
lose. The order of 
ommuni
ation of the tmos pre
iselymirrors the pattern of questions and answers in our approa
h. This is 
learly demon-strated by a translation of inno
ent strategies into Milner's �-
al
ulus. Elaborationsof this 
an be found in [40℄. The results 
an also be seen as 
ontrol information fortmos in Sazonov's sense.
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hRobin Gandy has for some years been engaged in a proje
t to re�ne the dialogueideas 
onsidered by Kleene [47℄ so as to provide a model for p
f satisfying theuniversality theorem. Latterly in 
ollaboration with his student Giovanni Pani hehas produ
ed many examples and 
ounterexamples; and also at least the outline ofa de�nition. Our 
omments on this approa
h are based on dis
ussions with Gandyand Pani and on a handwritten a

ount by Gandy [30℄.The dis
ipline of questions and answers whi
h we use has long been a part ofGandy's framework; he 
alls it the \no dangling question mark" 
ondition, andone of us (Hyland) learnt its signi�
an
e from him. However further restri
tionsare needed to 
apture p
f de�nability and we do not fully understand the other
omponents of Gandy's approa
h. In [30℄ Gandy uses a notion of relevant re
ordwhi
h is super�
ially similar to our notions of P-view and O-view. We are unsureof the exa
t form and the for
e of Gandy's notion. On the one hand Gandy raisesquestions about 
onsisten
y and extensionality whi
h simply do not arise for inno-
ent strategies; and Pani's 
ounterexample whi
h motivates further restri
tions onthe notion of a good strategy is not given by an inno
ent strategy in our sense. Onthe other hand parts of [30℄ suggest, and dis
ussion with Gandy and Pani 
on�rm,that they have their eyes on a greater prize. For they appear to regard a relevantre
ord as if it 
oin
ides with purely extensional information and were this 
arriedthrough they would meet the Jung-Stoughton 
riterion.The Abramsky-Jagadeesan-Mala
aria (ajm) approa
hAt the same time as we were working on our treatment of p
f in terms of inno-
ent strategies, Abramsky, Jagadeesan and Mala
aria were developing a di�erentapproa
h also involving games and strategies [3℄. We make some very tentativeremarks about the relation between the ajm game-theoreti
 approa
h and our own.Both the two approa
hes make use of the dis
ipline of questions and answers(whi
h had been identi�ed earlier by Gandy), but they di�er in terms of the notionof strategy. Our approa
h exploits our new notion of inno
ent strategy, whileajm use the simple notion of history-free strategy whi
h was already 
onsidered inAbramsky and Jagadeesan work on game semanti
s for multipli
ative linear logi
[2℄. On the other hand ajm rely on a rather subtle notion of move; moves and playsare 
onsidered up to equivalen
e under some group a
tion. By 
ontrast our notionof move is relatively straightforward.It seems that the intensional models of p
f whi
h result from the two approa
hesmay well 
oin
ide. However the underlying linear 
ategories appear to be di�erent.Our impression is that a fun
tion su
h as stri
t-and (de�ned on the obvious simpleboolean game) will not be linear in the ajm setting, whi
h it will be in ours. Thissuggests that the ajm analysis is in some sense deeper than ours and that our linearsetting may be obtainable from theirs (for example as the Kleisli 
ategory of some
omonad).Ni
kau's approa
hIn a re
ent study [56℄, Ni
kau has introdu
ed the notion of hereditarily sequentialfun
tions based on a game-theoreti
 setting similar to that whi
h we have intro-du
ed i.e. ea
h play des
ribes the intera
tion between a fun
tional and its arguments
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omputation. The ba
kground to and motivation for Ni
kau's work wereboth di�erent from ours. Ni
