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We present an order-extensional, order (or inequationally) fully abstract
model for Scott’s language PCF. The approach we have taken is very con-
crete and in nature goes back to Kleene [47] and Gandy [30] in one tradition,
and to Kahn and Plotkin [43], and Berry and Curien [10] in another. Our
model of computation is based on a kind of game in which each play consists
of a dialogue of questions and answers between two players who observe
the following Principles of Civil Conversation:

1. Justification. A question is asked only if the dialogue at that point
“warrants” it. An answer is proffered only if a question expecting it has
already been asked.

2. Priority. Questions pending in a dialogue are answered on a “last
asked first answered” basis. This is equivalent to Gandy’s “no dangling

question mark” condition.

We analyse PCF-style computations directly in terms of partial strategies
based on the information available to each player when he is about to
move. Our players are required to play an innocent strategy: they play on
the basis of their view which is that part of the “history” that interests
them currently. Views are continually updated as the play unfolds. Hence
our games are neither history-sensitive nor history-free. Rather they are
view-dependent. These considerations give expression to what seems to us
to be the nub of PCF-style higher-type sequentiality in a (dialogue) game-

semantical setting.
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ORGANIZATION OF THE PAPER
This paper has three parts.
Part I begins with a brief survey of the full abstraction problem of PCF tracing its
roots to old foundational problems in (higher-type) recursion theory and sequential
computation considered by Platek and also by Kleene and others. We study the



model theory of PCF in the light of standard ideas from both categorical logic and
categorical type theory. We take a (concrete) model of PCF to be a c¢-fix category
(cartesian closed with conditionals and fixed points) equipped with what we call a
simple object of numerals. In the same categorical spirit the notion of observational
equivalence is analysed. Given a notion of observables on a symmetric monoidal
closed category C (e.g. a model of PCF), we give a precise definition for the induced
observational preorder (over homsets of C) and study the associated quotient con-
struction C — C. These analyses yield a general categorical setting within which to
articulate and reason about the standard (though hitherto concretely understood)
properties of adequacy, order-extensionality (equivalently the context lemma) and
full abstraction.

In Part IT we formalize the class of dialogue games in which the two players in-
volved are required to observe the disciplines of justification and priority mentioned
above. We make a category CA out of such games: objects are computational are-
nas which are a kind of environment for such dialogue games, and maps are innocent
strategies. The main result of Part IT is that the category CA is cartesian closed
and enriched over dI-domains. With respect to an intrinsic notion of observables,
CA satisfies the context lemma; equivalently the associated observational quotient
CA is order-extensional.

The category CA is considered as a model of PCF and P an extension of PCF
by definition-by-cases constructs in Part III. We prove a strong definability
theorem: there is an order-isomorphism between compact elements of the model
and a class of finite canonical forms of P (ordered by (2-matching). As a corollary
the observational quotient CA of CA is an order-extensional, order fully abstract
model for PCF. The strong definability result extends to a universality theorem for
CA: modulo observational equivalence, all recursive innocent strategies are PCF-
definable. We conclude this paper with a discussion of and comparison with related
work. Directions for further research are identified.



Part 1. Models, observables and the full
abstraction problem



1. INTRODUCTION

Historical remarks.

In the early 1940’s, Gddel considered a notion of primitive recursive functionals of
finite type, which we now call Godel’s System T, in connection with what came to
be known as the Dialectica Interpretation [32, 33]. Gddel presented his results as a
contribution to a liberalised version of Hilbert’s programme.! Godel’s work was later
extended to the Bar Recursive Functionals by Spector [71] who used them to give
a constructive consistency proof for classical analysis. However the first full-blown
generalization of ordinary Recursion Theory to higher types was made by Kleene in
the late 1950’s (see [45, 46] for a formulation in terms of computation schemes). In
Kleene’s theory, a notion of partial recursive function of higher type is defined over
a total type structure. Recursion is introduced by a computation scheme which
essentially encapsulates the Second Recursion Theorem. In this theory, partial
recursive functions are not closed under substitution, and a natural formulation of
the First Recursion Theorem fails. Kleene exhibited these features in [46] where he
also observed in passing that a theory involving application of (partial) functions
to partial functions might be possible. A succinct account of Kleene’s theory and
of its attendant difficulties is contained in Gandy [29].

An attempt was made by Platek in his thesis [59] to develop a recursion theory
on partial functions of higher type which avoids the problems of the Kleene theory.
The type structure Platek considers is that of hereditarily order-preserving partial
functions over the natural numbers. (This type structure is close in spirit to that
of the hereditarily order-preserving functions over the flat PO of natural numbers;
but there is a difference and its computational significance has been analyzed by
van Draanen [76].) Platek couched his theory in terms of computation schemes, and
recursion is introduced by a scheme amounting to the First Recursion Theorem.
The essentials of the theory are definition by cases and least fixed points, and Platek
does introduce a A-calculus formulation which can be regarded as a precursor to
PCF.

The formal system PCF was introduced by Scott in a famous paper [69] which
remained an unpublished manuscript for a long time until its recent appearance in
the Boshm Festschrift. The syntax? of PCF is simple enough: it is essentially the
simply-typed lambda calculus augmented by general recursion in the form of a fixed-
point operator at every type and definition by cases at ground types, and further
augmented by basic arithmetic operations. Scott intended PCF to be a “logical
calculus (or algebra)” for studying program equivalence and other algebraic and
logical properties of programs by using (simple) type theory [20].

IHilbert had set out to justify classical mathematics systematically in terms of notions which
should be as intuitively clear as possible. A focus of his programme was the consistency of classical
number theory; he wanted to find these basic notions in the domain of “finitary mathematics”.
Bernays subsequently pointed out that in order to prove the consistency of classical number
theory, it was necessary to extend Hilbert’s finitary standpoint by admitting “abstract concepts”
of a certain kind in addition to the combinatorial concepts relating to symbols. Gédel introduced
System T, which is essentially the simply-typed A-calculus augmented by primitive recursion, as
a vehicle for expressing the “abstract notion”. He believed that System T would be the key to
making Hilbert’s programme viable in the modified sense.

2In [69] Scott considered a version of PCF based on typed S- and K-combinators.



A major theme of Scott’s work is the relationship between the logical types which
are the higher types, and the data types which are the ground and first-order types.
The former are used to study the latter; the theory of data types requires the higher-
type objects  the computable functionals  for its formalization, as emphasized
by Scott. Of course, Scott had in mind a semantics in terms of what we now
call Scott continuous functions and for this interpretation, a quite straightforward
operational semantics is appropriate: we can think of all the computations as being
finite. Hence the theory introduced by Scott is in principle implementable and has
been the focus of much attention in Computer Science. Another theme in Scott’s
paper is completeness about which he asked several questions. One such question
concerns the power of expression of the language with respect to the continuous
function space model — in a word, definability. What came to be known as the full
abstraction problem for PCF was adumbrated: Scott observed that parallel or is not
definable in the language and that an implementation on a “sequential machine”
would require a dovetailing strategy. System T and PCF (as a formal system in the
sense of Scott’s original presentation as opposed to a programming language) are
similar in various ways, though there is an important difference: Scott’s approach
admits (representations of) partial functions whereas Godel’s is only concerned with
total functions.

1.1. The programming language pcF
In [61] Plotkin presented PCF explicitly as a programming language and stud-
ied the relationship between its operational semantics and denotational semantics
which is based on the Scott continuous function space model. Types of the language
are just Church’s simple types [20]. In the following we shall also refer to them as
pcr-types. They are defined as follows:

A = natural numbers
| o booleans

| A= A arrow or function type.

We use the meta-variable 8 to range over ground types ¢ and o. As usual =
associates to the right: A, = A, = Az is read as A1 = (A2 = A3). Note that
with n > 0, each simple type can be uniquely expressed as 41 = Ay - = A, = 0,
which we abbreviate as (A41,---, Ap,3), where 3 is a ground type. For example
the type ((t = t) = ¢t = 1) = 1 = ¢ is abbreviated as (((¢,¢),¢,t),t,t). The height
ht(A) of a type A is defined by recursion as follows:

ht(A = B) = max(ht(A) + 1, ht(B)).

We say that an object is type-n if it has type of height n. Intuitively height mea-
sures how “higher-order” a type really is. In general the mathematical difficulties
associated with the higher-order objects stem from nesting of the arrow on the left.



For each type A, we fix a denumerable set of variables. Raw PCF-terms are
defined by the following grammar:

s u= QA undefined term
LA constant
| = variable
| (s-9) application

| (Az: A.s) abstraction

| YA(s) general recursive term, or Y-term;

4 ranges over the set A of basic arithmetic constants which we will introduce

where ¢
shortly. Whenever type information is irrelevant, we omit type labels and write Q4,
e,z A and YA(—) simply as Q, ¢, x and 0— respectively. We shall write (s - )
simply as st. As usual, application associates to the left: st;---¢, abbreviates
(-- - ((st1)t2) - - - t,), and we routinely omit as many parentheses as we safely can.
PCF-terms are raw terms that are well-typed. The phrase s : A means that the type

of the term s is A, derived according to the following rules:

04 A A A
s:A=> A s: A= A t: A s: As
YA(s): A (s-t): Ay Az : Ay.s): A = Ay
The set A of basic arithmetic constants is presented together with their types as
follows:
noot numerals, for each natural number n > 0
t,f : o booleans: truth and falsity
succ : L= successor
pred : =1 predecessor
zero? : L= 0 test for zero

cond* : 0= 1 =1 =1t natural number conditional

cond’ : 0= 0= 0= 0 boolean conditional.

The notion of free and bound variables is completely standard; a closed term is a
term without any free variables. We write the term substitution (as opposed to
context substitution) operation as s[t/x] which means “in s, substitute the term
t for every free occurrence of x”, taking care to rename bound variables where
necessary so as to avoid variable capture. See, for example, [6, p. 27] for a formal
definition.



Operational Semantics. Programs of PCF are just closed terms of ground type.
(For this reason we shall often refer to a ground type as a program type.) Values
are A-abstractions and constants (less ); values are ranged over by the meta-
variable v. Following the function paradigm, to compute a program in PCF is to
evaluate it. We present the operational semantics of PCF in terms of a Martin-L6f
style evaluation relation. Formally we define a relation |} between closed terms and
values inductively over the following rules. We read s | v as “the closed term s
evaluates to the value v”.

ult/z] v slov vt

vl (Az.u)t Y v st o'
st u v s{f u' v
cond®suu’ |} v cond®suu’ | v
sYA(s) v
YA(s) Y
sin syn+1 s{0
succs yn+1 preds | n preds { 0
sy0 syn+1
zero?s | t zero?s | f

We further define: for any program s

s = Avso,
st = —[sd].

Remark. FEvaluation may be implemented by a process of one-step reduction.
(Indeed we could have presented the operational semantics equivalently in terms
of a “small-step”, Plotkin-style transition relation.) According to this notion of re-
duction, terms are reduced following the left-most reduction strategy, S-contraction
is carried out in a call-by-name fashion, and no reduction is permitted “under a
lambda”.

There is an operational notion of program equivalence which programmers under-
stand well: two program fragments are equivalent if they can always be interchanged
without affecting the visible or observable outcome of the computations. This cri-
terion of sameness which is called observational equivalence is expressed in terms
of invariance of observable outcome under all program contexts. Let s and t be
PCF-terms of the same type. We say that s observationally approximates t, written
s £ t, if for every type-compatible program context C[X] such that both C[s] and
C[t] are programs, and for any value v, if C[s] | v then C[t] | v. (To our knowledge
the idea of a preorder on terms defined by a universal quantification over contexts



goes back to Morris’ thesis [55].) Two program fragments s and ¢ are said to be
observationally equivalent if both s £ ¢ and ¢ £ s. We write program contexts as
C[X] where the “hole” represented by X is to be thought of as a kind of meta-
variable. As usual, C[s] means “the term which is obtained from the context C[X]
by substituting s for every occurrence of X in C[X]”. Note that variable capture
is possible (and intended) in context substitution.

1.2. The type theory pcr

The operational semantics for PCF encapsulates a deterministic reduction or com-
putation strategy for the programming language; but also it reflects an intuitive
understanding of the meaning of the terms. In this view the reductions are justified
as the replacement of a term by an equal term. Thus the intuitive semantics can be
given expression in an equational theory. In the case of PCF this amounts to a type
theory related to Scott’s original formulation. Our (core) type theory for PCF T is
given as follows. We take the typing rules already given, and define a relation s = ¢
on typed terms (in context) by taking, in addition to the usual rules for equality,
the following;:

(Ax : A.s)t = s[t/x] Az : A.sx =s (if  not free in s)
cond’tst = s cond’fst =t
S(YA(5) = YA(s)
succn=n+1 predn+1=mn pred 0 =0

zero?0 =t zero’n +1=f

It is important that there be a good relation between the reduction relation |} of
the operational semantics and the equality of the type theory. This is given by the
following proposition.

PROPOSITION 1.1. For any programs s and t, if s and t are equal in the type
theory T then for any ground value v

sdv <<= tlwv.

Proof. A more or less straightforward application of the Church-Rosser theo-

rem and a standardization theorem following, for example, the treatment in [60]. W

COROLLARY 1.1. For any program s in the type theory and ground value v,

s = v in the type theory if and only if s | v.

What is commonly called a denotational semantics for PCF is essentially some
kind of interpretation of (model for) the type theory which we have just introduced.



The usual form of a model for PCF is that the types are interpreted as domains and
the terms as continuous (or stable continuous) maps between domains. In this
introduction we shall restrict attention to these traditional models. Later in the
paper however we shall introduce a more abstract categorical notion of model for
PCF; this provides a more appropriate context in which to understand our results.

The standard model. In [69] Scott gave a denotational semantics for PCF. Pro-
gram types (booleans and the natural numbers) are interpreted by the respective
flat cPOs, and function types by Scott continuous function space. We shall call this
model the standard (continuous) model of PCF. Continuity is used to determine the
way fixed point operators are interpreted i.e. standardly as the least upper bound
of the w-increasing chain of successive iterates, see e.g. [75]. Note that the standard
model is order-eztensional’ in the sense that function types are interpreted by sets
of functions which are ordered pointwise.

Adequacy and full abstraction. More generally, writing the denotation of a pro-
gram s as [ s], we say that the denotational semantics [ — ] is adequate if for every
pair of type-compatible terms s and ¢,

[s]C[t] = st
If, in addition, the converse is also valid, that is to say,
[s]C[¢] = skt

then the denotational semantics is said to be order (or inequationally) fully abstract
for the language. To our knowledge the notion of full abstraction is due to Milner
[51], though it seems implicit in work in the pure lambda calculus by Plotkin, Morris
[55], Wadsworth [77, 78], Hyland [37] and others. (The definition of adequacy and
full abstraction which we have just given is the traditional one. In the sequel, we
shall present the same notions in a more general, categorical setting.) Adequacy and
full abstraction tell us how well the operational and the denotational views of pro-
gram equivalence relate to each other. They are indications of how reliable or how
“fitting” the denotational model is in relation to the language. More specifically,
adequacy assures us that the model is reliable enough for affirming observational
equivalence between two terms since denotational equality suffices; but the model
is not necessarily reliable for refuting equivalence for which we need full abstrac-
tion. Adequacy is often easy to establish, but this is not so for full abstraction. A
model is not fully abstract usually because it is in some sense too rich a structure
for the language: it contains semantic objects which “cannot be computed” by the
programming language. Conversely, a model which is fully abstract for a language
provides a very satisfactory characterization of (the observational equivalence of)
the language in terms of the denotational model.

Plotkin showed in [61] that the standard model is adequate but not fully abstract
for PCF. He also pointed out the reason for the failure of full abstraction. The mis-

3More precisely, this means that for any partially ordered domains D41 and D42 which interpret
the types Ay and As respectively, and for any elements f,g of DA1= 42 f < g if and only if
f(a) < g(a) for every a € DA1.



match may be explained, in a nutshell, by the fact that while PCF-programs cor-
respond to “sequential” algorithms, the standard Scott-continuous function space
model contains “parallel” functions, or more precisely, functions which can only be
implemented by parallel algorithms (e.g. parallel or). This point was made explicit
by Plotkin in [61] (see also [65] and [67] where the relation between extensions of
PCF by various parallel constructs is studied) as follows.

THEOREM 1.1 (Plotkin, Sazonov).  The standard Scott-continuous function space
model is fully abstract for the programming language which is obtained by extending
PCF by a parallel conditional constant. |

An important conceptual advance was made by Plotkin and Milner in under-
standing full abstraction. They identified a necessary and sufficient condition for
full abstraction.

THEOREM 1.2 (Plotkin-Milner).  Any continuous, order-extensional model of
PCF which follows the standard" interpretation is a system of Scott domains. Fur-
ther, such a model is fully abstract if and only if all compact elements of the model
are PCF-definable. |

Plotkin and Milners’ result leaves open the question of whether there is a deno-
tational model which is fully abstract for PCF proper. This was quickly answered
by Milner [52]:

THEOREM 1.3 (Milner).  There is a unique (up to isomorphism) continuous,
order-extensional fully abstract model for PCF. |

1.3. The full abstraction problem for pcr

While there seems to be a consensus that the full abstraction problem for pPCF
is difficult, there is much less agreement on what the problem is. At one level
this question seems superfluous: for we already know that there is a unique fully
abstract model for PCF  witness Milner’s construction. In our view the thrust of
the problem has to do with the (philosophical) question of what a good model is. A
good model enlightens; it gives a new perspective on the behaviour or operational
semantics of the programming language in question. There is no doubt that Milner’s
result settles an important question and his construction is a valuable contribution,
at least from a mathematical point of view. Nonetheless because his construction
is essentially a term model, it does not much increase our understanding of PCF
beyond what can already be gleaned directly from the syntax. One way to formulate
the problem which, we believe, strikes at the root of the issue is the following:

The full abstraction problem for PCF.  Give an abstract, synthetic account of
the unique order-extensional, fully abstract model of PCF as identified by Milner. B

4An interpretation of PCF is said to be standard if the ground types are interpreted as the
respective flat CPOs with the constants interpretated in the standard way.



It is worth expanding on the two operative words. By an abstract model, we
mean a model which is constructed without recourse to the syntax or operational
semantics of the language. In fact the more computationally neutral the model is
in its conception, the more apposite it is as a solution. By synthetic description is
meant a constructive, axiomatic explanation of the function space which interprets
the PCF function types (in terms of the respective interpretation of the compo-
nents). For example, these criteria rule out Milner’s construction even though the
model is fully abstract. In contrast the interpretation of a program as a continuous
function is evidently abstract. The synthetic description of the Scott continuous
function space model of PCF is also satisfactory in every way: the category of Scott
domains (say) and continuous functions is cartesian closed and may be presented
constructively.

Since the crux of the full abstraction problem is the characterization of sequential
computations, we may reformulate the full abstraction problem for PCF as the
problem of finding an abstract, synthetic characterization of higher-type, sequential,
pPCF-definable functionals. Formulated in this way, we highlight the epistemological
difficulties inherent in the problem, for we do not have a proper definition of higher-
type sequentiality from first principles. At any rate, to date there is certainly no
notion of higher-type sequentiality which can be said to be canonical in any sense.
In fact it is unclear whether there are various inequivalent notions of higher-type
sequentiality, all of them equally appealing; or whether as is the case for effective
computability, there is just one notion under different guises.

Some criteria. The full abstraction problem for PCF in the above qualitative
sense is by its nature incapable of being precisely specified because the underlying
considerations are philosophical and so more or less subjective in nature. Therefore,
it seems all the more important to lay down a few criteria which should be as
objective as possible so that progress in understanding the problem may to some
extent be calibrated and be seen in perspective.

A continuous model of PCF is a ¢PO-enriched cartesian closed category of a certain
kind (the exact nature is spelt out in the sequel). In view of Theorem 7.1, we might
say that one weak form of the full abstraction problem for PCF boils down to the
following:

Observational abstraction for PCF. Find a cp0-enriched cartesian closed cat-
egory of Scott domains (providing a standard interpretation of PCF) all of whose
compact elements are PCF-definable. |

Note that there is no intrinsic reason why the denotation of a PCF-program in
such a model must be a set-theoretic function.

In [41] Jung and Stoughton seek “a weak but precise minimal condition that
a semantic solution of the full abstraction should satisfy”. The second criterion,
which we call the Jung-Stoughton criterion, imposes an effectivity constraint on
the way the fully abstract model is presented. It seeks an effective construction
of the fully abstract model restricted to finitary PCF i.e. that part of PCF which is
generated from the boolean base type.



The third criterion is the hardest to satisfy. It asks for an axiomatic characteri-
zation of higher-type, PCF-sequential functions. By way of comparison, if it is right
to think of the first two criteria as contributions to the representation theory of
higher-type sequentiality, then the third is in the business of giving it a definition.
One appealing way to characterize PCF-definable functions is to express it in terms
of an appropriate preservation property in an order-theoretic framework, for ex-
ample, in the style of Bucciarelli and Ehrhards’ strongly stable functions [16, 17].
Another way is to characterize it topologically say, as a refinement of the Scott
topology. Such an approach is likely to be very hard, if it is at all feasible.