kau started from Kleene's formulation of his dialoguesand sought to vary the notion so that it would make 
lear sense at all types; andhe was motivated amongst other things by an interest in questions of 
omplexityof higher-order fun
tions. Computable elements of the game model he 
onsidersare strategies that depend on a 
ertain abstra
tion of the history of play (whi
h healso refers to as view). Based on what we have seen, it would appear that Ni
kauhas independently dis
overed the notion of inno
en
e. We regard this 
on
uen
eof ideas as a very positive sign!Other related workStable bistru
tures, �rst introdu
ed in Winskel's thesis [79℄, are a generalizationof event stru
tures to represent fun
tion spa
es at higher types; the partial orderof 
ausal dependen
y is repla
ed by two orders, one asso
iated with input andthe other output in the behaviour of fun
tions. Re
ently both Curien [25℄, andPlotkin and Winskel [62℄ have independently showed that stable bistru
tures givea (
ategori
al) model of Girard's 
lassi
al linear logi
. While the former builds onWinskel's unpublished work in the thesis, Curien's approa
h is based on a re
on-stru
tion of Winskel's earlier work along the lines of Girard's 
oheren
e spa
e. Akey dis
overy of both is that the 
o-Kleisli 
ategory of the of-
ourse 
omonad isequivalent to a 
artesian 
losed full sub
ategory of Berry's bidomains, whose mapsare 
ontinuous with respe
t to the extensional (S
ott) ordering and stable withrespe
t to the stable (Berry) ordering. Unfortunately the p
f-theory (inequaltieson terms whi
h hold in the model) of bidomains does not in
lude that of the S
ottmodel. By equipping stable bistru
tures with an appropriate notion of extensional
on
i
t [81℄, Winskel was able to 
onstru
t a new model of p
f, 
ombining bothS
ott and Berry orders, whose p
f-theory does in
lude that of the S
ott model.Mention should also be made of re
ent work by O'Hearn and Rie
ke [58℄. Theyhave a
hieved a new 
hara
terization of the order-extensional, order fully abstra
tmodel of p
f in terms of 
ontinuous fun
tions that are invariant under a kindof \Kripke logi
al relations", introdu
ed earlier by Jung and Tiuryn [42℄ to 
har-a
terize �-de�nability. We believe that this model 
an be des
ribed in abstra
t
ategori
al terms along the lines indi
ated in [5℄. This abstra
t 
hara
ter of themodel means that it is unreasonable to expe
t to extra
t information about p
f-de�nability from it without a 
loser analysis. Su
h an analysis is given in e�e
tby Sieber in [70℄ whi
h presents a 
onstru
tion of a model of p
f, fully abstra
tup to rank three types, 
onsisting of 
ontinuous fun
tions that are invariant under
ertain �nitary logi
al relations.FURTHER DIRECTIONSOur study of the 
ategory C A of 
omputational arenas and inno
ent strategies(in Part II) has been quite extensive, but it is 
ertainly not 
omplete. In Part III weshow that the 
ategory C A gives rise to a fully abstra
t and universal model of p
f.A number of questions pertaining to the fully abstra
t game model remain open,some of whi
h seem 
on
eptually important. In addition there are many possibilities
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tion we pi
k out some ofthe more promising topi
s for further resear
h and sket
h some preliminary results.9.2. Linear de
omposition of C AIn this work we have 
ons
iously 
hosen a simple framework of games determinedby 
omputational arenas whi
h is suited to addressing the semanti
s of p
f dire
tly.The style of our approa
h is 
lose to that of Kleene and Gandy in one tradition,and to Berry and Curien in another. There is a wider framework (larger 
ategoriesof games) in whi
h the fun
tion spa
e of inno
ent strategies may be given a linearde
omposition of the kind pioneered by Girard. Here we shall be 
ontent with justa brief a

ount, and hope to give a systemati
 presentation elsewhere.A general framework Consider \dialogue games" given by a tree (or forest) ofmoves:� O starts and thereafter moves alternate between P and O.� Moves are either questions or else answers and these are played so as to satisfythe bra
keting 
onvention (last asked �rst answered).� Moves are expli
itly justi�ed save that the initial O-question and some furtherO-questions are not justi�ed (or perhaps are notionally justi�ed by some \FirstCause"); questions are justi�ed by a pre
eding question of the other player, answersare justi�ed by the question they answer (i.e. the open bra
ket whi
h they 
lose);unjusti�ed questions 
ontain data as to the subgame whi
h they initiate.� There is a notion of P-view as before and a notion of O-view (note the notionof O-view in A roughly 
oin
ides with that of P-view in \� �A?" so that O sees allthe initial moves he / she may have 
ared to make). And we apply the visibility
ondition that the justi�
ation of any move made is visible to the player 
on
erned(at the time he / she makes the move).In this 
ontext we have the following.Tensor produ
t A 
 B 
onsists of sequen
es of moves (identi�ably) from A or B(with justi�
ation pointers) satisfying the general 
onditions above. In addition werequire that when sequen
es are proje
ted into A or B (and the justi�
ation indi
esadjusted appropriately) then we get a (legal) play in A or B.Note that at any stage of the game the only P-move available will be in the gamein whi
h O has just played, so it is automati
 that only O 
an 
hange games. (It istrue but essentially irrelevant that a P-view is always in one game or in another.)The empty game is the identity I for this tensor produ
t.Linear hom (() B ( C 
onsists of sequen
es of moves (identi�ably) from B?(that is B with roles of players reversed) or C (with justi�
ation pointers) satisfyingthe general 
onditions above. We additionally stipulate that any initial move in B?(whi
h is to be a P-move in B( C) may be justi�ed by any initial C-move. Againwe require that when sequen
es are proje
ted into C or B? (and indi
es adjusted)then we get a legal play in C or B (with roles reversed).Note that after the initial O-move (in C) the only O-move available will be in thegame in whi
h P has just played, so it is automati
 that only P 
an swit
h games.(Of 
ourse O's view 
an 
ontain information about both games.)Note that A 
 B ( C �= A ( (B ( C) as trees of moves with justi�
ation.(Play takes pla
e in three 
omponents A?; B?; C and only P will be able to swit
h.)



118 HYLAND AND ONGA linear 
ategory The 
ategory has dialogue games as obje
ts, and inno
ent strate-gies (in pre
isely the sense that moves depend just on the view) for P in the gameA( B as the maps from A to B. The identity is still the 
opy-
at strategy. This
ategory is 
learly symmetri
 monoidal 
losed.A 
ategori
al produ
t A � B is obtained as the disjoint union of the game forestsfor A and for B. So the opening O-move in C ( A�B is either in A or in B anddetermines that we are either going to play in C ( A or in C ( B. The terminalobje
t 1 is the empty game.Of 
ourse exponential Finally we need an exponential ! with all the good propertiesidenti�ed in [7℄ and [12℄. One good 
hoi
e seems to be a kind of merged in�nitetensor produ
t: that is, !A is given by sequen
es of moves named as in A (withjusti�
ation pointers) and satisfying general 
onditions above. We stipulate thatany play 
an be regarded as the interleaving of a sequen
e of plays from A. The
omonad stru
ture � : !A �! A, Æ : !A �! !!A, and 
omonoid stru
ture e : !A �! Iand d : !A �! !A
 !A(�= !(A�A)) need 
areful 
he
king.9.3. Linear 
ategories of gamesFurther details of the above linear 
ategory of games 
an be found in [38℄. Hy-land's paper gives a systemati
 a

ount of how games 
an provide an intensionalsemanti
s for fun
tional programming languages, and for a theory of proofs. Otheraspe
ts of linear 
ategories of games are treated in [1℄; and Abramsky has re
entlyapplied linear 
ategories of games to provide models for \idealized parallel Algol".9.4. Towards a 
al
ulus for des
ribing strategiesAs we have already observed in Remark , it is unfortunate that even for rela-tively simple p
f-terms, pre
ise des
ription of their denotations as strategies veryrapidly be
omes unwieldy and opaque. One way to remedy the situation is to havean expressive formal language that lends itself to a su

in
t and e
onomi
al repre-sentation of inno
ent strategies. Our �rst attempt gives just su
h a representationin terms of an appropriately sorted polyadi
 �-
al
ulus, reading input �-a
tions asOpponent's moves, and output �-a
tions as Player's moves. This 
orresponden
e
aptures every essential aspe
t of the dialogue game paradigm so pre
isely that the�-representation may as well be taken to be the basis for its formal de�nition. Ana