1.4. Quest for a solution: a survey

This sets the scene for a line of research motivated by the quest for a solution to
the full abstraction problem (in the qualitative sense) for PCF. As Plotkin already
intimated in [61], the key to the solution is an abstract characterization of sequen-
tial computation. To give that, one needs a proper understanding of sequentiality.
The matter is straightforward in the case of first-order computation. Milner and
others have already obtained satisfactory abstract description of first-order sequen-
tial functions. Intuitively the meaning of sequential computation is clear enough:
it is to do “one thing at a time” at any intermediate stage of the computation,
and possibly in a specific order. The real difficulty lies in describing sequential,
functional computation at higher types.

The first major contribution was made by Kahn and Plotkin and reported in a
technical report written in French. Like the papers of Scott and Plotkin mentioned
in the preceding, a revised version of the paper [43] in English has also appeared in
the recently published Bohm Festschrift. They introduce a class of mathematical
structures known as concrete data structures (CDS). A CDS is an elaborate structure
specially designed to articulate sequential computations. The framework of CDss
and Kahn-Plotkin sequential functions is a highly innovative conceptual advance
in understanding higher-type sequentiality. Their framework does not give rise to
a cartesian closed category. (This is hardly surprising since it was not their aim to
carry out a systematic analysis of higher-type functional computation in that paper.
Its primary objective was to examine the behaviour of stream-like computation.)

The search for a cartesian closed category of “sequential functions” became the
focus of research. Historically the research bifurcated at this point. The crux of
the matter is the abstract characterization of sequential, functional computation at
higher type. The sticking point lies in an apparent tradeoff between the two essential
features: on the one hand, sequential computation which is an inherently intensional
notion; and on the other, the requirement that such computations interact with each
other in a functional, or extensional way. So to characterize sequential functions
is to find an appropriate setting in which both properties can be held in tension.
Unfortunately, based on the work of Berry and Curien in the late 1970’s, it would
seem that in order to get a cartesian closed category of “sequential functions”, one
of the two criteria has to give.

One major effort consisted in relaxing the constraints of sequentiality but staying
within the framework of functions. This led Berry to the notion of stability [8].
The appropriate maps are stable functions which are continuous functions that
preserve greatest lower bounds of consistent (or “upper bounded”) subsets; and the



objects are dI-domains  Scott domains which satisfy a distributivity property and
axiom (I) meaning that every compact element can only dominate finitely many
elements. Stable functions are not ordered by the standard extensional (or point-
wise) ordering® but by a new ordering called stable ordering. A major result is that
the category of dI-domains and stable functions is cartesian closed.

The other approach builds on the central ideas behind the framework of cpDS
and Kahn-Plotkin sequential function but sacrifices extensionality. Thus, Berry
and Curien introduced sequential algorithms over ¢Dss [10] (see also Curien’s book
[24] for a comprehensive introduction). Sequential algorithms may be thought of as
intensional refinements or “implementations” of Kahn-Plotkin sequential functions.
There are two reasons why this way of thinking is appropriate. First it is possible
to express each sequential algorithm as a pair of the form (f, ¢) where f is just a
Kahn-Plotkin sequential function, and ¢, referred to as the associated computation
strategy, is a partial function that picks out a sequentiality index at each stage of
the computation. Secondly it is a theorem that the quotient of the CPO of sequential
algorithms by the extensional equality is isomorphic to the cPO of Kahn-Plotkin
sequential functions with respect to the stable ordering. Remarkably, unlike Kahn-
Plotkin sequential functions, sequential algorithms do give rise to a cartesian closed
category.

Each of the approaches gives rise to a CpPO-enriched cartesian closed category
and provides a continuous model for PCF but none leads to a solution of the full
abstraction problem for pcr. In the case of the stable function space model, a
simple reason® is that the ordering in question is not the extensional ordering but
rather the stable ordering. In the case of the model associated with sequential
algorithms, the morphisms are not even functions.

Recently, drawing on their intuitions as programmers, Cartwright and Felleisen
[19, 18] introduced a continuous, order-extensional model for PCF which is based
on what they call observably sequential functions. Curien [22] immediately realised
that the observably sequential functions were a natural extensional refinement of
sequential algorithms. This is remarkable because the sequential algorithms being
considered in the extended setting, which are called observable algorithms, are still
very much intensional in nature, and are most succinctly represented as a kind
of decision trees. The key to this surprising development is that the concrete
data structures are now equipped with “error values”. To ensure a well-behaved
mechanism of function application, observable algorithms are required to “percolate
errors to the top” when they are applied to arguments. A main result is that the
category of DCDss with error values and observable algorithms is cartesian closed.

5Care should be taken not to confuse the two concepts: extensional object and order-ectensional
functions. We use the adjective ezxtensional simply to mean the property of being a function as
opposed to, say, an algorithm which is an intensional thing. However, even if the maps of an
order-enriched category are extensional, they are not necessarily order-eztensional i.e. ordered
extensionally. The category of dI-domains and stable functions is a case in point.

6A “deeper” explanation has to do with a subtle point about the extensional way in which PCF
functionals interact with function arguments. Curien has shown that there is no PCF-term of type
(0 = 0 = 0) = o which distinguishes between the left- or and right-or (say). However, sequential
algorithms are more intensional: there is a sequential algorithm which discriminates between two
computations which only differ intensionally in the above sense.



The associated model is not fully abstract for PCF, but it is for a language called
SPCF which is PCF extended by error values and escape handling control facilities
much resembling the catch facility in some versions of the programming language
Lisp.

Kahn-Plotkin sequentiality and Berry and Curiens’ sequential algorithm are both
formulated within the rather concrete setting of ¢ps. Kahn, Plotkin, Winskel
[79, 80] and others have proved various representation theorems. One result shows
that this approach applies to a (rather) restricted class of cPOs known as concrete
domains. Can these two leading ideas in the understanding of higher-type sequen-
tiality be generalized to a more abstract setting? In a series of papers [16, 17, 27],
Bucciarelli and Ehrhard set out to answer this question systematically. They pro-
pose an abstract framework called sequential structure which is a pair ( X,, X*)
where

e X,, the collection of “data” or “answers”, is a dI-domain, and

e X* is the collection of (a kind of) linear maps (“questions”) from X, to the
two-point dI-domain (L < T). An element of X* should be thought of as a linear
property of elements of X,.

Think of a sequential structure as a concrete data structure made abstract. Their
key idea was to replace cells with a class of linear maps. States of a CDS then
correspond to points of the data space X,.. Remarkably, in this abstract setting,
sequential algorithms can be defined quite naturally as pairs (f, ¢) where f, a se-
quential function, describes the input-output behaviour of the algorithm; and ¢,
a partial function, describes its intensional properties. The enabling relation in a
cDS which formalises a notion of “immediate reachability” or “adjacency in the
ordering” also has a natural, abstract representation in the setting of sequential
structure. Ehrhard and Bucciarelli show that a cartesian closed category of se-
quential structures with enabling and sequential algorithms can be constructed;
and furthermore, into this category, the category of DCDSs and sequential algo-
rithms can be fully and faithfully embedded. Thus the goal of extending sequential
algorithms to an abstract setting is achieved.

Bucciarelli and Ehrhard [16, 15] also introduced the notion of strong stability.
They were motivated by the observation that for bcpss, Kahn-Plotkin sequential
functions can be given an equivalent description in more algebraic terms. According
to this definition, a sequential function is a continuous function preserving a certain
class of meets. They then cast this idea in a more abstract setting. The “domains”
are dI-domains D equipped with a collection C(D) of finite subsets of D satisfying
a number of axioms. Call the collection C(D) a coherence and any of its elements
a coherence property. A continuous function f : D — E between dI-domains with
coherence is said to be strongly stable if

e it preserves coherence properties i.e. f(A) is in C(E) whenever A is in C(D),
and

e it preserves greatest lower bound of coherence properties i.e. f(MA) = Mf(A)
for any A in C(D).

Their result is that the category of dI-domains with coherence and strongly stable
functions is cartesian closed. We know that the associated model is not fully ab-



stract for PCF; but how closely does it model “sequential functions”? At first order,
strong stability coincides with Kahn-Plotkin sequentiality. However, at higher or-
der, we find ourselves at a loss conceptually for we are faced with a fundamental
question: is there a standard or canonical definition for higher-type sequentiality?

In [27] Ehrhard shows that any strongly stable function which arises from the
model is the “extensional component” of a sequential algorithm. More precisely
a cartesian closed category is constructed whose objects are triples ( £, X, 7). In
such a triple, F is a sequential structure, X is a hypercoherence, and 7 is a function
from E, (the space of points of E) to qD(X), the qualitative domain induced by
X. The function 7 is required to be linear, strongly stable (with respect to both
the linear coherence induced by E* on F,, as well as the coherence induced by the
hypercoherence X on qD(X)) and onto. (Hypercoherence (see [26]) is a simplified
framework for dealing with strong stability. A hypercoherence is a hypergraph that
gives rise naturally to a qualitative domain equipped with a coherence.) The intu-
ition is this: F, is the space of sequential algorithms, qD(X) is a space of strongly
stable functions, and 7 is the “forgetful” operation which sends any sequential al-
gorithm onto its generalized extensional component. In this set up, the force of
the function 7 being onto is that any strongly stable function is in some sense the
extensional component of a sequential algorithm.

Brookes and Geva [14] have adopted a topological approach in an attempt to
characterize sequentiality. They propose a general definition of sequential func-
tions on Scott domains, characterized by a generalized notion of topology. This
notion of sequential function turns out to coincide with the Kahn-Plotkin notion of
sequential function when restricted to distributive concrete domains, but it consid-
erably expands the class of domains for which sequential functions may be defined.
Ordered stably, the sequential functions between two dI-domains form a dI-domain
(the analogous property fails for Kahn-Plotkin sequential functions). However the
category of dI-domains and sequential functions is not cartesian closed because
application is not sequential.

Kleene’s approach. Persisting in the background of these developments is a
deeper, more philosophical question of whether there is such a thing as a canonical
notion of sequential computation at higher type. Clearly, the kind of computa-
tion defined by PCF is at least a contender for such a standard. But it seems to
us that there is no compelling evidence (yet) that PCF-style computation is the
only acceptable notion of higher-type sequentiality. The problem of characterizing
higher-type sequentiality should be thought of in connection with a problem which
Kleene posed in [47] (see also [48]).

Kleene’s problem. Find “a class of functions which shall coincide with all the
partial functions which are ‘computable’ or ‘effectively decidable’, so that Church’s
1936 Thesis will apply with the higher types included.”

In fact in this paper, Kleene initiated what is in effect an attack on the full
abstraction problem for PCF. The series of four papers by Kleene are all concerned
with an attempt to give meaning to PCF (or rather to Kleene’s own preferred version
of Platek’s recursion in terms of schemes) in terms of rules for a dialogue. Kleene’s



idea of a dialogue developed in parallel with and independently of the work on
c¢pss. While Kleene was not able to obtain a definitive characterization at higher
types, the general game-theoretic perspective, a version of which we present in this
paper, is already present in his work.

Kleene’s initiative was followed up by Robin Gandy and his student Giovanni
Pani. Unlike Kleene and Platek, who considered only monotonic functions, Gandy
and Pani have been working in the continuous framework usual in computer sci-
ence. Their work is not published, but they have investigated a number of possible
approaches and have accumulated numerous (counter) examples. One of us (Hy-
land) has talked informally with Gandy and Pani about their ideas on a number
of occasions. In particular, Gandy first pointed out the importance of his “no dan-
gling question mark” condition for an explanation of PCF-style computability. (The
account of approach currently favoured by Gandy which we have seen leads us to
believe that it differs from that which we present.) A more detailed comparison
of our approach with Gandy’s will be given in §9. We also discuss there the little
known work of Sazonov who in the mid 1970s produced a machine oriented charac-
terization of the POF-definable functionals. (The algorithmic work of the “Siberian
school” was roughly contemporaneous with but independent of the early work of
Milner and Plotkin.)

The question of higher-type sequentiality and Kleene’s seemingly more general
problem are of fundamental importance to Computer Science. They certainly de-
serve further investigation. For a survey of the full abstraction problem of PCF, see
e.g. [11, 23, 57]. Curien’s book (second edition) [24] provides an excellent account
of the main body of research inspired by the full abstraction problem of PCF.

1.5. Outline of the paper

In the next section, we study the model theory of PCF in the light of standard
ideas from both categorical logic and categorical type theory. We take a (concrete)
model of PCF to be a c¢-fiz category (cartesian closed with conditionals and fixed
points) equipped with what we call a simple object of numerals. In the same
categorical spirit the notion of observational equivalence is analysed. Given a notion
of observables on a symmetric monoidal closed category C (e.g. a model of PCF),
we give precise definition for the induced observational preorder (over homsets
of C) and study the associated quotient construction C — C. These analyses
yield a general categorical setting within which to articulate and reason about the
standard (though hitherto concretely understood) properties of adequacy, order-
extensionality (equivalently the context lemma) and full abstraction.

In Part II we formalize the class of dialogue games in which the two players in-
volved are required to observe the disciplines of justification and priority mentioned
above. We make a category CA out of such games: objects are computational are-
nas which are a kind of environment for such dialogue games, and maps are innocent
strategies. The main result of Part II is that this category CA is cartesian closed
and enriched over dI-domains. With respect to an intrinsic notion of observables,
CA satisfies the context lemma; equivalently CA is order-extensional.

The category CA is considered as a model of PCF and P — an extension of PCF by
definition-by-cases constructs — in Part III. We prove a strong definability theorem:



there is an order-isomorphism between compact elements of the model and a class
of finite canonical forms of P (ordered by Q-matching). As a corollary the obser-
vational quotient CA of CA is an order-extensional, order fully abstract model for
P. The strong definability result extends to a universality theorem for CA: mod-
ulo observational equivalence, all recursive innocent strategies are pCr-definable.
We conclude this paper with a discussion of and comparison with related work.
Directions for further research are identified.

Chronology. The results presented here were first announced in a message en-
titled “Dialogue games and innocent strategies: an approach to (intensional) full
abstraction for PCF” in the Types and Linear email lists in July ‘93 in conjunction
with a preliminary announcement of Abramsky, Jagadeesan and Malacaria entitled
“Games and full abstraction of PCF”.



2. MODELS OF PCF

2.1. Categorical semantics

The categorical perspective. Aspects of the models of PCF which we present in
this paper do not fit quite naturally into the context of denotational semantics as
traditionally conceived. Hence we think it worth describing in outline one notion
of model for PCF from the point of view of categorical logic and categorical type
theory. (These are distinct traditions and we borrow from each.)

Standard references for models of simple type theories are [49, 21]. Usually
we have a category (or better, a 2-category) of categories equipped with certain
structure. These categories are equivalent (in a sense which needs to be made
precise) to type theories of a certain kind, and so can be identified with type
theories.

Typically we are interested in one particular type theory T and so in the corre-
sponding category T constructed from its syntax. The perspective of categorical
logic is that models of T" in an arbitrary category C of the sort in question are given
by structure preserving functors M : T — C from the classifying category T to C.
(These matters are explained carefully in [21] where T is called generic.)

Notations and conventions. We shall write the composition of maps f: A — B
and g: B — C as f;9: A — C. We stress at once that we shall take a relaxed
attitude towards notation. In principle we can distinguish between

(i) the syntax of some type theory T,
(ii) the interpretation of the syntax in the (syntactic) classifying category T, and

(iii) the interpretation of the syntax in some arbitrary model M : T — C.

In categorical type theory, (i) and (ii) may harmlessly be identified; but the interpre-
tation of syntax in some specific model is usually indicated by semantic brackets (see
[21]). However we prefer to overload notation by dropping the semantics brackets
and allow the context to disambiguate what we write. Thus we shall systematically
describe maps in our semantic categories using a mixed syntax consisting of the
syntax of our type theory (PCF) augmented by names for individual objects and
maps in the model. (Or we can think of the syntax of C in the sense of categorical
type theory.) Our convention will be to let a term ¢ of type B with free variables
(amongst the) x1,- -, z, of types Aq,---, A, respectively denote a map

t : A x---xA, — B.

We develop a theory of models for PCF along the general lines of categorical type
theory. Some of the material is quite routine, but there are a number of points of
interest; and we take the opportunity to recast the standard notions of denotational
semantics in the more general framework.

Eztensionality and order-extensionality. There are a couple of items which we
may as well make precise now. We assume for the purpose of this discussion that
our categories are equipped with a terminal object 1, and that the global sections
functor is appropriately thought of as giving the elements of types. (So we set
aside models of linear logic.) In general such categories will not be concrete in the



natural way; that is, the global sections functor will not be faithful. When it is,
that is when

f=9g:A—B = VYa:1— Aa;f=a;9g:1— B,

we say that the model is extensional. Similarly in the common order-enriched
situation we may ask whether the global sections functor regarded as an Poset-
enriched functor to the enriching category Poset (which is enriched over itself) is
faithful. When it is, that is when

f<9g:A— B = Va:1— Aa;f<a;g:1— B,

we say that the model is order-eztensional. Category theorists often talk of the
category (enriched category) having enough points.

Computational soundness and adequacy. Like the standard domain theoretic
models, categorical models of a functional programming language are static: they
are essentially models of equational theories. In particular we shall model the
programming language of PCF given in §1.1 by modelling the equational theory from
§1.2. Thus the question arises of what should be the equational theory associated
with a programming language.

An operational semantics for a (typed) functional programming language typi-
cally provides:

e a distinguished collection of program types P;

e for each program type P a distinguished collection Vp of (closed) terms v : P
called values;

e for each program type P a relation of convergence to value s || v between
arbitrary (closed) terms s : P and values v : P.

As usual we write s{ for Jv.s | v. (Note that this outline encompasses untyped
languages which can be regarded as having a single (program) type.)

Consider for the moment a model of T' (of some unspecified kind); we write [ — ]
for the interpretation function. In the model we should be able to distinguish a
collection of values as the “elements” of the interpretation [ P] of each program
type P. Then the model is said to be

e computationally sound just when for any s : P, if s|} then the interpretation
[s]is a value in [ PJ;

e computationally adequate just when for any s : P, if the interpretation [s] is
a value in [ P] then si}.

These notions clearly admit stronger versions. We say that the model is

e strongly computationally sound just when s | v : P implies [s] is a value in
[P] and that [s]=[v] €[P];

e strongly computationally adequate just when [ s]is a value in [ P ] implies s |} v
for some v with [s] =[v] € [P].



Remark. (i) In practice models which are computationally sound and adequate
are strongly so. (In the presence of suitable equality tests this will be automatic,
but it holds in their absence.) Of course strong computational soundness and
computational adequacy imply strong computational adequacy.

(ii) One might be tempted by a condition of the form

[s]=[v]e[P] = slv:P

But this fails for traditional models of lazy languages where abstractions are re-
garded as values.

Since the point of our models is that the process of computation should be seen
as the replacement of equals by equals, we clearly want models to be strongly
computationally sound. This can be ensured by insisting that the (initial, syntactic)
classifying model is so, in other words by insisting that

sdv:P = s=vw

in a corresponding equational theory. Also we should at least be able to consider
computationally adequate models where computation to value is faithfully reflected.
This requires that the classifying model be computationally adequate; in other
words that s = v in the equational theory implies s |} v : P. Thus the natural
requirement on an equational theory associated with a programming language is
that

(1) syv:P <= s=wv in thetheory

(In general there will be many theories satisfying this requirement.)

Now consider the specific case of PCF. It seems natural in view of §1.1 to regard
PCF as having two program types ¢,0. The values of type o are the booleans t, f
and those of type ¢ are the numerals. So we see that Corollaryl.1 says that the
requirement (}) is satisfied in the case of PCF by the equational theory which we
presented in §1.2. As a result the (initial, syntactic) classifying model T for pcF
will be (strongly) computationally sound and adequate.

2.2. C-fix categories

We start by establishing a very general categorical context for recursion theory.
We adopt what we take to be Platek’s original conceptions [59] and make higher
types, the conditional (or definition by cases) at all types and fixed points at all
types the basis for our discussion.

Note that in contrast with the usual formulation of PCF, we take a conditional
at all types as a basic rather than defined construction; this seems more natural
from a semantic point of view and does not” entail a substantial change of the
programming language or type theory.

"To see this, consider PCF extended by a conditional cond? at every type A. For terms s and t of
type A = (Aq,---,Apn,t) and b of boolean type, we note that Az1 : Ay -z, : Ap.cond"b(sT)(tZ)
(where T are not free in s, t and b) is extensionally (and hence also observationally) equivalent to
cond?bst.



DEFINITION 2.1. A c-fiz category is a cartesian closed category C equipped with
the following additional structure:

(i) The conditional. An object B, twomapst:1 — B,f:1 — B and a family
of maps

Ya:BxAxA — A

for each object A of C with the property that

tx1x1 fx1x1

AxA=21xAx A BxAXxA+—1xAxA=2Ax A

A
fst 7 snd

A

commutes.

(ii) Fized points. A family of maps for each object A of C
Ya:A=>A — A

with the property that the diagram

(A= A)x (A= 4) 24 (40 4y x4
A ev
A=A L A
comimutes.
Remark.

(i) va interprets the conditional at type A and the commutative diagram gives
the two usual equations:

cond(t,z,y) = =
cond(f,z,y) = y.

Category theorists might expect to see the requirement that 7 be a natural trans-
formation which would give the naturality equation

h(cond(b,z,y)) = cond(b,h(z),h(y)).

However we do not need to insist on this as part of the general theory.