ount of this work 
an be found in [40℄.Although this representation is in 
omplete a

ord with the dialogue game frame-work, it is still not optimized for 
apturing the uniform or s
hemati
 nature of(inno
ent) strategies whi
h are denotations of �-terms. Here we have in mind thevarious kinds of \tit-for-tat" startegies in whi
h P simply 
opies O-moves from one\
omponent" of the play to the other. Su
h strategies also o

ur in various gamemodels of linear logi
. It would be very useful to have a generi
 
al
ulus 
apableof 
apturing a general 
lass of su
h parametri
 strategies. For a start, a des
riptivetool of this kind will no doubt simplify 
onsiderably the 
onstru
tion of a gamemodel for polymorphism. The existen
e of su
h a model is almost intuitively ob-vious, but it is highly non-trivial to �nd the right formal ma
hinery that gives areasonable handle for managing the 
omplexity of \synta
ti
" details. On
e su
h amodel is available, it would be highly interesting to determine its exa
t parametri
nature. Is it, for example, parametri
 in the sense of Reynolds? It has been sug-
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al
ulus along the lines of Sangiorgi's higher-order �-
al
ulusmay well �t our requirements, but we have not yet investigated the matter.9.5. Abstra
t ma
hinesAs we �nished writing this paper Vin
ent Danos and Laurent Regnier were mak-ing 
onnexions between the notions of legal position and inno
ent strategy on theone hand, and the operation of their variant of Krivine's Environment Ma
hine onthe other. In a similar spirit Baillot has des
ribed in detail a 
onnexion betweenthe history-free strategies of ajm and the Geometry of Intera
tion. This suggestsan explanation at the 
omputational level of the equivalen
e between our approa
hand ajm's to modelling p
f. We are not sure of the signi�
an
e of the way in whi
hthe Danos-Regnier variant of the Environment Ma
hine en
apsulates some form ofoptimal \hyper-lazy" exe
ution strategy (as they 
all it).A related development is Curien's Strategi
 Abstra
t Ma
hine, a presentation ofwhi
h one of us saw after the 
ompletion of this paper. We are en
ouraged by the
lose 
onnexions being drawn between our work and simple abstra
t ma
hines; andwe hope to see some implementations.9.6. Other open questionsThere are a number of other open questions. We shall just mention two whi
hseem espe
ially important. This �rst 
on
erns the 
hara
terization of higher-typesequentiality. In our view one 
annot properly 
laim to understand higher-typesequentiality until an appropriate axiomati
 
hara
terization has been obtained.This is de�nitely related to what we 
all \Kleene's problem" in x1.4 (see also thedis
ussion in x1.3). We believe that this is the main thrust of the full abstra
tionproblem.The se
ond question is a more mathemati
al one: is the observational quotientenri
hed over 
pos? The observational quotient 
C A is enri
hed over the 
ategoryof posets. Is it enri
hed over the 
ategory of 
pos (and 
ontinuous fun
tions)? Wedo not know the answer to this question. A natural way to atta
k the problem isto take advantage of the Strong De�nability Theorem (7.1) and argue synta
ti
ally,but this approa
h does not seem to work.
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omplex and it requires a detailed analysis of what we 
allbounded segments in a fun
tion spa
e arena.A.1. BOUNDED SEGMENTSLet s be a legal position of the arena A ) B. A segment � of s beginningwith a P-move x and ending with an O-move y is said to be bounded if the twoend-moves x and y are an expli
itly justifying pair, i.e. either both are questions,and x expli
itly justi�es y or the question x is expli
itly answered by the answer y.Hen
eforth whenever x and y are thus related, we say that x expli
itly justi�es y.We 
all � an (A; a)-bounded segment (respe
tively a B-bounded segment) if either,and hen
e both, end-moves are in the 
omponent (A; a) for some instan
e a ofan initial A-move o