(ii) Y4 interprets the fixed-point operator at type A and the commutative dia-
gram gives the standard fixed-point equation:

fYa(F) = Ya(f)

In examples, we shall often have familiar properties of Y (dinaturality, Bekic-Scott
property for products), but again we do not need to insist on them as part of the
general theory. (Indeed we do not know a complete list of equational properties of
the fixed-point operator in categories of domains.)

(iii) Note that we do not say that t and f are distinct. However if they are the
same, then for every A in C, the two projections fst,snd : A x A — A are identical.
Tt follows at once that A is subterminal (the unique map A — 1 is monic). But the
fixed-point operator provides at least one element (global section) for any A. So in
case t and f are equal, the c-fix category is equivalent to the (one-object-one-map)
category 1.

Many of our c-fix categories will be order-enriched and some will be enriched in
some category of structured domains. The standard reference for enriched category
theory is [44]. We need to make clear what we mean by an enriched c-fix category.

DEFINITION 2.2. Suppose that V is a symmetric monoidal category. By a c-fix
category enriched over V we mean the following: a category C enriched over V,

(i) which is cartesian closed in the enriched sense, so that the natural isomor-
phisms characterizing the products and function spaces in C are maps between the
appropriate hom-objects in V, and

(ii) whose underlying category is an ordinary c-fix category.

Note that as things stand there is no interaction between the enrichment and
the conditional or the fixed points.

Maps of c-fix categories. As maps between c-fix categories we should take suit-
able structure preserving functors. We spell this out in the following definition.

DEFINITION 2.3. Suppose C and D are c-fix categories. A functor F': C — D
is a map of c-fix categories (or just a map when the context is obvious) under the
following conditions:

(i) F' preserves products and function spaces in the usual up-to-isomorphism
sense: the canonical maps

F(1) — 1
F(Ax B) — F(A) x F(B)
are isomorphisms, and the resulting canonical map
F(A=B) — F(A) = F(B)

is also an isomorphism.



(ii) F preserves the conditional in the sense that the canonical map
B — F(B)

is an isomorphism. (It follows that modulo isomorphism, yp(4) is F(v4) and so
on.)

(iii) F preserves fixed points in the sense that

F(A) = F(A) Y, F(A)
F(A = A) A F(A)

commutes.

The basic setting for our categorical semantics is the category of c-fix categories
and maps (of c-fix categories). Of course the usual notion of natural transformation
make this naturally a 2-category, but for the most part we are able to suppress this.

For completeness, we make clear what we mean by a map of c-fix categories in
the enriched setting.

DEFINITION 2.4. Suppose that C and I are c-fix categories enriched over the
symmetric monoidal category V. A map of enriched c-fiz categories F : C — D
(or just map when the context is obvious) is an enriched functor F' : C — ) whose
underlying ordinary functor is a map of ordinary c-fix categories.

2.3. Models of pcF

In the previous subsection, we defined structure on a category which models
the basic processes of definition (typed A-calculus, conditionals and fixed points)
in PCF, but we have yet to consider how to model the arithmetical structure on
the basic data type of individuals. We choose to regard this as a question of a
different kind: we treat ¢ separately from o. Note that o has a dual role: it is a data
type but it is first introduced to give a basic recursion-theoretic construction, the
conditional. One equational theory for arithmetic was presented in [69], but here
we concentrate on the categorical interpretation of the weak equational theory of
§1.2 which reflects Plotkin’s operational semantics.

As a preliminary consider a category C with terminal object 1. Suppose that we
have an object N of C equipped with maps

0 s

N N N

Then (overloading notation) we can define maps n : 1 — N for n a natural number
inductively: the map 0 : 1 — N is already given and we set n +1: 1 — N equal



to the composite

S
1 N N

We refer to the maps n : 1 — N so defined as numerals. Note that we do not
assume that numerals n : 1 — N and m : 1 — N with m # n are distinct maps
in C.

We can of course now regard any f : N — N in C as “defining” a numerical
function F : N — N; but the usual context is a category with products.

DEFINITION 2.5. Suppose that C is a category with finite products and that N
is an object of C equipped with maps

0 s

N N N.

Take numerals n : 1 — N as just defined. A map f: N¥* — N in C numeralwise
represents (or numeralwise ezpresses) the numerical function F : N — N just
when the composite

(n, -+ mg)

1 N* N

is equal to F'(ny,---,ng) : 1 — N for all natural numbers nq, - -, ng.
Suppose also that B is an object of C equipped with maps

t f

B 1 B.

A map r : N¥ — B numeralwise represents the k-ary relation R on N just when
the composite

(n, -+ mg)

1 Nk B

ist:1— Bforall (ny,---,ny) € Randf:1— Bforall (ny,---,n;) ¢ R.

With these standard ideas as background we give the categorical counterpart to
the arithmetical equations of §1.2.

DEFINITION 2.6. Suppose that C is a category with finite products (a terminal
object suffices) equipped with a diagram

B.

Consider an object N of C equipped with maps

0 N N s




We say that N so equipped is a simple object of numerals (relative to 1

just when the diagrams

1 0 N 1 n+1 N
0 » Uop

N N

1 0 N 1 n+1 N
t z f z

B B

commute. (Here of course the n : 1 — N are the numerals derived from 0: 1 —
Nands: N — N.)

This definition is weak in two respects. First it only provides information about
the behaviour of the numerals n : 1 — N. Two of the diagrams say that the
standard predecessor function is numeralwise represented by p; while the other two
say that z numeralwise represents a test for zero. We hope to suggest this focus
on numeralwise representability by speaking of an object of numerals rather than
natural numbers. Of course the arithmetical equations of §1.2 are concerned only
with numerals and this reflects the fact that the only values in the operational
semantics are numerals. The second way in which the definition is weak is that it is
purely equational and makes no references to the possibility of any recursion. We
intend to suggest this feature by the qualification “simple”. This simplicity is part
of the charm of Plotkin’s reduction rules [61] giving the operational semantics.

In general the force of the definition of simple object of numerals (as of the
corresponding equations) will be extremely weak. Very few functions need be nu-
meralwise representable. (Think for example about what can be explicitly defined
in the case B = N, t =0 and f = 1.) However in the context of c-fix categories the
definition is strong as we shall explain in the next subsection.

We can now describe our notion of a categorical model for PCF. We give two
definitions the first of which is very simple.

DEFINITION 2.7. (Concrete version) A categorical model for PCF is a c-fix cate-
gory equipped with a simple object of numerals.

We hope that it is clear how the equational theory of PCF can be modelled in
such a structure. Note in passing that a given c-fix category may contain many



non-isomorphic simple objects of numerals; so the choice of such is definitely part
of the structure.

Remark. For some purposes it is useful to look at the definition from the point
of view of categorical logic. Let T be a cartesian closed category generated by the
equational theory of PCF. (There are a number of equivalent ways to construct T.
For example one might augment PCF with a terminal type and products and take
equivalence classes of terms in the manner described by Lambek and Scott [49] and
by Crole [21]; or else consider formal products of types and equivalence classes of
tuples of terms.) T is a c-fix category and it contains by construction a simple
object of numerals which we may as well continue to call .. So T is as one would
hope a model for PCF in the sense just given.

DEFINITION 2.8. (Abstract version) A categorical model for PCF is a map M :
T — C of c-fix categories.

The point is that since the notion of a simple object of numerals is purely equa-
tional, M(:) is a simple object of numerals in C. All that the map M does effectively
is to pick out this structure and so the two definitions are essentially equivalent.
The second definition has the virtue of making clear the sense in which T (or the
identity T — T) is initial amongst models for pcr. Usually we shall simply write
C for a model of pPCF, letting the structure in the sense of Definition 2.7 or the
structure and interpreting functor M in the sense of Definition 2.8 be understood.

We can justify this definition in terms of the discussion in §2.1. The values in
PCF are the booleans of type o and numerals of type :. Thus Corollary 1.1 says
in effect that the initial model T of PCF is computationally sound and adequate
(in the strong sense). Hence all our models of PCF are (strongly) computationally
sound. (This is not a serious restriction.) Computational adequacy on the other
hand has a number of characterizations.

PROPOSITION 2.1. Let C (M : T — C) a be a model of PCF. Then the following
are equivalent:

(i)C is computationally adequate.

(#1)C is strongly computationally adequate.

(iii)If M(s : 1 — 1) (respectively M(s : 1 — 0)) is a numeral (respectively
boolean) in C then s is a numeral (respectively boolean) in T.

(iw)If M(s) = M(n) (respectively M(s) = M(t), M(s) = M(f)) in C then s =n
(respectively s =t,s =f) in T. [ |

Since conditions (iii) and (iv) make no reference to the operational semantics,
they suggest the following general definition. Suppose that a type theory T is
equipped with program types P and sets of values Up C T(1, P). We assume that
any model M : T — C is equipped with values Vyp) C C(1, M(P)) so that
M(Up) € Vpqpy.- Thus M : T — C is a strongly sound model of T.



DEFINITION 2.9. Let M : T — C be a strongly sound model of the type theory
T. We shall say that C (strictly speaking M) is adequate just when M reflect
values: if M(s) is in Vp then s is in Up.

In the case of PCF we take as values in any model the booleans and numerals.
Then the above definition applies to give a generalization of the usual notion of
adequacy. Not all models of PCF are adequate. In particular the trivial model of
PCF, the unique model M : T — 1 of PCF in the (terminal) one-object-one-map
category 1 is certainly not adequate. (But adequacy can fail in more subtle ways.)

In an adequate model of PCF the elements (i.e. global sections) of B and N
may be quite bizarre. Usually however we are interested in models in which the
individual values are distinct and in which there is just one additional non-value
at each program type. This is the familiar notion of a standard model of PCcF. We
present this in our general setting constructively and in both a set-based and an
order-enriched version.

DEerINITION 2.10. Let C be a model for PCF and write Vp for the values in C of
the program type P (either booleans or numerals).
Set-based case. We say that C is standard just when

(i) the individual values in Vp are distinct, and
(ii) for all a,b: 1 — Pin C,a=bin Cifand only if a € Vp <= b € Vp.

Order-enriched case. We say that the order-enriched model C is standard just when

(i) the individual values in Vp are distinct, and
(ii) forall a,b: 1 — Pin C,a<bin Cifand only ifa € Vp = b € Vp.

There is one further desirable property of models of pCF which we need to con-
sider. First we make a general definition.

DEFINITION 2.11. Suppose that C is a category with products and that we have
a collection of program types P in C and sets of values Vp C C(1,P). We call

amap f: Py X .-+ X P, — P from a product of program types P;, -, Py to a
program type P a first order map. We say that such a map f is (elementwise)
strict in its i-th argument just when for any a1 : 1 — Py, ---,a : 1 — Py, if the
composite
ai,---,a
plaa) powp L p

is a value, then sois a; : 1 — P;. And we say that f is strict (without qualification)
just when it is strict in all its arguments. (Note that this definition depends on the
product representation Py x -+ X Py.)

We shall be interested in models for PCF in which there are appropriate strict
maps.

DEFINITION 2.12. A model C of PCF is strict just when the structural maps satisfy
the following natural strictness conditions:



e yv:BxNxN — N and v : Bx B x B —» B are both strict in their first
argument;

e s:N— N,p: N — N and z: N — B are all strict.

ExaMPLE 2.1.

(i) The initial model T of PCF is strict. (This follows from Corollary 1.1 and the
nature of the evaluation relations. For example if condust = n : ¢ then condust | n;
but |} corresponds to a deterministic evaluation strategy so we deduce that ul as
required.)

(ii) The standard Scott domain model for pCF is strict. (This is clear from its
definition but see Proposition 2.8 below.)

(iii) The trivial model 1 is strict.

We leave the reader to ruminate on non-strict models (the obvious ones are
rather boring) and simply give some sufficient conditions for strictness.

PROPOSITION 2.2. Suppose that a model C of PCF is such that the functor
M : T — C maps T(1,t) surjectively onto C(1,N) and C(1,0) surjectively onto
C(1, B). If C is adequate then C is strict.

Proof. Suppose for example that a: 1 — N in C is such that

a s
1 N N

is a numeral. By surjectivity a = M (u) for some u : 1 — ¢ in T. Now we have
M(u); M(succ) = M(u;succ)

a numeral. As C is adequate M reflects numerals and so u;succ is a numeral in T.
But succ is strict in T (see above) so u is a numeral. Thus a = M (u) is a numeral as

required. The other cases are similar. H

COROLLARY 2.1. Suppose that C is a standard model of PCF Then C adequate
implies C strict.

Proof. We show that the functor M : T — C satisfies the surjectivity hypothe-
ses of the preceding Proposition. It suffices to show that some element of T(1,:)
(respectively T(1,0)) maps to a non-value in C(1,N) (respectively C(1,B)). In
T(1,¢) consider Y (succ). If Y(s) = M(Y(succ)) =n in C, then n =n+1in C and
C is equivalent to the one-object-one-map category 1 and so not standard; thus Y (s)
is the “undefined” element of C(1, N). A similar argument using the fixed point of
a map swap : 0 —» o deals with the other case. The result now follows from Proposi-

tion 2.2. N



2.4. Recursion theory
We start by considering the following definition which (like that of simple objects
of numerals) deals only with numerals.

DEFINITION 2.13. Suppose C is a category with finite products (for the moment
a terminal object suffices). An object N of C equipped with maps

0 s

N N N

is an iterative object of numerals just when it comes equipped for any object X and
maps a:1-— X, f: X — X with a choice of maps r =it(a, f) : N — X such
that the diagrams

L+ 1 =mn;¢
1 0 N 1 n+ n,eN
a n;r r
X X / X

commute.

In other words an iterative object of numerals is one which enables us to represent
iterations numeralwise. Now a standard argument shows that in a category with
products we can also numeralwise represent recursion: that is, we can give for any
object X and mapsa:1 — X, g: N x X — X a choice of maps r = rec(a, g) :
N — X such that the diagrams

0 1=n;
1 N 1 n + n;s N
a (n,n;7r) r
g
X N x X X

commute.

We remark in passing on the strength of this definition in a cartesian closed cate-

S
gory. Suppose that 1 N N is an iterative object of numerals

in a cartesian closed category C. The closure enables us to parametrize recursive
definitions. So a sequence of primitive recursive definitions based on 0 and s gives
rise to a sequence of maps in C which numeralwise satisfy the corresponding recur-
sion equations. Rather than spell this out in detail we give a formulation as in [49]
where the result is stated for the (stronger) notion of weak natural number object.

0 s
ProposITION 2.3. If1 N N is an iterative object of nu-

merals in a cartesian closed category C then all primitive recursive functions are

numeralwise representable in C. |



Remark.

(i) Lambek and Scott presented the corresponding result for a weak natural num-
ber object in [49]. The approach is essentially to observe that a weak natural number
object is an iterative object of numerals and then to follow the standard approach
outlined above.

(ii) Recall that we did not assume that our numerals n : 1 — N were all
distinct. However, in the context of an iterative object of numerals in a cartesian
closed category C, it is easy to show the following analogue of Remark 2.2(iii): if
n:1-— Nandm:1— N are equal for n # m, then the category C is equivalent
to the one-object-one-map category 1.

Let us return to the observation that in the presence of products, iteration entails
recursion (at the level of numeralwise representation). The standard recursion
equations for predecessor involve no parameters, so predecessor can be represented
numeralwise; also a test for zero can be defined by iteration. Hence we have the
following trivial result.

PROPOSITION 2.4. Suppose that the category C with products is equipped with a
diagram

t
1 B.
f
s
Then an iterative object of numerals 1 N N can be further
equipped to give a simple object of numerals (relative to B). |

Recursion in a c-fix category is provided in a powerful way by fixed points. Hence
it is not surprising that in a model of PCF we have a converse to the above.

s
PROPOSITION 2.5. In a model of PCF the structure 1 N N

is (or can be equipped with the structure of) an iterative object of numerals.

Proof. Givena:1 — X and f: X — X we define r : N — X implicitly by
the informal equation

r(n) = if (n=0)then aelse f(r(p(n))),
using the fixed-point operator and check that it works. H

Remark. It follows that the requirements on a standard model that the values
be distinct is essentially the requirement that there be a non-value.

We have seen that in a model of PCF the notion of a simple object of numerals
provides an algebraic way of describing an iterative object of numerals. So by
Proposition 2.3, it provides numeralwise representations for all primitive recursive



functions. Note that this representation is quite uniform: there is a representation
in T whose interpretation in a model is a representation there. In fact all partial
recursive functions can similarly be represented in a sense which we now make clear.

DEFINITION 2.14. Suppose that C is a category with finite products and that
N is an object of C equipped with maps 0 : 1 — N and s : N — N. Take
numerals n : 1 — N as usual. A map f : N¥ — N in C tracks a partial
numerical function ¢ : N* — N just when for any natural numbers ni,---,ny

with ¢(ny,---,n;) defined, the composite 1 (1) N I, N is equal

d(na, -, my) . e "
———— N; and numeralwise represents ¢ just if, in addition, whenever
(n1,---,ng)

to 1

the composite 1 N* N is a numeral, then ¢(ny,---,ny) is

indeed defined.

Since PCF can be regarded as a programming language its terms should represent
effective functions.

PROPOSITION 2.6. If f : ¥ = 1 is a term of PCF then (the interpretation of) f
numeralwise represents a partial recursive function in the initial model T.

Proof. The relation t |} v is defined inductively and so is semi-recursive. The re-
sult follows as by Corollary 1.1, f(n1,---,nx) = m if and only if f(ni,---,nx) |
m. N

A standard piece of programming gives a partial converse.

PROPOSITION 2.7. For every partial recursive function ¢ : N¥ — N, there is a
term f : 1% = 1 whose interpretation tracks ¢ in the initial model T.

Proof. The argument is standard. The collection of partial functions tracked
in a model is clearly closed under substitution (composition). Hence it suffices (in
view of Kleene’s representation of the partial recursive functions) to show how the
result of applying the least number operator may be tracked. We give the simplest
case. Suppose that h : 1 X ¢ = ¢ tracks (and so numeralwise represents) the total
function H : N x N — N. Define g : 1 X + = ¢ implicitly by the informal equation

g(n,k) = if h(n,k) =0 then k else g(n, k + 1)

using the least fixed-point operator. Then f : + = ¢ defined by f(n) = g(n,0) tracks
the possibly partial function ¢(n) = puk.(H(n,k) =0). ®
COROLLARY 2.2. If C is a model of PCF then for every partial recursive ¢ :

Nt — N there is a term f of PCF whose interpretation in C tracks ¢. |

To get the full converse we need additional arguments. We first note the following
general property of strict models.



PROPOSITION 2.8. Suppose C is a strict model of PC¥. Then for any f : NF —
N in C there is a strict g : N¥ — N which represents the same partial function
(and similarly for arbitrary first order maps).

Proof. Definet: N — N by
t(z) =  cond(zero?z)00.
We see that ¢ is strict and carries all numerals to 0. Now define g by g(z1,---,zx) =

cond(zero?t(x1))(cond(zero?t(x2))(cond - - - (cond(zero?t(xy)) f(x1, -+, xx)Q) - -) - - )
|

COROLLARY 2.3. Suppose that C is a strict model of PCF. Then the collection of
partial functions numeralwise represented in C is closed under substitution (com-
position,).

Proof. The essential point is the following. If fi,---, fi : N' — N numeral-
wise represent ¢y, -, ¢ : N — N and if g : N¥ — N is strict and numeralwise
represents ¢ : N¥ — N, then g(f1, -+, fr) : N\ — N numeralwise represents

(pr,- - 1) N — N ®
The full converse to Proposition 2.6 gives the following characterization.

THEOREM 2.1. The partial functions numeralwise representable in the initial
model T for PCF are exactly the partial recursive functions.

Proof. Tt simply remains to refine the proof of Proposition 2.7. As T is strict,
Corollary 2.3 means that it suffices to show that the least number operator preserves
numeralwise representability. But this is a straightforward consequence of the fact
that Y behaves syntactically like a least fixed-point operator:

if (Yt)(s1,---,s%)vthent"Q(sy,---,s,) § v for some r.

In the notation of Proposition 2.7 we deduce by a straightforward induction that
g(n, k) numeralwise represents the function

Y(n k) = pl(l=k & H(n,)=0),
and so f numeralwise represents ¢ as required. H

Remark.

(i) This result was of course known to Platek [59] and Scott [69]. We sketch it
here to show how the proof appears in our general perspective.

(ii) One can extract further information from the PCF definability of the least
number operator. Suppose we vary PCF by omitting the predecessor but includ-
ing an equality test N x N — B. Then we can define a function numeralwise



representing the predecessor function
p(x) = ifx =0 then 0 else uy.succy = x.

However the predecessor cannot be recovered from (successor and) test for zero
alone.

We note some elementary observations:
LEMMA 2.1.

()If f: (¢, -+ ,1,1) is a term of PCF then in the initial model T (the interpretation
——

k
of) f numeralwise represents a partial recursive function.
(i)If f tracks ¢ in T then f tracks ¢ in any model of PCF. If f numeralwise
represents ¢ in T then f numeralwise represents ¢ in any adequate model of PCF.

Proof. (i) is Obvious in view of the effective nature of the reduction relation |}.

We omit proof of (ii). M

Finally we can say something about the representability of partial recursive func-
tions in adequate models of PCF.

ProPOSITION 2.9. If C is an adequate model of PCF then for every partial recur-
sive function ¢ : N — N there is a term f of PCF (in the sense of Remark 2.3)
whose interpretation in C numeralwise represents ¢.

Proof. If f numeralwise represents ¢ in T then it does so in C as the functor M :
T — C reflects numerals. H

The converse of the preceding Proposition is essentially obvious:

PROPOSITION 2.10. Suppose that C is an adequate model of PCF. Then any term
f ¥ —s L of PCF represents a partial recursive function in C. |



3. OBSERVABLES, ADEQUACY, OBSERVATIONAL AND FULL
ABSTRACTION
3.1. Observables, observational preorder and quotient
We start by considering a notion of observational equivalence in a general categor-
ical setting. Throughout this section we take C to be a symmetric monoidal closed
category, which we think of as some category of types and terms. (We suppress the
structure of associativities and so on.)

DEFINITION 3.1. A notion of observables O on C associates to each object A
of C a set Q4 of subsets of C(I, A) called observables at A, with the property
that if f: A— B in C and S € Op then

S = fa:1—Ala;feS} € Oa.

We say that such an association A — O 4 equips C with observables and that C so
equipped is a category with observables.

ExampPLE 3.1. (i) Suppose that T is a programming language with an opera-
tional semantics as considered at the end of the last section; and suppose that T is
the category of types and (equivalence classes of) terms for a corresponding type
theory. We assume that T is computationally sound and adequate (in the strong
sense) so that convergence to value is preserved and reflected by equalities in the
type theory. Hence we do not bother to distinguish between types and terms in T’
and the objects and maps in T which are their respective denotations. Then we
have relations

e of convergence al} for a : I — P (P a program type)
e of convergence to value a |} v fora: I — P, v: I — P (P a program type
and v the interpretation of a value)

on maps in T. (Of course, a |} v is just a suggestive way of writing “a=v: [ — P
is the interpretation of a value”!)

Take for simplicity a single program type P. (The generalization to more than
one program type is straightforward.) For f : A — P we define an observation

O; = Ha:1— Ala;fl}

and for f: A— P and v : I — P a value we define
Ofv={a:1—Ala;flov}.

Now we give some notions of observables.

(i) Termination. The association A — O4 = {Os| f: A — P} equips T with
observables.

(i) Termination to value. The association A — O4q = {Oy, | f: A — Pv:
I — P a value } equips T with observables.

(iii) Termination to specified value. Choose a value u : P, so that we have a
distinguished map u : I — P in T. The association A — Og = {0, | f: A —
P} equips T with observables.



(ii) More generally suppose given a monoidal closed category C, an object P (a
program type) of C and a collection V of “elements” v : I — P of P (a set of
values). Then for f: A — P we define an observation:

O; = {a:1—Ala;feVy,

and for f: A — P and v:I — P €V we define an observation
Ope = H{a:T—Alasf=v}.

We generalise the notion of observables above.

i) Termination. The association A — O4 = { O | f: A — P} equips C with
f
observables.

(ii) Termination to value. The association A — Oq = {Oy, | f: A — Pv:
I — P €V} equips C with observables.

(iii) Termination to specified value. Choose a distinguished map u : I — P € V.
The association A — O4g ={ Oy, | f: A — P} equips C with observables.

(iii) Suppose O equips D with observables and F : C — D is a functor. Then it
is easy to see that the association

A o (F'O)4 = {F'uw|ueO4}

equips C with observables.

Remark.

(i) The reader may like to consider how very different are the notions of observ-
ables termination, termination to value and termination to specified value in the
case of (models of) lazy languages where abstractions are values: only termination
seems to correspond to a clear computational intuition in this case. However for
PCF as we shall shortly see the notions will coincide in reasonable circumstances.

(ii) The construction in (iii) is particularly revealing in the case of a model
M : T — C of a programming language where C is equipped with a notion O of
observables as in (ii). (We naturally assume that the interpretation of values in T
is identical with those maps in T which become values in C.) In this case M0
is a notion of observables in T which generally will not coincide with any notion

defined as in (i). The structure in C allows us to make additional observations in
T.

It seems just worth introducing some suggestive terminology to describe special
properties of notions of observables O.

DEFINITION 3.2. Suppose that C is a (symmetric monoidal closed) category with
observables O.



(i) We say that U € O¢ is a universal observation just when
Ox = {fU|f:A— G}

for all A.

(ii) We say that a set G of observations is a generating set of observations
for O just when

Ox = {f'R|f:A—C, ReOcisinG}

for all A.

(iii) We say that an “element” d: I — D is a detector for observations just
when {d} € Op is a universal observation. (We also say d can be used to detect
observation.)

Consider the examples in (i) and (ii) above. In the case of termination there is
a universal observation. In the case of termination to specified value, the value can
be used to detect observations. In the case of termination to value the collection
{Oigy|v: I — P} is a generating set of observations where id : P — P is the
identity.

Observational preorder. Suppose that C is a (symmetric monoidal closed) cat-
egory with observables A — O 4. Then there is a natural notion of observational
preorder between maps from the same hom-set. For f,g: A — B in C we define

def

f<g T f€ER = g€eR foral R€ O4s_.p

where f,g: I — (A — B) are obtained from f, g respectively by transposing.
We write the associated equivalence as ~. (The reader will see that at last the
symmetric monoidal closed assumption is beginning to be used.)

Composition on either side preserves this preorder. Note that maps h : B — C
and k : D — A give rise to obvious map (A — h) : (A — B) — (A — C)
and (k — B) : (A — B) — (D — B). Suppose that f < g: A — B. Take
R € Osc;

fiheR <<= fe(A—h)R = gGe(A—h)*R <<= g¢gheR.

Thus f;h < g;h: A — C. Similarly take S € Op_op; suppose that f <g: A —
B. Take R € O4_oc;

kfeS <« fe(k—oB)'S = Gec(k—oB)*'S <<= kges.

Thus k; f Sk;g: D — A.

def

DEFINITION 3.3. If we let C(A, B) & C(A,B)/< be the poset induced by the
preorder < on C(A, B), we get a new order-enriched category @, which we refer
to as the observational quotient of C. (Of course C depends on the choice of
observables O.)



The category C inherits a symmetric monoidal closed structure (now as an order-
enriched category) from C. Note that a map g : C — D induces an obvious map

A
(A—-B) —+ (A®C - B®D),

the transpose of

A-Boioc X2 Bep

Suppose that f < f': A — B. Take R € Oagc—oBgD-

fRgeER <= feEXNR = feXNR <<= f'®g€R.

Thus fRgS f'Rg: A®C — B® D. Tt follows at once that f < f': A — B
and g < g :C— Dentall fRg<S f'®g :A®C — B® D. Thus ® becomes
an order-enriched functor on C and the symmetric monoidal structure carries over.
The closed structure does likewise as C(A® B, C) and C(A4, B — C) are isomorphic
posets trivially by the definition.

Now suppose that C is a cartesian closed category so that we are dealing with a
categorical product x and corresponding function space =. Then C is also cartesian
closed. It is enough to show that x is a categorical product in C. Note that a map
g : C — B gives rise to a map

1
v (A== A)x1 =4 (= A)x(C=B)=( = AxB).
Suppose that f < f': C — A. Take R € Oc= axB;

(f,g) eR <= fey"R = fe€y'R <<= (f',9) €R.

Thus (f,9) < (f',g9) : C — A x B. It follows at once that f < f': C — A and
9<¢g :C — Bentail (f,g) <(f',9') : C — A x B. The converse implication is
easy and so x is a product in C in the order-enriched sense.

To summarise the discussion so far, we have shown:

PROPOSITION 3.1. For any symmetric monoidal closed category C with obseruv-
ables, the observational quotient C is an order-enriched category which inherits the
symmetric monoidal closed structure from C. (That is, the quotient functor pre-
serves the structure.) If C is in fact cartesian closed, then the same structure is
likewise inherited by C. |

Remark.

(i) Naturally different notions of observables may give rise to the same notion of
observational quotient. Indeed suppose @ and O’ are two notions of observables on
the same (symmetric monoidal closed) category C, giving rise to preorders <; and
<2 respectively. Then one easily sees that

g = Xy



holds generally just when for every f,
(J{ReO:|feR} C (J{{ReO:|feR}.

(ii) Generally suppose C is a cartesian closed category enriched over cPOs, and
that it is equipped with a notion of observables. (For example the category CA of
computational arenas and innocent strategies which is the subject matter of Part
IT1.) We call the enriching partial order the given ordering of C. It is easy to see
that if for each A, every observable R € O4 is upper-closed with respect to the
given ordering of C(1, A), then the given ordering is contained in the associated
observational preorder. (This is the case for CA.)

3.2. Observables: the case of pcr

Recall from §2.4 that we regard PCF as having two program types o,¢. The values
of type o are the booleans and those of type ¢ are the numerals. Thus in T we have
values t,f : 1 — o and n : 1 — ¢ for each natural number n. In a model C of
PCF it remains natural to take the booleans and numerals in C as values. (They
are just the images of values in T.) Thus in any model C of PCF we have notions of
observables along the lines of Example 3.1(ii). In principle we can distinguish nine
separate notions. We have

e termination
e termination to value
e termination to specified value

and we may take these as

e at N only
e at B only
e at both V and B.

We now show that in good circumstances these distinct notions coincide.
We start by considering the general situation. Recall from Example 3.1(ii) that
our different notions of observables are defined in terms of observations:

Oy = {a:T— Ala;feVp}
Oy E {a:T— Ala;f=v}

for f : I — P where P is a program type and v € Vp a value. Now suppose P and
() are program types. If v € Vg we write k, : P — @ for a strict map carrying
all values to the constant value v. if u € Vp and v € Vg we write [, , for a strict
map which carries just the value u to a value, that value being v. When such maps
exist we get connexions between observations:

u = O(f;l,,,u)/l]
Ofu = Ofy

u,u

Or = Otikn) 0



In other words the different kinds of observations are interchangeable.
By Proposition 2.8 we are in this good position in strict models of PCF.

ProposITION 3.2. If C is a strict model for PCF then the nine separate notions
of observables (introduced at the start of the subsection) coincide. |

In the non-strict situation it seems best to make a choice. We shall take as the
standard notion of observables for PCF that of termination at both ground types. In
general unless we say otherwise this is the one we shall mean; and for an arbitrary
model C of PCF we shall write C for the quotient category with respect to this
notion. But in case C is strict all reasonable choices give the same result.

We note in passing the following simple fact about the observational quotient of
models of PCF.

PROPOSITION 3.3. Suppose that C is a model of PCF; then n < s in C entails
n =s in C. In particular

(i) C adequate < C adequate
(ii) C standard =  C standard
(iii) C strict <~ C strict. [ |

(Of course the second implication is not reversible; T is not standard but T is.)
A consequence is the following simple property of the observational preorder.

COROLLARY 3.1. Suppose that in a model of PCF the maps f,g : N¥ — N

numeralwise represent the partial functions ¢,v : N¥* — N respectively. Then
f < g entails ¢ Cp (ie. ¢ extends ).

Proof. Suppose ¢(ny,---,n;) = m. Then in C we have
m/:(nh“':nk);f S (nh'":nk);g'

We deduce m = (nq1,--+,ng);g in C and so ¢)(nq1,---,ng) =m. N

3.3. Behavioural preorders, order-extensionality and context lemma

We now turn to the standard notion(s) of observational preorders defined con-
cretely over terms of a programming language. We restrict attention to PCF though
much of the discussion has wider application. Let s and ¢ be closed terms of type
A. Recall that s is said to approximate ¢ observationally if C[s]{} implies C[t]{} for
every type-compatible context C[X] such that C[s] and C[t] are programs. Suppose
212 Ay, e, s Ap b os,t B, and let 8 range over closing substitutions i.e. type-
preserving functions from variables to closed PCF-terms. There are several ways by
which the notion of behavioural preorder may be extended to a preorder on open
terms.

def

e closure by context: s £ ¢ = if C[s]{} then C[t]{} for all type-compatible contexts
C[X] such that both C[s] and C]t] are programs



e closure by abstraction: s 5% t = if C[AZ : A.s]{ then C[AZ : A.t]{ for all
contexts

X:A = = A,=>BFC[X]

of program type

def

= if C[sg]{ then Cltg]{ for all closing substitu-
tions # and contexts X : B + C[X] of program type.

. . s
e closure by substitution: s &~ ¢

Remark. FEach of the preorders may be regarded as an appropriate definition
(for different reasons).

(i) The first preorder £ is the observational preorder with respect to which in-
equationally full abstraction is standardly defined. Note that free variables in s
(and similarly ) are bound as a result of the context substitution C[s].

(ii) The second preorder &7 (the superscript “o” is for closure) corresponds pre-
cisely to the observational preorder of the PCF type theory T with respect to the
notion of observables as defined in Example 3.1.

(iii) The third preorder £° (the superscript “s” is for substitution) was studied
in [4] in the context of the lazy A-calculus.

We could have defined S (and similarly for the other two preorders) as:
Cls]yv = Cft] Y v, for all values v;

but this is equivalent to the simpler formulation given earlier. For if for some
C[X], we have C[s] | v and C[t] | »' where v and ©' are distinct values, take
D[X] to be cond(eqC[X]v)0Q2. Then D[s]{ and D[t]ft. (This is a concrete proof of
Proposition 3.2 for the strict initial model T of PCF.)

What is the relationship between the three preorders? Restricted to closed terms,
it is clear that they are equivalent. For open terms, it is easy to see that & implies
C? and £’ since the effects of closure and closing substitution respectively can be
simulated (by an appeal to Proposition 1.1) by appropriate contexts. But in fact
the three preorders coincide even for open terms.

LEMMA 3.1. The preorder S° is contained in the preorder .

Proof. Consider PCF-terms yq : By, ,Ym : By F s,t: A. Take a context X :
A C[X] such that C[s] and CJt] are both programs. For any fresh variable z : E
where Eis By = --- = By, = A, (A\z : E.C[z§]])(A\7 : B.s) = C[s] is an equation in
the type theory T. Therefore, by Proposition 1.1, if C[s]{} then (Az : E.C[zg])(\J :
B.s)Il. Suppose s £ t; take D[X] = (Az : E.C[z§])(A] : B.X), then (\z :
E.Clz§))(\j : B.t)l}, and so, C[t]{} by Proposition 1.1. m

Remark. The above simple syntactic argument is really quite general.



LEMMA 3.2. The preorder 5° is contained in the preorder T°.

Proof. This is a simple application of Milner’s context lemma. Suppose s &° t.
Then for all closing substitutions § we have sy & ¢4, and hence for all closed terms
a of types A we have

But now by the context lemma it follows that AZ.s © A\Z.t, and so, s 5’ ¢t. W

Hence we can conclude:

(e} S .
PROPOSITION 3.4. As preorders over open terms, &, 5 and &~ are equivalent.

Context lemma and order-extensionality. To our knowledge, the first context
lemma (or Operational Extensionality Theorem as Meyer calls it in [50]) was proved
by Milner in [52]. Since then, several results of a similar kind but for different
languages have been proved; see e.g. the work of Berry [9], Curien [24], Stoughton
[72], Howe [36] and Abramsky and Ong [4] etc.

Adapting Meyer’s terminology, it seems reasonable to say that in a (symmetric
monoidal closed) category C equipped with a notion of observables, the observa-
tional extensionality theorem is valid just in case the induced observational
preorder < satisfies the following:

fS9g:A—B << Va:1—Aaf<ag:1— B.

This is equivalent to the condition that the global sections functor from C to the
enriching category of posets is faithful, that is, to the condition that the order-
enriched category is order-extensional.

Suppose now that the notion of observables O on C is that based on termination
at program type. Then the observational preorder < is just the (analogue of the)
preorder £7 described above for the case of PCF. But quite generally T° coincides
with the contextual preorder £. Hence in these circumstances we refer to the
observational extensionality theorem as the context lemma. This is consistent with
the usual definitions. Curien in [24, p. 324] defines the context lemma (in the case

of pCF) as the following property: for any closed terms s and ¢ of the same type
A= (Ala'“7An7[‘) say,

sEt << sui-—updv = tur---u, v forany value v and any u; : A;.
By an easy inductive argument, the context lemma is equivalent to:
sT8t = Sty ct tuy for any wuq : Aq,

where £¢ may be any of the three behavioural preorders we have just considered.

If the context lemma (or observational extensionality theorem) is valid in a model
of PCF, we can exploit it to good effect. As a simple example we give a converse to
Corollary 3.1.



PROPOSITION 3.5. Suppose that the context lemma is valid in a model C for PCF
and that the observational quotient C is standard. Take f.g : N¥ — N in C
numeralwise representing the partial functions ¢, : N — N respectively, and
suppose that f is strict. Then we have

Proof. By Corollary 3.1 we only need the converse implication, so we assume
¢ C 1. By the context lemma, it suffices to show

f(a1="'=ak) 5 g(a1="':ak)

(alz"'7ak);f 5 (a17"'7ak);g
forall a: 1 -— N* in C. As C is standard it suffices to show that (ay,-- k) fa
numeral implies (a1, - - -, ax); g anumeral. As f is strict we know that (al, ar); f
a numeral, b say, implies ay, - - -, a; are numerals. We deduce that ¢(ay, - - ) =b

and so as ¢ C ¢, (a1, --,ag) = b. But then (a1, ---,ag); g = b as required. [ |

3.4. Adequacy, observational and full abstraction
We give an account of the notions of adequacy and full abstraction in the general
framework we have introduced.

DEFINITION 3.4. Suppose that M : T — C is a model of the type theory T and
that T is equipped with a notion of observables O.

(i) Cis adequate just when for any R € O we have

(t) s € R and M(s) = M(t) implies ¢t € R.

(ii) Suppose further C is order-enriched. C is order-adequate just when for any
R € O4 we have

() s € R and M(s) < M(t) implies ¢t € R.

The connexions with standard notions of adequacy is quite straightforward.
Note that condition () for a generating set of observations is sufficient to ensure
adequacy. Consider the three notions of observables discussed in Example 3.1.

We assume that values in C are such that « is a value in T if and only if M (u)
is a value in C.

e In case O is termination, C is adequate if and only if M(s) a value in C implies
s a value in T.

e In case O is termination to value, C is adequate if and only if M(s) = M(u)
a value in C implies s = u in T.

The first of these is the notion generally taken as standard notion of adequacy.
Note that the idea of order-adequacy is neglected for the good reason that one



never seems to consider a model C where M(s) is greater than but not equal to a
value.

We can give an easy alternative characterization of our notion of adequacy which
is familiar in the case of the usual notion.

PROPOSITION 3.6. Suppose that M : T — C and that O is a notion of obseruv-
ables on T.

(i)C is adequate if and only if for all s,t : A — B
M) =M@E) = s>t
(ii)Suppose that C is order-enriched. C is order-adequate if and only if for all
s,t:A— B
M(s) < M(t) = s<it.

The notion of full abstraction also makes sense at this level of generality.

DEFINITION 3.5. Suppose that M : T — C is a model of the type theory T
and that T is equipped with a notion of observables O.

(i) Cis equationally fully abstract just when for all s,t: A — B
M(s) = M(t) <= s~t.
(ii) Suppose further that C is order-enriched. C is (order) fully abstract just
when
M(s) < M(t) <= s<t
for all s,t: A — B. This notion is often called inequational full abstraction.
It is clear that this is a simple generalization of the standard notion.
Finally we introduce the notion which is fundamental to our treatment of PCF.

DEFINITION 3.6. Suppose that M : T — C is a model of a type theory T. Then
C is observationally abstract just when for all s,¢: A — B

M(s) SM@t) = s<t

Thus in the given circumstances C is observationally abstract just when the
composite

~

T > C > C

is fully abstract.

One way to think of observational abstraction is as follows. If C is observationally
abstract, then the contexts in C allow us to make no more distinctions between PCF-
definable maps than do the contextsin T. So T — C induces (an order-embedding)
T — C.



Part II. Dialogue games and innocent strategies



4. DIALOGUE GAMES OVER COMPUTATIONAL ARENAS

Dialogue games are played by two players in a prescribed setting or environment
called a computational arena. The dialogue game playable in a given computational
arena is completely determined by the associated game tree. We specify a game
tree in two stages:

e First the computational arena spells out the moves (which are questions and
answers) of the game and the justification ordering between question-moves.

e The game tree is then systematically generated from the set of moves subject
to a number of ground rules. Formally the game tree is represented as the collection
of all paths in the tree. Such paths are called legal positions.

4.1. An approach based on dialogue games
Dialogue games are two-person games. The two players are called Player (or
P) and Opponent (or O). In diagrams we represent Player’s move as the hollow
circle “o”, and Opponent’s move as the filled circle “o”. A dialogue game is played
in a computational arena which sets out the moves of the game. There are four
kinds of moves: Player’s question which we represent, generically as “(”, Opponent’s

”

answer “)”, Opponent’s question“[” and Player’s answer “|”. The representation of
questions and answers as left and right matching parentheses respectively reflects
the following convention: Player’s question can only be answered by Opponent, and
vice versa. In addition every answer is associated with a unique question.