urring in s (respe
tively B). We shall write (A; a)-boundedsimply as A-bounded. The two simplest bounded segments have the shapes Æ � �and Æ � � � Æ � � respe
tively. In both 
ases all moves of the bounded segment belongto the same 
omponent.We 
onsider two ways by whi
h a bounded segment may be de
omposed. First,spine de
omposition.Lemma A.1. Any bounded segment � with end-moves x and y may be de
omposedin the following way: �z }| {xÆ � pm � � � qm| {z }�m � � � pi � � � qi| {z }�i � � � p1 � � � q1| {z }�1 � y�;where pi is an O-move whi
h expli
itly justi�es the P-move qi, for ea
h 1 6 i 6 mand for some m > 0.Proof. For suppose not, then for some m > 1, we have the following de
ompo-sition: pm � � �x � � � qm| {z }�m � � � pi � � � qi| {z }�i � � � p1 � � � q1| {z }�1 � y�where x is in �m but is not qm. By the visibility 
ondition, x whi
h expli
itlyjusti�es y appears in xs6q1y. Butxs6q1y = xs<pmy � pm � qm � � � p1 � q1;whi
h does not in
lude x. Hen
e we get a 
ontradi
tion.Given a bounded segment � as in the pre
eding lemma, we 
all the followingsub-segment of � xÆ � pm� � qmÆ � � � p1� � q1Æ � y�the spine of �.
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tion de
omposition. A bounded segment � with end-moves x and y maybe de
omposed in terms of bounded segments in the following way:Æ � � �x � � � �| {z }�n+1 � Æ � � � �| {z }�n � � � Æ � � � �| {z }�1 � y�Æ � y�where x and y are expli
itly justifying pair; and for ea
h 1 6 i 6 n + 1, �i is abounded segment (with end-moves xi and yi) whi
h may be either A-bounded orB-bounded. Let y� be the move whi
h immediately pre
edes y in �. Note that xmay be the left end-move in �n+1. Observe that apart from y�, every move in �belongs to a (unique) 
onstituent bounded segment.Lemma A.2.(i)Suppose � is A-bounded. For any 1 6 i 6 n + 1, let m be a P-move in thebounded segment �i. If m appears in xs6y�y then �i is an A-bounded segment.In parti
ular sin
e by visibility, the P-move x (whi
h expli
itly justi�es y) is inxs6y�y, we 
on
lude that the segment �n+1 is A-bounded.(ii)The statement obtained from (i) by repla
ing the adje
tive A-bounded withB-bounded is valid.Proof. To prove the lemma, we use the following 
laim:Claim. The O-view xs6y�y has the following form:xs6xily � il � yil� �xil�1Æ � il�1 � yil�1�| {z }spine of �il�1 � � � xi1Æ � i1 � yi1�| {z }spine of �i1 � y�Æ ;where� for some l > 1, the sequen
e i1; i2; � � � ; il is a subsequen
e (not ne
essarilyinitial) of 1; 2; � � � ; n+ 1;� yi1 expli
itly justi�es y�; and for ea
h 1 6 j 6 l, yij+1 expli
itly justi�es xij ;� for ea
h 1 6 j 6 l, the segment xij � ij � yij is the spine of the boundedsegment �ij whi
h is A-bounded,� m is an element of fxi1 ; xi2 ; � � �xil ; y� g.To prove the 
laim, �rst observe that by visibility the expli
itly justifying move ofy� must appear in the P-view:ps6y1q = ps<xn+1q� xn+1Æ � yn+1� � xnÆ � yn� � � � x1Æ � y1� ;where xi expli
itly justi�es yi for ea
h 1 6 i 6 n+1. Hen
e y� is expli
itly justi�edby yi1 , for some 1 6 i1 6 n+ 1 (and not by a move from ps<xn+1q, for if so then xis ex
luded from xs<y�y thus violating the visibility 
ondition applied to y). Notethat yi1 is an A-move; hen
e the segment �i1 is A-bounded. By Lemma A.1 xs6y�yhas the form: xs6xi1y � i1 � yi1 � y�:
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tively suppose xs6y�y has the following form:xs6xij y � ij � yij � xij�1 � ij�1 � yij�1 � � � xi1 � i1 � yi1 � y�;where the segments �i1 ; � � � ; �ij are all A-bounded. Now the last two moves ofxs6xij y are w and xij where w is the O-move whi
h expli
itly justi�es xij . By thevisibility 
ondition w appears in the P-view:ps6yij+1q = ps<xn+1q � xn+1 xn+1Æ � yn+1� � � � xij+1Æ � yij+1� :If w is in ps<xn+1q then set l to be j; otherwise set ij+1 to k su
h that yk = w. Notethat yij+1 is an A-move; hen
e the segment �ij+1 is A-bounded. By Lemma A.1,we have xs6y�y =xs6xij+1 y � ij+1 � yij+1 � xij � ij � yij| {z }spine of �ij � � � xi1 � i1 � yi1 � y�:Hen
e the 
laim is established.Let m be a P-move in �i. Suppose m appears in xs6y�y. Then, by the Claim, mappears in the spine of some �ij whi
h is anA-bounded segment. Hen
e the lemma isproved.Let � be an A-bounded segment in a legal position s of an arena A ) B withend-moves x and y. By an abuse of notation we de�ne p� � Bq as the subsequen
eof ps6y � Bq 
onsisting only of moves in � o