Not all question-moves are necessarily available at the start of the game. Some
of them may become available or enabled as the play progresses. Except for the
initial questions (which do not need any justification), a question-move can only
be made provided its unique justifying (or enabling) move has been made. This
notion of justification is formulated as a partial ordering between questions so that

the resultant partially ordered set is an upside-down forest.
DEFINITION 4.1. A computational arena A consists of the following data:

e A partially ordered set of questions (Qn(A), <a) such that the upper set of
each question is a finite linear order. So the questions form an upside down forest
(of trees), the root of each tree being a maximal element in the ordering.

e An association to each question of a set of possible answers. This is represented
as a map qn, : Ans(A) — Qn(A) where Ans(A) is the set of all answers of the
arena A. An answer a is said to be an appropriate answer of the question qn 4 (a).

Questions of depth 0, 2, 4, etc. are associated with Opponent (O). We refer
to these questions as O-questions. Questions of depth 1, 3, 5, etc. are associ-
ated with Player (P), and we call them P-questions. Answers appropriate to an
O-question are associated with Player, and they are called P-answers. Similarly
answers appropriate to a P-question are associated with Opponent, and they are
called O-answers. Questions of depth 0 (corresponding to the roots of trees) are
called initial or opening questions, and they have a special status.

Let ¢ and ¢' range over questions. We say that ¢’ justifies g if ¢’ is the unique
question immediately above ¢ in the ordering; that is to say, ¢' is the least question
in Qn(A) such that ¢ <4 ¢’ and ¢ # ¢'. For the sake of uniformity, we shall also
refer to the question gn4(a) as the (unique) justifying question of the answer a.



Ground rules. Given a computational arena, a play involving Player and Op-
ponent observes the following rules:

e A play of a dialogue game always starts by Opponent asking an initial question.
e Thereafter the play alternates strictly between Player and Opponent. A play
ends as soon as the initial question is answered.

Principles of Civil Conversation. Each play traces out a dialogue of questions and
answers which obeys the following principles:

1. Justification. A question is asked only if the dialogue at that point “warrants”
it in the sense that (an instance of) the unique justifying question is pending i.e. al-
ready asked but not yet answered. Likewise, an answer is proffered only if (an
instance of) the unique question with which it is associated is pending.

2. Priority. Questions pending in a dialogue are answered on a “last-asked-first-
answered” basis: the question which is last asked must be answered first. This is
equivalent to Gandy’s “no-dangling-question-mark condition”.

DEFINITION 4.2, Formally a well-formed sequence s of a computational arena
A is a sequence of moves m; - my---m, such that each move m; is associated
with a natural number y; called the justification index of m; satisfying p; < i and
conditions (w1) to (w4) in the following. By convention ; is 0. The indices are best
thought of as a way of representing justification pointers. Note that the preceding
requirement p; < ¢ means that the justification pointers always point backwards
from m; to m,,. So a well-formed sequence s is by definition equipped with an
auxiliary sequence of justification indices; both sequences are of the same length.

We say that a move m; (which may be a question or an answer) is ezplicitly
justified by the question m; if m; justifies m;, and that the justification pointer at
m; points to m;. We say that m; is an explicit answer of the question m; if m; is
an appropriate answer of m; and that p; =i.

(w1) Initial question to start. The first move my in s is an initial question of
A and there can be no occurrence of any initial question of A in the rest of s. By
convention g is 0: an initial move is not justified by any move.

(w2) Alternating play. The sequence alternates between Player’s move and Op-
ponent’s move.

(w3) Euxplicit justification. There are two cases:

— Any non-initial question may be asked if an instance of its unique justifying
question has already been asked and has not been answered so far. More precisely
for any non-initial question mj; in s, the move indexed by p; (which is m,,; ) explicitly
justifies mj, and the segment m,; -m,; 41 ---m; of s does not contain any explicit
answer of m, . Note that this means that for p; < k < j, if my, is an appropriate
answer of the question m,,; then up # pj; in fact it is a consequence of condition
(w4) that pg > ;.

— Any answer a may be offered if an instance of its unique justifying question
gn 4(a) has already been asked and has not been answered so far. More precisely
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FIG. 1. An example.

any answer m; in s explicitly answers the question m,;, and that the segment
My, My, 41---m;_1 of s does not contain any explicit answer of m,;.

(w4) “Last asked first answered” (or “no dangling question mark”). Any se-
quence s = my -ms - - - My, satisfying the preceding three conditions is said to satisfy
the “last asked first answered” condition if for any answer move m; in s, the move
m,,, which explicitly justifies m; is the last unanswered question in my ---- - mi_q.

This condition is equivalent to Gandy’s no-dangling-question-mark condition. We
first introduce a definition. A question m occurring in a sequence t of moves
equipped with an auxiliary sequence of justification indices is said to be dangling
in the sequence t if ¢ does not contain any explicit answer of m. Using the same
notations as before, any sequence s = my - mo - m, is said to satisfy the no-
dangling-question-mark condition if for every answer m; occurring in the sequence
s, the segment m,; -m,, 41 - - - m; contains no dangling question in itself. Note that
by condition (w3) the question m,,, is explicitly answered by m;

The principle of priority is a version of the so called well-bracketing condition
in formal language theory. There is a tradition in game semantics of intuitionistic
logic which uses essentially the same condition, see e.g. Felscher’s survey paper [28].

For example, as shown in Figure 1, the sequence my - my - - - mg of shape [-(-[-])‘]
with the corresponding sequence of justification indices 0-1-2-1-2- 3 violates
the no dangling question mark condition (since (say) the segment ms - - -mj; has a
dangling question mg3). It is easy to see that every initial subsequence of a well-
formed sequence is well-formed.

Remark.

(i) For any well-formed sequence s = my - mg - - - m,, for each i, the justifica-
tion index p; of m; is a pointer from m; to the move m,, which explicitly justifies
m;, regardless of whether m; is a question or an answer. The indices are a rep-
resentation of pointers in terms of relative positions in the well-formed sequence
s. Therefore whenever the well-formed sequence is altered or transformed in any
way (say by removing some element), the auxiliary sequence of justification indices
has to be systematically recalculated in order to preserve the original justification
relationship. In the following we shall only be concerned with a particular kind of
transformation of well-formed sequences called projection. We say that a sequence



$ =y - my---m, projects to s' (or s' is a projection of s) if s’ is obtained from s
by deleting some elements from s; equivalently s’ is a subsequence of s.

(ii) A projection of a well-formed sequence s to a subsequence s' respects justifi-
cation if whenever a move m in s occurs in the subsequence s’, so does the question
explicitly justifying m. If this condition is satisfied, we can be sure that the im-
age s' of the projection (after the indices have been systematically reset) satisfies
condition (w3) of explicit justification.

(iii) Note that so long as m,; is a non-initial question of a well-formed sequence,
my,; is in turn justified by the move m,, where « is the justification index p,,; of ;.
We can iterate this process thereby tracing out the history of explicitly justifying
questions or simply the history of justification of m; which must end with the only
unjustified question of the well-formed sequence  the initial question m;. Clearly
for any non-initial move m;, its history of justification is a unique subsequence of
s. For any move m occurring in the history of justification of m/, we say that m’
is hereditarily justified by m. We state two elementary properties of well-formed
sequences. The proof is straightforward and we omit it.

LEMMA 4.1.

(i)In any initial subsequence of a well-formed sequence, the number of answers
occurring in it is less than or equal to the number of questions.

(i) Any well-formed sequence whose last element is an explicit answer to the
initial O-question is mazimal. |

4.2. Views and legal positions

DEFINITION 4.3. Player’s view, or P-view, "p" of a well-formed sequence p of
moves is defined recursively. Let g range over well-formed sequences of moves, and
r over segments of well-formed sequences.

0 = if “[” is initial,

Tq-(r- [ g, ([ if “(” explicitly justifies “[7,
"q)” = ")

rg-[r]7 X g if “]” explicitly answers “[”,
rg- (7 def T (

Note that this definition is by recursion over the initial subsequences of a well-
formed sequence. There is no ambiguity in the second clause: given an O-question
“[” at the end of the sequence, there may well be several occurrences of the unique
justifying question “(” of “[” in the sequence to the left of “[’; but by condition
(w3) there is a pointer emanating from “[” indicating a specific instance of “(”



which justifies it explicitly. For example the P-view of a well-formed sequence of
moves may have the shape

By construction whenever there is a pattern “(:[” in a P-view, the O-question “[”
is explicitly justified by the P-question “(”. Also there can be no segments of the
form “[---]” in a P-view. This may be read as the following: Player ignores answers
to questions posed by Opponent.

There is a dual definition of Opponent’s view, or O-view, Lpa of a well-formed
sequence p of moves:

v - [ (o g [-( if “[” explicitly justifies “(”,
def

LQ']J = LQJ']

Lg-(r)s = Lgu if “)” explicitly answers “(”,
def

Lg - [- = Lga-[.

The O-view of an empty sequence is the empty sequence. Since a well-formed
sequence never begins with a P-question, we omit the case of L(1. An O-view can
never have a segment of the form (---): Opponent ignores answers to questions
posed by Player. An O-view may, for example, have the shape

The following properties of P-view and O-view are easy to verify:

e By repeated application of condition (w3), if ¢ - (-r-) is a well-formed sequence
and if “(” explicitly justifies “)”, then

Dually if g - [-r] is a well-formed sequence and if “[” explicitly justifies “]”, then
Lq - ['T']J = Lg4- []

e If p is a well-formed sequence ending with an O-move (respectively P-move),
then the last move of p is preserved by P-view (respectively O-view); that is to say,
the last move of "p™ (respectively Lp.) comes from the same last move of p.

What kind of a sequence is the P-view (or O-view) of a well-formed sequence?
Is it necessarily a well-formed sequence? For s ranging over well-formed sequences,
the operation of P-view s — "s7 is a projection. So "s™ inherits the justification
pointers from s in the natural way mentioned in the Remark . Unfortunately the
projection does not always respect justification. For example the following well-
formed sequence with its auxiliary sequence of justification indices

[-(o-[s- (4[5 (6°)7 0-1-2-3-2-3-6



has P-view [1-(2:[5-(6-)7. With respect to the inherited justification pointers, this se-
quence does not satisfy condition (w3) of well-formed sequence: the last P-question
“(g” inherits a justification pointer to “[3
it stands, as unary operations over well-formed sequences, P-view and O-view are

b))

which does not appear in the P-view. As

only properly defined on certain well-formed sequences. What additional condition
characterizes these well-formed sequences? This motivates the visibility condition.

Visibility condition. Recall that we choose to specify the game tree of a dialogue
game in terms of the collection of all paths in the tree. Such paths are called legal
positions which we define as follows.

DEFINITION 4.4. A legal position of a computational arena A is a well-formed
sequence t which satisfies the following wisibility condition:

For any initial subsequence s - ( of the sequence ¢, the O-question “[” explicitly
justifying the P-question “(” occurs in the P-view of s. Similarly for any initial
subsequence s - [ of the sequence ¢, the P-question explicitly justifying “[” occurs in
the O-view of s.

It is easy to see that every initial subsequence of a legal position of an arena is a
legal position. It is also easy to check that as projections acting on legal positions,
both the operations of P-view and O-view respect justification. In performing the
operation "—7 (respectively L— ), we implicitly assume that the justification indices
are systematically reset in "s7 (respectively Ls.) in the appropriate way.

The above visibility condition applies only to questions of a legal position. How-
ever this condition is strong enough to ensure that a corresponding visibility condi-
tion automatically holds for answers. This is made precise in the following lemma,
whose essentially straightforward proof is omitted.

LEMMA 4.2, The explicitly justifying question of every P-answer (respectively O-
answer) in a legal position appears in the P-view (respectively O-view) of the legal
position up to that point. More precisely,

(i)for every initial subsequence s-) of a legal position t, the P-question which “)”
explicitly answers occurs in Lsi;

(ii)for every initial subsequence s-| of a legal position t, the O-question which “”
explicitly answers occurs in "s™. |

A sequence of moves of a computational arena A, equipped with an auxiliary
sequence of justification pointers, is said to be a P-view (respectively O-view) if it
is the P-view (respectively O-view) of some legal position of A. The operations of
P-view and O-view are well-defined on legal positions: they map legal positions to
legal positions.

Notation. Given a sequence s = my - My - - My, We write s¢,,, for the initial
subsequence of s up to and including m;, that is to say, my - mo - --m;. We write
S<m; for my -ma -+ -my;_q.



PROPOSITION 4.1. Let s be a legal position of a computational arena. Both the
O-view and the P-view of s are legal positions.

Proof. We will just consider the case of the P-view "s7 of a legal position s
for illustration. By the recursive definition of "—7, it is clear that conditions (w1)
and (w2) are satisfied by "s7. For (w3), there are four cases to consider. First P-
question. Consider an initial subsequence p - ( of "s™. By construction we see that
p is just Tso (.
by some O-question which occurs in p. Secondly O-question. Consider an initial

Since s satisfies the visibility condition, “(” is explicitly justified

subsequence of the shape p-[ of "s™. By definition, either p is the empty sequence,
in which case, “[” is an initial question; or p ends with an P-question “(” which
explicitly justifies “[”. Thirdly, P-answer: but by construction, a P-view does not
contain any P-answer. Fourthly, O-answer. For any initial subsequence p-) of "s7,
suppose, for a contradiction, the explicitly justifying question “(” of “)” does not
occur in p. Note that p is "s'™ such that s'-) is an initial subsequence of s. There
are two possibilities:

e “(” occurs in a segment (- - - [» of s where “(;” explicitly justifies “[»”, and that
p contains the segment (;-[>. In this case, s contains the segment (;---(---[2---).

7

By the no dangling question condition, an appropriate answer of “[»”, say “]3”,
occurs before “)”. That is to say, s contains the segment (y---(---[2---]3---). A
P-view does not contain any P-answer: we consider each of the three cases ex-

”

plaining the disappearance of “]3” in "s'7 in turn. Case 1: s contains the segment

5

[2--(4---]3 - [5 with “(4” explicitly justifying “[5”.
condition,

By the no dangling question
(47 explicitly justifies an appropriate answer which occurs before “|3”.

But this contradicts our assumption that “(4” remains explicitly unanswered up to
“[57. Case 2: s contains the segment [2---[4--]3--]5 with “[4” explicitly justifying

“l5” such that “[4” and “[5” vanish in "s'" according to the fourth clause of the

»

definition of "—". But this violates the no dangling question condition. Case 3: the
segment [5---]3 vanishes under the P-view operation by virtue of the fourth clause
of the recursive definition. But this contradicts our assumption that the segment
(1-[2 appears in p.

e “(” occurs in a segment [1---]2 of s where “[;” explicitly justifies “]2”. So s
contains the segment [1---(---]2 - --): note that ) has to occur to the right of ],, for
otherwise it would not occur in the P-view "s™. But this violates the no dangling
question condition.

Condition (w4) is vacuously satisfied since it is easy to see that whenever an
answer and its explicitly justified question occur in a P-view, they are neces-
sarily P-question and O-answer and adjacent to each other. Finally, the visi-
bility condition. For any initial subsequence p - [ of a P-view, by construction,
the last move “(” of p explicitly justifies “[”. Since any initial subsequence of
a P-view is a P-view, and so, is P-view invariant, “(” occurs in "p”. For any
initial subsequence p - ( of a P-view "s7, note that by construction, p is Ts'7,
for some initial subsequence s’ of s such that s’ - ( is in turn a subsequence of
s. Since s satisfies the visibility condition, the explicitly justifying question of

’ ars in s’ = p. It then remains t serve that p is P-view invariant.
“(” appears in s’ It then remains to observe that p is P-view invariant. W



LeEMMA 4.3. The operations of P-view and O-view are idempotent i.e. ""p ' =
3

p,

-

and LLpia = Lpa for any legal position p. |

The proof is straightforward and is left to the reader. We note that since an
initial subsequence of a P-view (respectively O-view) is a P-view (respectively O-
view), it is therefore invariant under the P-view (respectively O-view) operation.

Recall that the history of justification of a move m in a well-formed sequence s is
a well-defined subsequence of s which may be traced out by successively “chasing”
the justification pointers starting from m until the initial question is reached. Our
next result shows that the history of justification of a move in a legal position may
be defined completely in terms of P-view and O-view.

LEMMA 4.4. Let t be a legal position of a computational arena.

(i)If t ends with a question m then the history of justification of m (as a subse-
quence of t) is TLta = LTt 7, and is therefore a legal position.

(ii)If t ends with an answer m which is explicitly justified by (say) the question
m' in t, then the history of justification of m is "Ltgm 27 -m = L "ty "a-m, where
t<m 1S the initial subsequence of t up to and including m'.

Proof. (i) We shall just consider the case of m being a P-question; the argument
for the case of m being an O-question is similar. We prove by induction on the
length of such sequences. The base case of length 2 is immediate. For the inductive
case consider the following analysis of ¢ where we use “(” to represent m, and that

5

“(" and “|” are specific instances of moves in ¢ such that “[” explicitly justifies “(”

and that “("” explicitly justifies “[”:

t
- r ~
——
S”
N T; -
M

As shown in the above diagram, we write s = s'-[ and ¢t = ' - (. Now, we have
tta = s’ s [-(. Hence, we have

Tt o= Tusa [0 = T (= Tusa (.

Hence, by the induction hypothesis, we have

Tt o= T (. (1)

”

We can already conclude that the history of justification of “(” is "L¢4” since, by
the induction hypothesis, the history of justification of “[” is L"s7.. However we
still need to show that ".t.7 = L"¢74. Observe that "s7="s"7. ("-[, hence we get
from (1),

a7 = (= (e [ (2)



Now we have
LTt = LT (_I = I_I—tl—|<[J . [( (3)

Recall that p.,, denotes the initial subsequence of p up to but not including m.
The last equation is justified since the O-question “[” which explicitly justifies “(”
occurs in "#'7: this is the visibility condition. For the same reason, and because
“(" explicitly justifies “[”, we infer that

g = s (4)

Combining equations (3) and (4), we get L¢3 = c"s"7- ("4-[-(. Hence from (2), we

have L™ty = "t47. The proof of (ii) follows immediately. ®

4.3. Constructions of computational arenas
We could already have defined the product A x B and function space A =
B of computational arenas A and B. These will turn out to be actual product
and function space of a cartesian closed category of computational arenas. The
verification of the respective universal properties will have to wait until the category
is introduced in the next section.

Product. For product we simply take the obvious “disjoint sum” of the arenas
A and B as directed graphs. More precisely

Qn(A x B) = Qn(A) + Qn(B),
Ans(A x B) = Ans(A) + Ans(B),
an(4 x B) 2 an(4) +an(B) (= [an(A);sin;, an(B);in])

where in; is the canonical injection map and [f, g] the so-called source tupling.

Function space. For A = B it is simplest to draw a picture as in Figure 2. (In
the picture there is only one initial move in B.) The initial moves of A = B are
those of B; and to the tree “below” each such initial move, we graft onto it a copy
of the forest of questions of A. More formally we define

Qn(A = B) = (Qn(A4) x Mg) + Qn(B),
Ans(A = B) = (Ans(A) x Mg) + Ans(B)

qn(A = B) = (qn(A) x Idum,) + qn(B),

where Mg is the set of initial (equivalently maximal) questions of B. The justifi-
cation ordering < 4—p is defined to be the least partial order which includes the
partial order associated with Qn(A) x Mg + Qn(B) viewed as a construction of
posets (Mg being a discrete poset), and satisfies the additional condition:

(g,;m) <ampm for any m € Mg and g € Qn(A).



Forest of A

FIG. 2. The forest of questions of A = B.

The net effect of the construction is that moves of the new computational arena
A = B are defined in terms of those of A and B in a way similar to the game
semantics of the linear formula (!4)* o B (read “shriek A perp par B”) in the
style of Blass according to which a P-move (respectively O-move) in A becomes an
O-move (respectively P-move) in A = B (see [13]). More accurately corresponding
to each A-question at level 2n (respectively 2n + 1) of the forest Qn(A), there are
m copies of the same question at level 2n + 1 (respectively 2n + 2) of the forest
Qn(A = B), where m is the number of initial questions in Qn(B).

This is a good place to consider some examples and fix some notations.

ExXAMPLE 4.1.
(i) The natural numbers computational arena N is specified by the following data:

— The forest of questions is a singleton tree  the initial O-question “[*” (or
simply “[” whenever its type is clear).

— The answers are all P-answers ]o, ]1, ]2, - - - which are appropriate to the only

LL[L”

question

(ii) The boolean computational arena B is defined similarly: the forest of ques-
tions is a singleton “[°”; the answers (all P-answers) are “];” and “J¢”.

There is no harm in writing the answers simply as 0,1, 2, - - - rather than Jg, ]1, ]2, - -,
and we shall do so occasionally.

Remark. More generally, for any PCF-type A = (Ay,---,An,t), the forest of
questions of the corresponding PCF-arena A is an inverted finite tree which is con-
structed by recursion as follows: “below” the initial question corresponding to ¢,
graft onto it a copy each of the tree of questions corresponding to A;,---, A, re-
spectively (of course, O-questions and P-questions in the A;s are interchanged as a
result).
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FIG. 3. Forest of questions of arena (((¢,¢),¢,t),¢,¢).

It is useful to establish a naming convention for questions of a PCF-arena A. Each
question occurring in the tree is marked by an occurrence which is a finite sequence
of positive integers. The occurrence is defined as follows:

e the initial question of ¢ (or o) has occurrence €, the empty sequence

e for 1 < i < n, if a question m of the arena A; has occurrence [ then m regarded
as a question of (A, -, A,,t) has occurrence i - [.

For example the forest of questions of the arena (((¢,t),t,t),¢,t) is shown in Figure 3
with the questions annotated with occurrences. Answers of a (PCF-)arena are just
“copies” of answers at program type, namely, ]g, ]1,]2,--- or J; and J.

4.4. Properties of function space arenas
The definition of function space arena is remarkably simple. Our task now is to
investigate properties of the function space arena and to express them synthetically,
i.e. in terms of the respective properties of the sub-arenas A and B.

Components. Let s be a legal position of a function space arena A = B and let
a be an (instance of an) A-initial move in s. We refer to the following subsequences
of s as the components of s:

e s | B, the B-component of s (or the projection of s onto B), is the subsequence
of s consisting of all B-moves in s,

e 5[ (A, a), the (A, a)-component of s (or the projection of s onto the component
(A,a)), is the subsequence of s consisting of all moves in A which are hereditarily
justified by a.

In addition we write s | (A, a)™ to mean the subsequence m - s | (4,a) where m is
the initial B-move of s. Clearly every move of s belongs to precisely one component
of s.

Two useful properties we shall prove shortly about function space arenas are:

e Projection convention. The projection of a legal position of A = B onto B is
a legal position in B, while the projection onto A can be read as an appropriate
interleaving of a finite number of legal positions in A.



e Switching convention. Player, but not Opponent, is allowed to switch compo-
nent, that is to say, either between a B-component and an (A4, a)-component, or
between different (A, a)-components.

Both conventions are reminiscent of similar conditions which are axioms in the
construction of par games in the Blass-style game semantics of Linear Logic (see
for example [13, 2, 39]). It is an indication of the simplicity of the arena approach
that these conventions are consequent features and not part of the definition of the
function space computational arena.

Let s be a legal position of the arena A. Let by be an initial move of the arena
B, and suppose s begins with an initial move a. It is easy to see that by - s is a legal
position of the function space arena (A = B) such that

{bo-s}1(Aa)" = bo-s;

which is the same as saying that all moves of the legal position bg - s are in the
component (A,a)*. (In this paper we use curly parentheses “{” and “}” to indicate
operator precedence rather than the more standard “(” and “)” which are reserved
for denoting P-questions and O-answers respectively.) Conversely if ¢ is a legal
position in (4 = B) such that

t (A0t =

then ¢ [ (A,a) is a legal position in A beginning with the initial A-move a.

LEMMA 4.5. Let bg-s be a legal position of the arena A = B such that all moves
in s belong to the component (A,a). Then we have:

(i) bg s1A=E = bo - LsaA.

(#i) bo - sSaa=B = bo - rg4

Proof. The proof is a straightforward induction on the length of the legal posi-
tion in question. We sketch the argument for (i) for illustration. Suppose the (4 =
B)-legal position bq- s is of the form bg - p-m-r-m' where the P-question m explicitly
justifies the O-question m'. Then its P-view is "by - p?™=5 . m - m', which by the
induction hypothesis is bg-Lpig-m-m'. As amove in A, m is the O-question which
explicitly justifies the P-question m’. Therefore Lpaa-m-m'isjust Lp-m -1 -m'a4.

The other cases of the recursive definition of P-view are dealt with similarly. MW
We are now in a position to state and prove the Switching Convention.

PROPOSITION 4.2. Let s be a legal position of an arena A = B beginning with
an initial move b, and let the last move of s be a P-move m (for (i) and (ii)).

(i1)(O-view projection 1). If m is in B then Lsiamp | B = Ls | Bugp =
LSIA=B-

(i1)(O-view projection 2). If m is in the component (A,a) then

Lsaiamp | (A,a)T = b-'—s[(A,a)—'A =  LS1A=B.



(iii)(Switching convention). Whenever any two consecutive moves m and m'
ins=1[--m-m'--- are in different components of s, then they are of the shape
e -0, as opposed to o -e. In other words Player, but not Opponent, is allowed to
switch component.

Proof. 'We prove (i), (ii) and (iii) by mutual induction on the length of s. The
respective base cases are trivial. We consider the inductive cases in turn.
(i). Let m~ be the move in s which explicitly justifies m; by construction of s, m™
is an O-move in B. Since s.,,- -m~ has length less than that of s, by the induction
hypothesis of (iii), the last move of s.,,- is in B. Hence

Lsi [ B = Lscpm—a [ B-m™-m by the induction hypo. of (i)
= LSem- | Ba-m™ -m
= {S<m--m~ -m} | BJ

= Ls | B..

Also by induction Lsy [ B = tscp-0)B-m™ - m = Lsop,-0-m~ - m, and so,
LS [ B = Ls..
(ii). If m is (an instance of) an initial A-move a then Lsa =b-m. We then have

Lsaamp [ (A,a)t = b-m = b-Ts|(4,a)A.

If m is not an initial A-move then let m~ be the O-move explicitly justifying m.
Note that both m and m~ belong to the same component (A,a), say. We have

LS1 = LS<m-a-m~ -m. By the induction hypothesis of (iii), the last move of s,,-
is in the same component (A,a) as m~. Hence by the induction hypothesis of (ii),

Lsaamp | (A,a)t = b-Ts - [(A,a)™-m™-m = b-"s| (A4 a).

Also by induction Lsia=p | (4,a)" = Lsaa=p.

(iii). Let s be a legal position whose last move m is an O-move, and let m~ be the
P-move in s immediately preceding m. There are two cases. First, m™ is in (4, a).
By the induction hypothesis of (ii), L5, 1 has the form [-p where [
B-move in s, and p is a sequence of moves in (A4, a). By the visibility condition the

” is the initial
move which explicitly justifies m is either “[” or some move in p. The former is to
be rejected since m being an O-move can only be justified by a P-question. Hence
m is explicitly justified by some move in the (4, a)-component, and so, it must be
a move of the same component. The other case of m™ in B follows from the induc-

tion hypothesis of (i), and we leave the details as an easy exercise for the reader. H

ExaMPLE 4.2. Consider the legal position s of the arena A = B as in Figure 4.
The P-view "s™71is by - a1 - a4 - by - b5 with justification indices 0-1-2-1-4, and
so, "s7 [ B is by - by - bs with justification indices 0-1-2. Clearly s | B="s[ B™.
Observe that "s™ [ B is a (proper) subsequence of "s | B™.
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FIG. 4. An example.

Convention In the following we write s < ¢ to mean that s is a subsequence (not
necessarily initial) of ¢.

PROPOSITION 4.3 (P-view Projection).  Let s be a legal position of an arena
A = B. Suppose s ends with the move m.

(i)If m is in B then "s"A=B | B x"s | B7B.
(i) If m is in the component (A,a) then "s7A=PB | (A,a)t <b-"s ] (A,a)"".

Proof. Since the proof is quite technical, we relegate it to the Appendix. MW

PROPOSITION 4.4 (Projection Convention).  Let s be a legal position of the
arena A = B.

(i) The projection s | B of s onto B is a legal position in B.
(ii)For any instance a of an initial A-move in s, the projection s | (A,a) is a
legal position of the arena A.

Proof. (i). We show that ¢ = s | B is a legal position of B. Condition (w1)
of a well-formed sequence is clearly inherited by ¢. An immediate consequence of
the Switching Convention (Proposition 4.2) is that ¢ is an alternating sequence.
Suppose we are given a P-question “(” in ¢. By regarding “(
is a legal position, the explicitly justifying question “[” (say) occurs before “(” in
s and is pointed to by the justification index. Now “[” is a B-question, and so,

” as a move in s which

it occurs in ¢ before “(”. The same argument applies to explicit justification of
O-questions in t. By proceeding in an identical manner and by considering the
definition of the order structure of Qn(A = B) in terms of that of Qn(B), we see



that properties (w3) as well as (w4) are inherited by ¢. For the visibility condition,
take any P-question “(” in ¢. By regarding it as a P-question in s which is a legal
position, we infer that the explicitly justifying question “[” of “(” occurs in "s (7.
Since “[” is a B-move, it occurs in "s.(7 [ B. Hence, by Proposition 4.3, “[" occurs
in"s ([ B

For (ii) we shall just verify the visibility condition; the rest is routine. Let s
be a legal position in A = B which begins with by. Take any P-question (re-
garded as a move in A) m in t = s | (A,a). By regarding it as an O-question
(of A = B) in s, the P-question m (also in the component (A4,a)) which ex-
plicitly justifies m is in Ls<,, 04~ p. Observe that m belongs to Ls<,,2 | (4,a)".
By Proposition 4.2(ii), m is in Ls<p, | (4,a)% 5 which is just cbo - {s<m} | (4,a)..
By definition all moves of s<,,, | (4,a) are in the component (A, a); and the last

move is a P-move in A = B. Hence, by Lemma 4.5, m is in "t.,,, ' as required. W

Remark. The payoff of the visibility condition may be seen in the above: the
projection of a merely well-formed sequence of a function space computational
arena A = B (say) onto either of the two components A or B is not necessarily
well-formed. It is easy to check that the following sequence with the auxiliary
sequence of justification indices is well-formed in A = B:

[B.(A.[A.(B.[A; 0-1-2-1-2

however the projection onto A with the auxiliary sequence of justification indices
systematically reset in the natural way as follows

(A.[A.[A 0-1-1

is not an alternating sequence.



5. INNOCENT STRATEGIES

A strategy for a player is a rule or a method that determines how a player is to
respond at a position where he is expected to make a move. Abstractly a strategy
for Player, say, is a partial function (of a certain kind) mapping legal positions (at
which Player is to move) to P-moves. We represent a strategy as an appropriate sub-
tree of the game tree associated with an arena. Since we have chosen to represent
the game tree associated with an arena A formally as the collection of all paths
(= legal positions) in the tree, we define a P-strategy o of A to be a non-empty
prefix-closed collection of legal positions of A satisfying the following conditions:

(s1) Determinacy. For any s € o at which Player is to move, if both s - a and
s-barein o then a = b.

(s2) Contingent completeness. For any s € o at which Opponent is to move and
for any O-move a, if s - a is a legal position then it is in o.

5.1. Uncovering and composition of strategies

First some terminology. A sequence of moves of arenas A;,---, A, is said to
be explicitly justified if it is equipped with justification pointers represented by an
associated sequence of natural numbers called justification indices.

Suppose we are given strategies o and 7 of computational arenas A = B and
B = C respectively. Take a legal position s of the computational arena A = C.
We define the uncovering of s in accord with ¢ and 7, written u(s,o,7), as the
unique maximal explicitly justified sequence u of moves of A, B and C satisfying
the following properties:

(ul) ul(A4,C) < s,
(u2) ul (B,C) € T,
(u3) ul (A, B)y € o;

where < in the first clause is prefix ordering between legal positions. For legal
positions s and ¢, we say that s < t holds just in case

e as sequences of moves, s is a prefix of ¢

e the auxiliary sequence of justification indices of s is a prefix of that of .

The subscript b in the third clause ranges over all instances of initial B-moves in u.
Note that # may be an infinite sequence of moves; in which case we read the second
clause as: every finite truncation of the projected sequence u | (B, C) belongs to 7.
The same qualification applies to the third clause.

Convention. . By a component is meant either (B,C), or (A, B), where b is
an instance of an initial B-move occurring in u. We will use X as a meta-variable
ranging over components, and px a meta-variable denoting o if X is (4, B)y, or 7
if X is (B,0).

DEFINITION 5.1. The uncovering u = u(s, o, 7) may be generated by the follow-
ing algorithm. We write u = uy - ug - uz - - - - with u; ranging over moves in arenas
A,B and C. Let n be the length of u (note that m may be infinite). We show



inductively that for each i < n, the initial subsequence v = wuy - us - - - u; satisfies
clauses (ul), (u2) and (u3); and if v < u, then the next move wu;y; is uniquely
defined.

(1) If s is the empty sequence, then so is u; otherwise the initial move of s is
the initial move of .

(2) If v = uy -uz-- - --u; has been generated and u; can be regarded as an O-move
in the component X (that is to say, u; is either an O-move in the arena A = C or
it is a B-move), then v [ X is inductively in px (which is o or 7 as appropriate).

(2.1) If (v X)-a € px for (a necessarily unique) a, then there are two
possibilities:
(2.1.1) either a is a B-move, then we define u;;1 to be q;
(2.1.2) or a is a move in A = C, in which case,
(2.1.2.1) if we still have v | (A, C) - a < s, then define u; 41 to be a,
(2.1.2.2) otherwise we stop with u = v.
(2.2) If not, we stop with u = v.
(3) If v = uy-ug-- - --u; has been generated and ends with a move u; in component

X which cannot be regarded as an O-move (that is to say, u; is a P-move in A = (),
then inductively, v | (4,C) < s.

(3.1) Ifthereis a move in A = C, say a, making v [ (4,C)-a < s, then define
w41 to be a. (The move a must be an O-move in the same component (in the sense
of Proposition 4.2) of A = C as u;, by the Switching Convention.)

(3.2) If not, stop with u = v.

It is straightforward to check that u generated as above is the uncovering of s
according to o and 7, and is uniquely defined.

We make the following useful observation.

LEMMA 5.1.  For any legal position t of A= C, and any s < u(t,o,7) [ (4,C),
we have

u(s,o,7) [ (A,C) = s.

Proof. Let v be the maximal initial subsequence of u(t, o, 7) such that v | (A4,C) =

s. It suffices to check that v is in fact u(s,o,7). H

Composition of strategies. We can now formally define composition. Given
strategies o and 7 of A = B and B = C respectively, we define
o = {u(s,o0,7) [ (4,C) : s is a legal position of A = C'}.
The composition of strategies is reminiscent of CSP-style parallel composition plus
hiding [35].
The collection o; 7 is clearly non-empty: any initial move of A = C (regarded
as a singleton sequence) belongs to o; 7. For any legal position ¢ of A = C, and



for any s < u(t,o,7) | (4,C), by Lemma 5.1, s = u(s,0,7) | (4,C), and so, s is in
o; 7. Therefore o; 7 is prefix-closed.

Now consider Definition 5.1 (of uncovering). Suppose s € ;7 ends with an O-
move do. Writing u(s,0,7) as u, it is clear that if u is infinite, then there can be
no P-move a such that s-a € o;7. So suppose u is finite. By construction of
the uncovering u, for some finite n > 0, there are B-moves d1, - -, d,,, and for each
0 <i < n, writing X; as the component in which d; may be regarded as an O-move,
such that:

eu=wv-dy-dy---d, withv-dy | (4,C)=s, and

.(’U'd(]'dl """ d,;[Xi)-dH_lpri,foreach()gignfl.
Further
(A) either (v-do-dy----- d, | Xp) is a maximal legal position in px, , corre-

sponding to case (2.2) in Definition 5.1; note that in this case there can be no
P-move a for which s-a € o;T;

(B) or there is some P-move a in A = C such that v-dy-dy - ---- dy | Xp-a€
px, corresponding to case (3.2) in the same definition. In this case observe that
s-a € o;7, and a is unique.

Hence we see that condition (s1) (of strategy) is satisfied by the collection o; 7.
Also, by reference to clause (3.1) of Definition 5.1, o; 7 inherits property (s2) from
the same of ¢ and 7. Hence o;7 is a strategy.

Composition of strategies as defined is associative. Given strategies o, 7 and p of
arenas A = B, B = C and C = D respectively; take any s € (o;7); p, we show
that s € o; (75 p) by induction on the length of s. (Inclusion in the other direction
is similar and we leave it as an exercise for the reader.) The base case is obvious.
Let m be the last move of s. W.l.o.g. suppose m is an A-move. The case of m being
an O-move is easy: by the switching convention (Proposition 4.2), the move m~
preceding m must also be in the same component as m. Since s¢,,- is in o; (7; p)
by the induction hypothesis, so must s by condition (s2) of strategy.

Now suppose m is a P-move. We consider the less straightforward case of
m~ being a D-move. By the induction hypothesis s¢,,- is in o;(7;p). Writ-
ing u(s¢p,-,0,7;p) as u, by Lemma 5.1, u [ (A,D) = s¢,,-, as depicted in Fig-
ure 5. Since s is in (o;7);p; by Lemma 5.1, writing u(s,o;7,p) as v, we have
v | (A,D) = s, and for some C-moves &, v has shape w - ¢- m where w has m™~ as
the last move. Let ¢, be the last move in &, and suppose ¢, is in the component
(A, C). By definition of the uncovering v,

v|(A4,C)y € o;T

Observe that ¢, and m are the penultimate and last move respectively inv | (A, C). .
By definition of o;7 and by Lemma 5.1, writing u(v [ (4,C).,0,7) as [, we have

l f (Aac)c’ = v f (A,C)C'

where [ has shape - - - ¢ b-m. Suppose m be in the (A, B)y -component of [. We have
I (A, B)y € 0. It is easy to check that u-b-m isu(s,o,7;p), and u-b-m | (A, D)
is s. Hence s € o; (7; p).



FIG. 5. Composition of strategies is associative.

To summarize we have shown:

PROPOSITION 5.1. Composition of strategies is well-defined and associative. W

For strategies 0,7 and v of arenas A = B, B = C and C = D respectively
and for a legal position s of A = D, we define u(s, o, 7,v) as the unique maximal
explicitly justified sequence u of moves of arenas A, B,C' and D satisfying

eul(A,D)<s

eu|(C,D)ewv

e u | (B,C), €7 for each instance ¢; of initial (B = C)-move occurring in u

e u [ (A, B)y, € o for each instance b; of an initial (4 = B)-move occurring in

U.
We leave the essentially straightforward proof of the following result to the reader.

PROPOSITION 5.2. The composition (o;7);v (or equivalently o; (T;v)) is

oyr;v = A{u(s,o,m,v) [ (4,D):s is a legal position of A= D }.

5.2. Representation of innocent strategies
A strategy for Player is history-free if Player’s move at any position of the game
where he is expected to play is determined by the last move of Opponent: the
history of the play prior to the last move has no bearing on Player’s response (see
[2]). If Player’s move depends on the entire history of the play up to that point,
then the strategy is said to be history-sensitive. Innocent strategies are neither



history-free nor history-sensitive. Rather they determine a response to Opponent’s
move on the basis of a narrow view of the history of the play up to that point (hence
the adjective “innocent”).

Each such P-strategy, say o, is determined by a partial function of a certain kind
mapping P-views p (of legal positions at which Player is to move) to pairs of the
form (a, p) where a is a P-move and p a justification pointer from a to a position i
(say) in the P-view p. Suppose p = "s™ and i is the position in s that projects onto
i under P-view. We shall call the new pointer p from a to i the transposed pointer
of p.

DEFINITION 5.2. [Innocent strategy]A strategy o is said to be innocent if there is
some partial function f of the abovementioned kind such that for any legal position
s € o at which P is to move, and for any P-move a, s-a (together with a justification
pointer p, say, for a) is in ¢ if and only if f("s7) = (a, p'), and p coincides with the
transposed pointer of p’. We shall call such a function f a defining partial function
for the innocent strategy o.

Remark. In the following we shall often regard defining partial functions of
innocent strategies conveniently as a function from P-views to P-move, suppressing
the justification pointer of the P-move whenever where it points to is clear from
the context. We regard this as a harmless simplification.

It is easy to see that corresponding to each innocent strategy o, there is a least
(and so unique) such partial function regarded as a graph, written f,. We call f,
the representing partial function for the innocent strategy o. We also call functions
of the form f, representing innocent functions. The representing function f, may
be characterised as follows: for any P-view p ending with an O-move, and for any
P-move a, f,(p) is defined, and equal to a if and only if there is some s € o such
that

(i) "s7 =p, and

(ii) s-a € 0.

So for any P-view p ending with an O-move, f,(p) is undefined if and only if either
there is no legal position s € o such that p = "s7, or for some (and hence for every)
legal position s € o such that p = "s7, s is a maximal legal position in o. (It is
easy to see that a history-free strategy is automatically innocent, but the converse
is not true.)

Representation of innocent strategies. Clearly not every partial function from P-
views to P-moves gives rise to an innocent strategy. There is, however, a necessary
and sufficient condition for a partial function of the appropriate type to be the
representing partial function of some innocent strategy. We first introduce a helpful
notion. Let A be a computational arena. Take any P-view p of A ending with an
O-move, and let f be a partial function of the following type:

f + {P-views of A ending with O-moves} — {P-moves in A }.



The collection Zf p of f-traces of p is a subset of the legal positions of A defined
as follows:

e foreach 0 <Il<mn, f("my-ma---maoy1) = mato.

DEFINITION 5.3. A partial function of the above type is said to be innocent if for
any P-view p of a legal position ending with an O-move, and for any P-move a,
f(p) is defined, and equal to a if and only if the following conditions are satisfied:

(if1) > ; p is non-empty,
(if2) for any legal position s, if s € Zf p, then s - a is a legal position of A.

Consider the collection oy of legal positions defined inductively as follows. For n
ranging over w, and writing € as the empty sequence, we define

0 def
Uf - {6 }7
def . .,
0;”“ = {s-al|s€ 0]20", a € O-moves, and s - a is a legal position },

0;n+2 L L f(TsT) | s € g;”“,f("s"') is defined },

def
of = UnEw (7}".
LEMMA 5.2.

(i)Given any innocent (partial) function f, the collection oy of legal positions
defined above is an innocent strategy.
(i) For any P-view p of a legal position ending with an O-move,

Zp = {s€o;:"sT=p}.
!