urring immediately after (and notin
luding) x.Lemma A.3. Let � be an A-bounded segment in s with end-moves x and y.(i)The segment p� � Bq has the following form:p� � Bq = prÆ � qr� � � � p1Æ � q1�for some r > 0 (as opposed to � � Æ � � � � � Æ � �) where pi expli
itly justi�es qi forea
h 1 6 i 6 r. Note that pi � � � qi is a B-bounded segment in s, for ea
h 1 6 i 6 r.(ii)For any P-move m in � whi
h appears in xs<yy, m does not belong to any ofthe B-bounded segment pi � � � qi for 1 6 i 6 r.The assertions obtained from the pre
eding by inter
hanging A-bounded segmentswith B-bounded segments remain valid.Proof. We prove both (i) and (ii) by indu
tion on the length of s6y. The base
ase of � of the form Æ � � for both (i) and (ii) is trivial. For the indu
tive 
ase,
onsider the proje
tion de
omposition of the A-bounded segment � as follows (usingthe same notation as in Lemma A.2):Æ � � �x � � � �| {z }�n+1 � Æ � � � �| {z }�n � � � Æ � � � �| {z }�1 � y�Æ � y�



ON FULL ABSTRACTION FOR PCF: I, II AND III 123where for 1 6 i 6 n+ 1, �i is a bounded segment with end-moves xi and yi.For ea
h 1 6 i 6 n + 1, if �i is A-bounded then by the indu
tion hypothesis of(i), p�i � Bq is pi;ri � qi;ri � � � pi;1 � qi;1, for some ri > 0. Note that x is by assumptiona P-move in �n+1, and so, by Lemma A.2, �n+1 is an A-bounded segment. Sin
e xappears in xs<yy, by the same analysis as the Claim in the proof of Lemma A.2, xappears in xs<yn+1y. Applying the indu
tion hypothesis of (ii) to the A-boundedsegment �n+1 (whi
h has end-moves xn+1 and yn+1), we infer that x does notappear in any of the B-bounded segment pn+1;i � � � qn+1;i, for any 1 6 i 6 rn+1. Sosuppose x appears in between qn+1;l+1 and pn+1;l, for some 1 6 l < rn+1. Thenp� � Bq is 
n+1 � 
n � � � 
1 where the segment 
i's are de�ned as follows:� for 1 6 i 6 n, we have
i = 8<: xi � yi if �i is a B-bounded segment;p�i � Bq if �i is an A-bounded segment;� 
n+1 = pn+1;l � qn+1;l � � � pn+1;1 � qn+1;1.Hen
e (i) is established for the indu
tive 
ase. As for (ii) take any P-move in � whi
happears in xs<yy. Then m appears in xs<yjy for some A-bounded segment �j . Ap-plying the indu
tion hypothesis of (ii) to the A-bounded segment �j , we infer thatmdoes not appear in the B-bounded segment pj;k � � � qj;k, for ea
h 1 6 k 6 rj . Hen
ethe result follows.We are now ready to prove the proje
tion lemma.A.2. PROOF OF THE PROJECTION LEMMA(i). We prove by indu
tion on the length of s. The base 
ase is immediate butthe indu
tive 
ase requires some work. If the last move m is a P-move, thenpsq = ps<mq �m. There are two 
ases. If the move pre
eding m in s is in B, thenwe have: psq � B = ps<mq � B �m by the indu
tion hypo.4 ps<m � Bq �m= ps � Bq:Suppose the move y1 pre
eding m is in A. Let m be the B-move pre
eding m inpsq. We have psq = ps6mq � xrÆ � yr� � � � x1Æ � y1�| {z }A-moves � mÆ ; (A.1)where xi expli
itly justi�es yi, for ea
h 1 6 i 6 r, for some r > 1, and they are allA-moves.Example 4.2 shows that for ea
h 1 6 i 6 r, the A-bounded segment xi � � � yi ins may 
ontain B-moves, some of whi
h may appear in ps � Bq. To 
omplete theargument for the indu
tive 
ase, it suÆ
es to establish the following:



124 HYLAND AND ONGClaim. ps � Bq = ps6m � Bq � Æ � � � �| {z }Ær � � � Æ � � � �| {z }Æ2 � Æ � � � �| {z }Æ1 �m where ea
h Æi isa segment of B-moves.For then, from (A.1) we havepsq � B = ps6mq � B �m by the indu
tion hypo.4 ps6m � Bq �m4 ps6m � Bq � Æ � � � �| {z }Ær � � � Æ � � � �| {z }Æ2 � Æ � � � �| {z }Æ1 �m by the Claim= ps � Bq:It remains to prove the Claim. By (A.1) we infer that s has the following form:s6m � xr � � � yr| {z }�r � � � x1 � � � y1| {z }�1 �m;where ea
h segment �i � xi � � � yi is an A-bounded segment. It suÆ
es to note thatby Lemma A.3(i) ea
h Æi is just p�i � Bq.The 
ase of m being an O-move redu
es to the pre
eding 
ase. The proof for (ii)is entirely symmetri
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ON FULL ABSTRACTION FOR PCF: I, II AND III 129ADDENDUM, JUNE, 2000: SELECTED FURTHER REFERENCESSin
e the submission of the paper there has been mu
h work related to issuesarising from it. A 
omprehensive survey of the material stimulated by the paperand a proper analysis of the 
urrent position would take time and probably deservea separate a

ount. We aim here to give no more than a list of pointers to somere
ent work more or less based on, or inspired by, inno
ent strategies.Several do
toral theses have been 
ompleted. It is appropriate �rst to mentionNi
kau's thesis [18℄ whi
h independently develops the idea of inno
en
e from asomewhat di�erent point of view. M
Cusker's thesis [17℄ develops a 
ategory ofgames whi
h 
an model produ
t, fun
tion spa
e, sum and re
ursive types i.e. thestru
ture of Plotkin's fun
tional language FPC. More re
ently, Hughes [13℄ has
onstru
ted a fully 
omplete inno
ent game model for System F; Laird's thesis [16℄gives a game-semanti
 analysis of fun
tional 
ontrol by dropping the well-bra
keting
ondition; and Harmer's [10℄ gives an a

ount of �nite non-determinism.Abramsky and his 
o-workers have 
onstru
ted fully abstra
t models for Algol-like languages [2, 4, 1℄, and proposed des
riptions of 
all-by-value inno
ent games[3℄ (see also [12℄). The idea of representing inno
ent strategies by the �-
al
ulus hasbeen taken up by Fiore and Honda who have given a translation of FPC-terms intoPi
t-
ode (asyn
hronous polyadi
 �-
al
ulus without summation) in [9℄. Interesting
onnexions between inno
ent strategies and abstra
t ma
hines have been identi�edin a series of papers [8, 6, 5℄ et
. Danos and Harmer [7℄ have 
onsidered probabilisti
strategies, extending the earlier work [11℄. Finally Ker, Ni
kau and Ong [15, 14℄have 
onstru
ted universal models for the Nakajima-tree and B�ohm-tree �-theoriesbased on what they 
all e�e
tively almost-everywhere 
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