The proof is an easy exercise which is left to the reader. In fact innocent strategies
and innocent functions are the same thing, as the following proposition shows. We
omit the largely straightforward proof.

LEMMA 5.3. For any innocent strategies o and o' and any innocent functions f

and f', we have,

(i)fo'f =f

(i))os, = 0.

(iii)f C f' if and only if oy C op.

(iv)o C o' if and only if f, C for. [ |



Consequently we are justified in regarding an innocent function f as a (unique)
representation of the innocent strategy oy.

We use this representation in a number of ways: to explain the notion of a finite or
compact strategy (see Lemma 5.4) and to define recursive strategies (see §5.6). In a
sense innocent functions seem more fundamental than innocent strategies (as trees);
but the latter are well suited to an explanation (and definition) of composition.

5.3. Composition of innocent strategies
In §5.1 we saw how to compose strategies of computational arenas. Now we
consider whether this operation preserves innocence. The main result in this section
is the following;:

PROPOSITION 5.3. Composition of innocent strategies is well-defined.

To prove this proposition, we need to verify the following: for any innocent
strategies 0 = oy and 7 = 7, of computational arenas A = B and B = C
respectively, the composition ;7 is an innocent strategy. By Proposition 5.1, we
know that o; 7 is a strategy. It remains to prove that the strategy o; 7 is innocent;
that is to say,

there is a partial function h mapping P-views of legal positions (at which P is to
move) of A = C to P-moves of the same arena such that for any legal position s of
o; 7 at which P is to move, and for any P-move a of A = C,

sca€op;my, < h("s7) is defined, and is equal to a.

Suppose s is a legal position of the arena A = C. Write u = u(s,o,7), the
uncovering of s according to o and 7. For d an O-move in the general sense in u
(i.e. an O-move in A = C or a B-move), let d be the preceding O-move in A = C
(so that d coincides with d when d is a move of A = C) and write

uld) = u("sg'0,7).

Since the P-view of a legal position is a legal position (Lemma 4.1), u(d) is well-
defined.

PROPOSITION 5.4. For any generalised O-move d in u, we construct by recursion
on d an identification of u(d) as a subsequence of ugq of the following kind: ugqy
looks like:

where the leftmost “e” is an initial move in C; other occurrences of “@” are O-
moves in A = C; “[__ ] represents a block of alternating moves in B, and “”
is a P-move in A = C. The following are satisfied:

(i)u(a)gd simply omits segments of the form “e[ ] o”; where “o”, and so
«. 1 3 3

also “o”, are missing from "s 5. We shall write u(d) ., <ugq to mean that u(d),
is a subsequence of the required kind.



(ii)If X is the component in which d is an O-move, then

'—u(a)gd[X—' = Tugqs [ X7

Before we prove the Proposition, let us unpack the equation in clause (ii) and
express it in terms of the following commuting diagram: for any legal position s of
A = C, and for any generalised O-move d occurring in s, and d as before,

N {%,E : uncover s u(s,0.7) = u =truncate at d "y
truncate s at d
sfg
P-view in A = C P-view in X4
I'SS_E“I I—Ugd er‘l
uncover
u(d) = u("sz,0,7) r———r “‘(E)gd : I—U,(E)gd I X4

P-view in X,

Proof. We prove by a case analysis on d.
Case 1. d is an O-move in A = C.
Case la. d is the initial O-move in C': this is obvious.
Case 1b. d is an O-move after the initial C-move, so that d = d, say in component
X. Then by condition (w3) of legal position, d is explicitly justified by a P-move,
call it e, in component X. Let z be the O-move immediately preceding e in u. Note
that z is still in component X, though it may be a B-move.
(i). Note that sz is of the form s<z - e---d, so that taking the P-view in 4 = C,

Fg -1 —TFg 71,5, g\ = re _7 — Fre _T.o.
we have "s ;7 ="s<z ' e-d. Hence u(d) =u("s;"0,7) =u("sg'-e-d,o,71)
has w(Z) = u("s¢z ',0,7) as an initial subsequence. By the recursion hypothesis,

Wy ”

“(E)gr <ug, “is” a subsequence of the required kind, and so, also u(d)gm = U(E)gr
By the induction hypothesis for (ii), we have "u(Z) ., [ X = "ug, [ X Note that
we have already observed that z and d occur in the same component X. Hence,

hx(Tu(d). | X7) = hx(Tu@), 1 X7) = hx(Tue X)) = &

<z

by construction of u. And it follows by construction of u(d) that u(d), is u(d), -

e-d=u(Z), -e-d This provides an obvious identification of u(a)gd as a subse-
quence of ug, of the right kind. Note that we omit all the “e[ ] o” segments

sandwiched between e and d.



(ii). Note that ugg is of the form ug, -e---d. So

Tugg [ X7 = Tuge, [ X7 -e-d by the induction hypothesis of (ii)

= "u@), I X-e-d
= '—u(i)@-e-d[X"
= Tu(d)g, | X

Case 2. d is an O-move in B, say in component X. Hence, d is a P-move in the
paired component Y. Let y be the O-move immediately preceding d in component
Y. Note that d = 7.

(i). By the recursion / induction hypotheses, we have u(y)gy <ugy, a subsequence
of the required kind. As ugq = ugy - d, we know that hy ("ug, [ Y") = d. By the

induction hypothesis, we know that '—u(y)gy Y7 =Tug, Y7, s0 '—u(d)sy [V =
Tug, | Y. Hence, by construction, we see that u(d) extends u(ﬁ)<u by

by (g, 1Y) = hy(ug, 1Y) = d

This gives the identification u(a)gd = u(a)gy -d as a subsequence of ug,y of the
required kind.

(ii). Now let e be the P-question in X which explicitly justifies d in u and z the
0O-move immediately preceding e.

We know by (i) that u(d), < uga is a subsequence of a certain kind. Hence,

since e occurs in u(d) ., we infer that £ and T both occur in u(d) ., because T, z, e
X R

and d all occur in the same segment “e [ ] o” which is in u(d)_,. It follows

that T occurs in sz so s<z < s¢g and so u(d) starts like u(Z) and in particular,

u(d)¢, = u(T),. By the induction hypothesis, we know that "u(Z) , [ X7 =

A

Tug, | X7, and hence,
h’X(I—“‘(E)gw [X—l) = h/X(I—’Illgm [X—l) = e.

Thus, not only is ugg of the form ug, - e---d but also u(d)_, is of the form

u(d)¢, - €---d. Hence,

Tuga [ X7 = Tug [ XT-e-d = Tu(d)g,
|

To prove Proposition 5.3, the first step is to specify the partial function
h : {P-views (of A = C) ending with O-moves } — {P-movesin A = C'}
that defines the composite innocent strategy o ;7.

DEFINITION 5.4. For any P-view p of A = C ending with an O-move dy, h(p) is
defined and equal to a P-move a in A = C if and only if

for some explicitly justified sequence ¢ of the arenas (A, B, C), and for some n > 0,
there are B-moves dy, - -d, with

u = u(p7U7T) = tdod]deT“



such that hx(Tu(dp) [ X7) = a where X is the component in which d, is an O-
move, and the same convention as before governs the meaning of hx.

Proof of Proposition 5.3. Suppose s € ;7 is a legal position which ends with
an O-move dy. Note that dy appears in "s™ = p as the last move. For any P-move
a, by the preceding analysis, s - a € ;7 is equivalent to the following:

(1) the uncovering u = u(s,o, ) is finite; that is to say, for some finite n > 0,
there are B-moves dy,---,d, such that u =w -dy -dy - ds - - - d,,, for some explicitly
justified sequence w of the arenas (A, B, C); and

(2) (u | Xy)-a € px, where, as before, we write X,, as the component in which
d, may be regarded as an O-move.

Since dg occurs in u and p = "s™, by Proposition 5.4(i), statement (1) is equivalent
to the assertion that u(dy) = u(p, o, 7) is finite, and that u(dy) = v-do-di -ds - - - dp,
for some explicitly justified sequence v of the arenas (A, B,C). Also, since o and 7
are innocent strategies by assumption, (2) is equivalent to

h'Xn (I—“‘ [ Xn—l) = a,

where hx, is defined as before. By Proposition 5.4(ii), we have hx, (Tu(dp) | X,,7) =
a. By definition of h, we conclude that (1) and (2) amount precisely to the assertion
that h("s™) is defined, and equal to a. We have thus proved Proposition 5.3. |

5.4. CA: a cartesian closed category of computational arenas
At long last we have in place the necessary data for defining a category. The
category CA of computational arenas is defined by the following data:

e Objects are computational arenas.
e Maps between computational arenas A and B are innocent P-strategies of the
function space computational arena A = B.

The identity map of a computational arena A is just the “tit-for-tat strategy” or
“copy-cat strategy” of the arena A = A. Consider the two components (or copies)
of Ain A = A. The strategy may be described informally as follows: suppose
Opponent has just made the move m in one component, then Player responds by
making the same move in the other component. The tit-for-tat strategy is innocent:
for any n > 0, and for any legal position s of the form a; -a;-as-as---ayn-ap-apy1,
the representing partial function of the strategy maps the P-view "s™ to apy1.
Composition of strategies as defined in the last subsection is associative.

Product. For any computational arenas A and B, the categorical product is just
A x B as defined earlier. The projection map A x B — A is the following innocent
strategy of the arena (A x B) = A which is another “tit-for-tat” strategy: we label
the two copies (or components) of A as (4; X B) = Ay. O begins by making an
initial A-move in A,. P responds by making the same initial A-move in A;. Note
that O cannot switch component. For any O-move in Ay, P responds by making the



same move in Ay. Thereafter P responds to any O-move by making the same move
but in the other A-component. To check the universal property we observe that
the arena C' = (A x B) is just (C = A) x (C = B). So given maps f : C — A
and g : C — B, the pairing [f,g] : C — A x B is defined by the disjoint union
of the respective strategies.

The terminal object 1 is the empty computational arena: it has neither question
nor answer. For any computational arena A, the unique innocent strategy of the
arena A = 1 (which is just the empty arena 1) is the singleton set { €} as defined
by the empty (as a graph) innocent partial function.

Function space. For computational arenas A, B, and C, it is easy to see that
the arenas (C x A) = B and C' = (A = B) are isomorphic (the respective arenas
are exactly the same as pictures). Hence

CA(C x A,B) = CA(C,A= B)

is an isomorphism natural in A, B and C. We can therefore conclude that the
category of computational arenas and innocent strategies is cartesian closed.

It is worth observing that many strategies that denote PCF-terms are “tit-for-
tat strategies” in some appropriately general sense. In these strategies, Player’s
response simply consists in copying Opponent’s move from one component of the
arena to another. We have already seen two examples; namely, the identity and
projection maps. Another is the evaluation map:

A=>BxAZ . B

for arenas A and B. The map ev is a history-free (and hence innocent) strategy in
the arena (A = B) x A = B which has two components of the subarena A, one
dual to the other; similarly for the subarena B. The strategy ev may be described
succinctly as follows:

“if O’s move is m in some component of A (respectively B) then P’s response is
m in the dual component of A (respectively B)”.

5.5. CA as an enriched category

In this subsection we show that CA is the underlying category of a category
(which we continue to call CA) enriched over the category of dI-domains. (For
enriched category theory see [44].) For computational arenas B and C, CA(B, C)
is the set of all innocent strategies of the arena B = C. We consider the struc-
ture which this set naturally carries. Since we can readily identify CA(B,C) with
CA(1, B = C) we can restrict attention to sets of the form CA(1, A) for any arena
A. We write A for CA(1, A) the set of all innocent strategies of a computational
arena A.

For the sake of completeness we introduce some basic domain-theoretic notions.
A complete partial order (CPO) is a poset which has a least element and joins of all
directed subsets. A subset X of a poset D is said to be consistent if X has an upper
bound in D. A cpPO D is consistently complete if any of the following equivalent
conditions are satisfied:



(1) every pairwise consistent pair of elements of D has a join in D;
(2) every consistent subset of D has a least upper bound (lub);
3) every subset of D has a greatest lower bound (glb),

g g

An element d of a cPO D is said to be prime if for every subset X of D such that
|| X exists and if d C | | X, then there is some element z € X such that d C z.
The element d is said to be compact if the above condition holds for X ranging over
only directed subsets of D. A cP0O D is said to be algebraic if for every element
d of D, the collection of all compact elements of D dominated by d is directed,
and its lub is precisely d. Further, D is said to be w-algebraic if D has countably
many compact elements. By a Scott domain, we mean a consistently complete,
w-algebraic cCPO. A consistently complete CPO D is said to be prime algebraic if
every element d of D is the lub of all prime elements dominated by d. A dI-domain®
is a consistently complete, algebraic CPO that is prime algebraic and satisfies axiom
(I): every compact element dominates only finitely many elements.

We say that a legal position s of an arena A is innocent if there is an innocent
strategy (of A) of which s is an element. Clearly not every legal position is innocent:
consider the legal position

(i) [ia]e
of the arena (1 = 1) = + whose questions are annotated according to the conven-
tion introduced in Remark . Since innocent strategies are determined by innocent
functions, it is easy to see that a legal position s (which ends in an O-move) is
innocent if and only if there is an innocent function f such that s € 3 ;"s™. Given
an innocent legal position s of an arena A, we define

ols] = the least innocent strategy containing s.

Suppose s = mq - My - - - Mapy1. It is easy to see that o[s] is o, where the (partial)
function g is defined by the following graph

{("m1-mag - -mop17,Mog2) :0<T <n}.
It is routine to verify that f thus defined is innocent.

ExamPLE 5.1. Note that o[s] may contain legal positions of length greater than
that of s. Just take s to be the legal position (together with its auxiliary sequence
of justification indices):

fahaly 0-1-2:3.21

of the arena (1 = ¢) = 1. The least innocent strategy generated by s is defined by
the following innocent function:

[ = (1
[-Glig = ]
[-G) =]

8We do not include w-algebraicity in the definition of dI-domain.



Note that o[s] contains the following family of legal positions: for each n > 0,

[.(1.L1_1.]. v el 0-1-2-3-2:5- -+ -2-2p+1-2-1;

vl ~~

v

2n

so the length of legal positions in o[s] is unbounded.

For any P-view p that ends with an O-move, and for any P-move a, it is easy
to see that if p- a is a legal position then it is innocent. The innocent function
fop-a), qua graph, is the collection of ordered pairs (g, b) such that b is a P-move
and ¢-b < p-a. Since P-views are P-view invariant (Lemma 4.3), any two pairs in
the collection which agree in the first component necessarily agree in the second.

Let S be a set of innocent strategies of A bounded, say, by 7. By Lemma 5.3,
for each 0 € S, f, C fr; and so, J,cg fo C fr. Hence FE U,es fo is a partial
function. It is straightforward to verify that F' is innocent. Clearly | |S is the
strategy defined by F. (Note that in general | | S is not J g o, though of course
U,eso € |1JS.) We have shown that the poset of innocent strategies A is bounded
complete.

LEMMA 5.4.

(i)An innocent strategy o € A is compact if and only if its representing function
fo s a finite graph.

(ii) An innocent strategy o € A is prime if and only if it is o[p-a] for some P-view
p (which ends with an O-move) and for some P-move a such that p - a is a legal
position.

(iii)A is prime algebraic.

Proof. We prove (ii) and (iii) for an illustration. First observe that for any
innocent strategy o of A,
|| olp-d

(p,a)€fo

is defined and is equal to o. If ¢ is prime then o C o[p-a] for some pair (p, a) in f,.
But in fact 0 = o[p-a], since o[p-a] is the least strategy that contains p-a. The other

direction is now immediate; so is (iii). M

Supposing the arena A is countable (i.e. A has countably many questions and an-
swers), then A has only countably many P-views. Since compact innocent strategies
are finite subsets (of a certain kind) of the countable set { P-views } x { P-moves },
there are only countably many such strategies. Therefore A is w-algebraic. Finally
we observe that axiom (I) is trivially satisfied for any A.

To summarize we have shown that

PROPOSITION 5.5.

(i) The collection A of innocent strategies ordered by inclusion is a dI-domain.

(ii)In particular, if A is a PCF-type, then A is w-algebraic. [ |



We conclude from the preceding proposition that each CA (B, C) carries the struc-
ture of a dI-domain. It follows easily from the definition of identities, composition,
products and function spaces that the corresponding maps (natural isomorphisms
in the last two cases)

CA(A, A)

CA(A, B) x CA(B,C) — CA(A,0)

CA(C, A) x CA(C, B) — CA(C, A x B)

CA(C x A, B) CA(C,A = B)

are continuous maps of dI-domains (but they are not necessarily stable). Hence we
have the main result of this section:

THEOREM 5.1. The category CA of computational arenas and innocent strategies
s a cartesian closed category which is enriched over dI-domains. |

5.6. Recursive strategies
Now we consider computational arenas which are in some sense recursively pre-
sented. For simplicity we suppose that the forest of questions of A is a finite tree.
(We could proceed with an enumeration of a countable tree, but the definition is
more cumbersome and we have no need of that generality.)

DEFINITION 5.5. Let A be a computational arena with a finite tree of questions
and a countable (finite or denumerable) set of answers. Then a recursive presenta-
tion of A consists of an enumeration of the countable set of answers corresponding
to each question: for each ¢ € Qn(A) we have a bijection

an~'(q) — N

or
an '(g) — Ny={izi<n}

We call a computational arena equipped with a recursive presentation a recursively
presented computational arena (RPCA).

EXAMPLE 5.2.

(i) The computational arenas N and B of Example 4.1 have natural recursive
presentations. (N also has perverse recursive presentations.)

(ii) Clearly the computational arena 1 is trivially recursively presented. And if
A and B are recursively presented then so are A x B and A = B in an obvious
way.



We could consider a category with objects RPCAs and maps innocent strategies.
This is hardly worth naming as it is equivalent to a subcategory of CA: the forgetful
functor is full and faithful. Rather we want to use the enumerations (codings) of
answers to enable us to talk of recursive strategies. Now given an RPCA A we can
concoct natural codings for P-moves and for P-views in A. (Of course the coding
includes information about the justification indices.) If a is a P-move (u a P-view)
we write #a (#u) for its numerical code. Recall that an innocent strategy o is
completely determined by a representing innocent function f, which maps P-views
to P-moves. We can code f, as a partial numerical function ¢, where

folu) =a — bo (#u) = #a.

(If we are sensible the set of codes for P-view will be recursive; and we may as well
assume ¢, not defined on numbers which do not code P-views.) The set of partial
functions from N to N, in which the codes ¢, for strategies lie, is so important
that we need a special symbol for it; we write IP for the set of partial numerical
functions.

DEFINITION 5.6. An innocent strategy o in a recursively presented arena is re-
cursive just when ¢, is a partial recursive function.

Clearly the identity or tit-for-tat strategy in A = A is recursive for any RPCA A.
Also the composition of two recursive strategies is recursive. This reflects the fact
that the proof of Proposition 5.3 is constructive. (The reader need only understand
this in the intuitive sense: if o,7 are innocent strategies for A = B and B = C
respectively, then f,.. can be constructed from f, and f.) In fact one can read off
from Definition 5.4 the proof of the following precise result which we use later.

PROPOSITION 5.6. Given RPCAs A, B and C there is a recursive operator’ M
of two arguments M : P x P — P such that if6 : A — B and 7 : B — C are
innocent strategies then

M(¢0‘7¢T) = d)a';r-
|

It follows in particular that we can define a category using recursive strategies.
Then category RA of recursive arenas is defined by the following data:

e objects are recursively presented computational arenas,

e maps between RPCAs A and B are recursive strategies in A = B.

The identity, composition, product and function space arenas are as in CA. So RA
is a cartesian closed category.

Finally perhaps we should confess to a degree of overkill in our description of
the category RA. Consider the computational arenas N as in Example 4.1 and

9Tn the sense of [64, p. 148].



N, (n > 0) where N,, is like N save that only replies i < n are permitted. (So
N, is isomorphic to B of Example 4.1.) These objects have canonical recursive
presentations. Close this collection of objects under the standard terminal object,
product and function space in RA. Then any object in RA is isomorphic to an
object which results. (This is because we insisted on a finite tree of questions.)
Thus RA as we defined it is (up to equivalence) a very simple category indeed.



6. CONTEXT LEMMA FOR CA

The standard notion of observables for CA. We recall the standard notion of
observables for the category CA of computational arenas and innocent strategies
(see the discussion after Proposition 3.2). If an innocent strategy o of the arena
¢t has an answer (n say) to O’s opening question in which case, o is the set
{“”,“'n”} then we write o | n; otherwise we write off. We shall write o} to
mean that for some n, o | n. Following the same pattern as Example 3.1, for each
arena A and each innocent strategy f of the arena A = 1, we define

Ry < {a:1— Ala;fl}.

The collection O 4 of observables of type A consists of all subsets of CA(1, A) of
the form Ry. Since for any g : B — v and f : A — B, f*R, is just Ry,,, the
association A — O4 equips CA with a notion of observables (which we shall refer
to as the standard such notion). As CA is cartesian closed, the associated notions of
observational preorder < and observational quotient CA (see §3.1) are well-defined.

6.1. Context lemma for CA
It is a familiar fact that the context lemma holds for PCF. The main result of this
section is that the context lemma also holds for the category CA of computational
arenas and innocent strategies with respect to the standard observational preorder.
Recall (from §3.3) that this is the same as saying that the observational quotient
CA is order-extensional.

THEOREM 6.1 (Context lemma).  The observational quotient of the category of
arenas and innocent strategies is order-extensional, with respect to the standard
observational preorder. That is to say, for any innocent strategies o, T of the arena
A= B,

o<1 <= a0 <a;7 for all innocent strategies a of arena A.

We devote the rest of the section to the proof. One direction (“=") of the proof
is almost obvious. For the other direction, we appeal to a correspondence result
between compact strategies and a class of syntactic objects called finite canonical
forms.

6.2. Proof of the context lemma for CA
W.lo.g. we shall assume that ¢ is the only program type. We first prove the
direction “="” of the context lemma. The argument is essentially a consequence
of the cartesian closed structure of the category CA. For any innocent strategies
o and 7 of the arena A = B, take any maps ¢ : 1 — A and 6 : B — 1. By
the universal property of the function space construction, we have the following



equation of maps:

1 A B

o (A= B) (idLz)

A=BxAZ . B

Let a: (A = B) — 1 be the following composition of maps:

(idLz)

(A = B) A=BxaZ .p 5

Clearly x;0;6 = o0;a. By exactly the same reasoning, we also have z;7;6 = 7;a.
Hence if o;al} implies 7;al} for every a : (A = B) — 1, then z;0;0] implies
xz;7;0| foreach z : 1 — A and § : B —» 1 as required.

6.3. The harder direction

We shall now consider the other, harder, direction. Our proof appeals to the
correspondence between compact innocent strategies and a class of syntactic objects
known as finite canonical forms as set out in §7.3 and §7.6. The reader is thus
advised to take the Context Lemma on trust, skip the proof in this section on first
reading, and return to it after reading §7.

Take a compact innocent strategy o of an arena A. Observe that only the ques-
tions and some of their associated answers of a certain subarena of A appear in the
corresponding game tree of o. The definition of the graph of the innocent function
fo — being a finite collection of pairs of the form “(P-view, P-move with pointer)”
— depends only on a finite subarena of A. In §7.6 we define the o-subarena of A to
be the (necessarily finite) subarena of A consisting precisely of those questions and
all associated answers that appear in the graph of the innocent function f,.

Take arbitrary arenas A and B, and innocent strategies o and 7 of arena A = B
as in the statement of the Context Lemma. To prove the direction “<”, because
of continuity, there is no loss of generality in considering compact strategies o and
7. For any fixed compact strategies o and 7, a moment’s thought should reveal
that it suffices to prove the Lemma by regarding o and 7 as compact strategies of
any finite subarena of A = B that contains both the o-subarena and 7-subarena
of A = B. Thus it is enough to prove the following proposition.

PROPOSITION 6.1. For compact innocent strategies o and T of a finite arena
A=A = A", ifao Sa;7 for every a: Ay theno S 7.

Proof. Write 0 <™ 7 for the relation a0 < a;7 for every a : A;. We shall
prove the proposition by induction on the size of A = (4; = A'). The base case is
obvious. Suppose the proposition holds for arenas smaller than A.

Claim Let o be a compact innocent strategy of arena A. Suppose o0 <™ 7 : A. For
any arenas B = By, -+, By, each of which is smaller than A, and for any canonical
form

fiA g :By,--,gx: B F Clf;g]:¢



(corresponding precisely to an innocent strategy of the arena Ax By x---x By = 1),
then

Clo;fldn = Clr; 8] 4n

for all innocent strategies 5: B.
Proof of the Claim By continuity, it suffices to consider only finite canonical

form (rcF) C[f; §] and compact strategies 8;. We shall prove the claim by induction
on the size of the FCF C[f; g]. Consider the shape of C[f; g]. Suppose

-

Clf; 7] = case f(Ahy : Di.ai[f;§. 7)) -+ (M = D[ f5 55 Bin)) [diLf5 @llorsr
where for each 1, ﬁz =Dj1,---, Dy, and
frAG:Bhi:D; v alf;ghi

Since the FOF a1[f; 7, h1] is smaller than C[f;§] (and each of D, is a subarena of
A), by the induction hypothesis of the claim, for any ¢ : Dy,

= =

al[”?ﬁaé]un — al[T;ga{s]U’n'

Since D1y X - -+ x Dy, = 1 is smaller than A, by the induction hypothesis of the
proposition, we deduce that

)\h,_; :ﬁl.al[a;g, h_i] < )\h,_i :ﬁl.al[r;ﬂ,hZ] . D= (5)

Consider the compact innocent strategy represented by
1:Dy =t F  ol(Ahs : Dy.as[o; 5. ha]) -« (Ao : Doyt [0 B, Bon]) - 1.

(Strictly speaking, we should prove that the above syntactic expression, which is not
a FCF, properly defines a compact innocent strategy.) Let [ : D=k E[l] : ¢ be the
FCF representing the strategy. Suppose E[)\h_; : Dy.ay [o; 57 h_;]] U k; then by (5), we
have E[/\h_; : Dy .ay [T5 ﬁ, h_;]] U k. Repeat this for holes of types Dy = Lyoo e, D, =1
successively, we get

o(Ahy : Dr.ailr: B,1n]) -+ (M = D73 B, i) U .

Note that D; = 1 is a subarena of A;. Since o <~ 7 by assumption, we can deduce
that

T(Ahy : Dy.ai[m; B,11]) - - (Mg = Dot [75 5, o) 4 .

Now suppose C[a; 5] | n. Then for some 0 < k < 7,

-

o(Ay 2 Dy.ai[o; B, h1]) - Aho : Don-am [0 B, hon]) Uk and — dy[o; 6] U n.

-

As di[f; g] is smaller than C[f; §], by the induction hypothesis of the claim, di[r; 5] §
n. Hence we conclude that C[r; 5] { n; and this establishes the claim. |

We can now conclude from ¢ <™ 7 that 0 <7. W

This completes our proof of the Context Lemma.



Part III. A fully abstract and universal game
model



7. A FULLY ABSTRACT DIALOGUE GAME MODEL OF PCF

In this section we show how PCF may be interpreted in the category CA of
computational arenas and innocent strategies. This interpretation is computation-
ally adequate and the derived interpretation in the observational quotient CA is
order (or inequationally) fully abstract for PCcr. Full abstraction is obtained as
a consequence of a strong definability result: not only are all compact innocent
strategies (of PCF-types) definable in P, but the valuation map actually gives an
order-isomorphism between syntax (a class of finite canonical forms of a PCF-variant
called P ordered by the standard 2-matching) and semantics (compact innocent
strategies ordered by set inclusion). The language P is just PCF extended by a
family of definition-by-cases constructs. We conclude this section by examining in
some detail two instructive examples: the innocent strategies defined by a type-2
and a type-3 functional respectively.

7.1. Semantics of pcr in CA

PCF-types. For any PCF-type A we define the interpretation [ A] as a compu-
tational arena recursively as follows:

[o] < B,
[.] = N,
[4: = A] = [A]=[4:];

where N and B are the natural numbers and boolean computational arenas defined
in Example 4.1. Note that the forest of questions of an arena which is a PCF-type
is an (inverted) finite tree i.e. a finite poset with a unique top element (the initial
question) such that the upper set of each element is a finite linear order. Further
all questions are just “copies” of the initial question at program type, and answers
are “copies” of the natural numbers and / or booleans.

Convention. In the following we shall often confuse syntax (of both PCF-types and
terms) with semantics and write the interpretation of a PCF-type A also as A (and
similarly for PCF-terms s) provided it is safe to do so. If there is a possibility of
confusion, we shall denote the dialogue game interpretation as [ A]™ (and [s]™).
Thus we can reserve N for the usual natural numbers of mathematics.

PCF-terms. For each PCF-type A, the (intensional) domain of type A is the set
of global sections of the arena A. As we have seen earlier, this is just the collection of
innocent strategies of the arena A ordered by set inclusion. The domain of type ¢ is
the standard flat CPO of natural numbers: the least element is the “empty strategy”
— one that has no response to O’s opening question. The denotation of a natural
number n is the strategy that returns the answer “}%,” to O’s opening question

“ [L »”

(We shall write “|%,” variously as “|,,” or simply n whenever the type information

is clear from the context.) We shall just state an elementary observation.

PROPOSITION 7.1. This interpretation of PCF is standard in the sense of Plotkin
[61]. [ ]



FIG. 6. Trees of questions of arenas (¢,¢) and (o,¢,t,¢).

The basic arithmetic constants are straightforwardly interpreted as innocent
strategies. We consider the interpretation of the successor and conditional for
illustration. Questions of the respective arenas are annotated with their respective
occurrences as in Figure 6. The innocent strategy [succ] : (¢,¢) is defined by the
following innocent function: for n > 0,

[ = (1
[(1)n = ]n+1-

The innocent strategy [cond’ ] : (o,¢,¢,¢) is defined by the following innocent func-
tion: for n ranging over the natural numbers,

/

[ =
[+ (1) = (2
[ (o) = (3
[ (e 2)n = In
LG G = e

The interpretation of A-abstraction and application is completely determined by
the cartesian closed structure of the category CA. We regard this as standard and
refer the reader to [49, 21] for a systematic treatment.

Remark.

(i) Any partial function can be numeralwise represented in CA in the way that
successor can. For simplicity we restrict to the case of one variable. If ¢ : N — N
is a partial function we have an innocent strategy [¢] defined by the innocent
function:

[ =
[- (1) = ]y whenever ¢(n) is defined.

(ii) For any partial function (and in particular for successor) there are many
different choices of innocent strategies which will numeralwise represent ¢ (in the
strong sense). We call [¢] defined in (i) the standard representation of ¢.



7.2. Fixed points

We give two different presentations of the interpretation of fixed-point operators
as innocent strategies. The first, a Tarski-Knaster style argument, follows more or
less standard lines in denotational semantics. The second highlights the observation
that the family of innocent strategies that correspond to fixed-point operators be-
have in a “parametric” way: they do nothing more than copying moves in a highly
uniform way. Our account of the second approach is informal. While it may seem
more tedious to describe than the first, the idea is actually simpler!

A standard denotational approach. We say that a cartesian closed category has
fixed points if it has a family of maps Y4 : (A = A) — A for each object
A satisfying the commuting diagram in Definition 2.1(ii). For each type A the
commuting fixed-point diagram is the following equation

YA = Af:A= AFYYS).

Take a cartesian closed category C which is enriched over cPOs (so that not
just composition but also the respective natural isomorphisms which characterize
products and function spaces are continuous). We refer to the enriching ordering
of the homsets as the given ordering. In such a category, fixed-point operators
Y4 may be interpreted as the least (with respect to the given ordering) fixed point
of the following simply-typed A-term:

F = M :(A=A)= AN A= Af(Ff)

which has type ((A = A) = A) = (A = A) = A. Since C is cartesian closed, F
has interpretation as a map from (A = A) = A to itself. Writing the details out
in full, we define

Fo L | (A=A)=A

Fril S Af A AfC(F L)),
———r

n+1

where 14 is the least element of the homset C(1,A4). By assumption the lub
Lneo F" with respect to the given ordering (which we write as Y*) is a well-
defined map (A = A) — A. Foranymapg: (A= A) — Aanda: A — A, we
write application g - @ to mean (g,a);ev. (We shall blur the distinction between
a map g and its function space transpose g.) In such a category, application is
continuous

(|_|qn) a = |_|(qn -a)

because pairing, transpose and composition are. Note that we do not need order-
extensionality.



To see that the fixed-point diagram commutes in C, we have

A A= Af-4-f)

AfcA= AL fC--(fL)--)
n+1

= UAA=AfC-(FL))
————

n+1

YA

Hence C has fixed points.

Suppose C is equipped with an observational preorder (defined with respect to a
notion of observables). By Proposition 3.1 the observational quotient C is an order-
enriched category which inherits the cartesian closed structure from C. However
the enriching structure need not be a cp0. Nonetheless since the observational
preorder is preserved by composition, the fixed-point diagram in C commutes if
and only if the following equation (of equivalence classes) holds:

Yal = [Aaxasid x Ygsev].

This equation follows trivially from the fixed-point equation in C.

To summarize we have shown that:

PROPOSITION 7.2. Any cartesian closed category C enriched over CPOs has fized
points. With respect to any observational preorder the derived quotient C also has
fized points. [ |

As an immediate corollary we can conclude that both CA and its observational
quotient CA have fixed points.

Fized-point operators as uniform strategies. For any arena (not just those which
are PCF-types) A we describe a strategy in (A = A) = A. First we need to
distinguish between moves in the different copies of A as in Figure 7:

e The main O-component. These are moves hereditarily justified by the opening
O-move in A (on the right) only. That is to say, they are not hereditarily justified
by P-moves which are opening moves in the copy of A in the middle.

e The P-components. These are moves which are hereditarily justified by an
instance of an opening move in A made by P, but not by opening A-moves made
by P dependent on it. There may be many such.

e Subsidiary O-components. Moves hereditarily justified by a sequence of three
initial moves in A [-(-[.

In a game according to the strategy we describe there will be a correspondence
between O- and P-components. The first P-components to occur is the dual of
the main O-component. The others in order are the duals of the subsidiary O-
components in order. At any stage after P has moved the duals will be copies of
each other. The strategy can be succinctly described as follows: suppose O has just
moved:



(A = A ) = A

subsidiary P-components

main O-component

O-components

FIG. 7. Components of YA : (A = A) = A.

e (Case 1. Opening move: we copy to create first P-component.

e Case 2. O opens a new subsidiary component: we copy and create new P-
component.

e Case 3. O moves in some existing O- / P-component: we copy the move in the
dual P- / O-component.

Arguing inductively it is easy to see this makes sense. The question is:

e is it an innocent strategy?

e does it satisfy the fixed-point equation / diagram?

The usual situation after an O-move is that the play has been p- (-r-[  where
“(” explicitly justifies “[”, or p- (-r-)  where “(” explicitly justifies “)”; and so the
P-view is "p™- (‘[ or "p7'- (-) where the moves (:[ or (-) are in the same component.

5

Then the P-move “(” displayed is a copy of an O-move “[1” in the dual component,

and this O-move “[;” occurs at the end of "p™; hence the copy reply “(1” or “|;” is
a legitimate move independent of the way we reached the particular P-view, so we

can safely reply "p™ - (:[-(+ or "p™- (+)-]: as appropriate on the basis of the view.

The composition

1xY ev

A A) S (Ao Ay x (4o 4) 22X (4o a)xa A

can be “represented” in parallel composition and hiding form as in Figure 8. We
draw some copying paths through the picture in Figure 9.

It does not seem accidental that these three paths (in Figure 9) “partition” the
whole picture. In the composed game we use the terminology (main O-component,
P-components, subsidiary components, the dual of a component) already intro-
duced. Now we can tie down the behaviour of the composed strategy by making
the following observations.
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1. After the opening O-move in the main O-component, P copies along path (1)
(with reference to Figure 9) to give a reply in the first P-component (the dual of
the main O-component). Thereafter any O-move in either of the two components
is answered by copying along path (1) (in either direction) to give a P-reply (which
is just a “copy”) in the dual component.
2. After the first O-move (if any) in the first subsidiary O-component, P copies
along path (2) to give a reply in the second P-component (its dual). Thereafter
any O-move in either of these two components is answered by copying along path
(2) (in either direction) to give a P-reply (just a “copy”) in the dual component.

Furthermore exactly the same applies mutatis mutandis in the case of any sub-
sidiary O-component which begins with an O-move justified by the opening P-move
in the first P-component. [Perhaps it is worth noting that each of these further O-
components involves P opening a fresh version of Y on the hidden sketch pad i.e.
the “returning” portion of path (2) involves a fresh version of Y in each new case.]
3. After the first O-move (if any) in a subsidiary O-component not as in 2, P copies
along path (3) to give a reply in a new P-component (its dual). Thereafter any
O-move in either of these two components is answered by copying along path (3)
(in either direction) to give P-reply (just a “copy”) in the dual component.

It follows from the three observations that the composed strategy behaves exactly
like Y: that is

(A= A) x (A= 4) 2% (45 4)x 4

A ev

A=A A

commutes.

Remark. We have seen two ways of representing innocent strategies formally:
first as a collection of paths (legal positions) of the corresponding game tree, and
secondly as an innocent function. Even for relatively simple PCF-terms, precise
description of their denotations as innocent strategies in either style very quickly
becomes unwieldy and opaque. Neither style is optimised for capturing the uni-

10 or parametric nature of (most) innocent strategies which are denotations of

form
PCF-terms. Intuitively a uniform strategy is one whose behaviour does not depend
on the type to which it is instantiated. For example the identity strategy of the
arena A = A copies moves from one component of A to its dual component regard-
less of the complexity of the arena A. It would be highly desirable if an expressive
calculus which lent itself to a succinct description of such uniform strategies were
available.

Using the preceding analysis of the interpretation of fixed-point operators as a

guide, we seek a calculus for describing strategies with the following capabilities:

1. generating new names,

10The connotation here is with parametric (as opposed to ad hoc) polymorphism in the sense
of Strachey (see e.g. [73, 63]).



2. copying moves,
3. communication in the style of message passing,

3. private links (so that there is no ambiguity as to which pending question we
are answering),

4. branching constructor (corresponding to definition-by-cases)

3

5. replication.

In addition there should be a polymorphically typed-version of such a calculus to
handle uniform strategies. It is worth noting that despite being models of higher-
type functions, moves of our games are just copies of program-type objects. Hence
if moves are the only things we communicate, a process calculus which passes
program-type signals (e.g. names) as opposed to more complicated objects (e.g. pro-
cesses) would suffice as a first attempt. This naturally brings to mind the 7-calculus
[54]. We have a way of expressing innocent strategies as terms of an appropriately
sorted polyadic m-calculus (see [53]). This representation reflects the behaviour of
the innocent strategy exactly. At the same time this gives an apparently new en-
coding of PCF (and hence the simply-type A-calculus) in the w-calculus. This and
further developments are presented in [40].

7.3. Characterization of compact innocent strategies of PCF-arenas

A major result in this section characterizes compact innocent strategies in terms
of (a class of) finite canonical forms (FCF) of a language which is essentially PCF
extended by a family of definition-by-cases constructs. This characterization is very
tight: there is a one-to-one correspondence between compact innocent strategies
and FCFs. More precisely the valuation map which takes FCFs to compact innocent,
strategies gives an isomorphism between syntax — ordered by the 2-match ordering
— and semantics. An important consequence of this correspondence is the full
abstraction result for PCF.

PCF extended by definition-by-cases. We introduce a language called P (for
Platek or Plotkin) which is obtained from PCF by adding a family of definition-
by-cases constructs. Each such construct is indexed by a natural number (which
we shall often omit in the interest of readability) corresponding to the number of
cases considered by the definition. Formally the language P is defined by adding
the following typing rule to those that define pCF: for each program type 8 and
k>0:

to: 3 -+ tp:p st
casel s = [0 = to|1 = t1]--- |k =>1t]: 8

Notation. There is no harm in assuming that ¢ is the only program type and we
shall do so in the rest of this section. Also we shall use two kinds of shorthand
freely.

e First we write case s[tg| - - - |tx] to mean the notationally cumbersome

casej, s = [0 = to|l = t1]--- |k = t1].



e Secondly for 1 < --- < 1, =1, we write case s[r; = t1|---|ry = 1] to mean
case sfug| - - - |uy], where for each 0 < i <1

) t; if i =r;, for some j,
u; s
Q) otherwise.

The operational semantics of the language P is obtained from that of PCF by
adding the following rules:

s 7 t; Jv
4 il 0<j <k
case s[to| -+ tx] Y v
The case construct
TiLyYoil, o Ynit o ocasex[yo| - |yn] it
has an obvious interpretation as an innocent strategy of the arena (¢,---,t) repre-
——
n+3

sented by the following innocent function:

[ = (1

[ (1) = (i1

[ ()i Grr)m = 1

We define the Q-match ordering <q over terms of P as follows: for any n > 0,
and for any P-context!! C[Xy, -+, X,], we have

s=CQ,---,0] <q t

whenever t = Cluy, - - -, u,,] for some P-terms uy, - - -, u,,. For any k' > 0, we identify
the term case s[to| - - - |tx] with
case s[to| - - - |te] Q|- - - 9]
——
kl

It is easy to see that <q is a partial order over terms of the language P.

Finite canonical form. For any PCF-types Ay, ---, A, where n > 0, we define
the collection

FCFf1: A1, -, fn t Ayl

of (program-type) finite canonical forms (FCFs) of P with free variables appear-
ing in the list f1,---, f,, as follows:

'The raw P-contexts are defined as follows:
C = X | z | ¢ | X:AC | Ci1-Cy | Y(C) | caseC[Cy|--|Cy],

where X ranges over meta-variables for “holes” and ¢ over constants of PCF. A P-context is a
raw context which is type-correct.



e The program-type 2 and n > 0 are in FCF[f: /T]
e For any f:gz,fl cAy,-+-, fn: A, and for any 1 <7 < n where

A; (C1, -+, Cm,1) and where

Cj = (Djly'.'yDjpjyl’) foreachlgjgm,
if r. € FCF[f: A] for each 0 < ¢ < k and if t; € FCF[f: 4,4 : D;] for each
1 <7 <m,then

-

case f;(Ay1 : Dit1) - (AYm : Dont)[ro| -+ |re] €  FCF[f: Al

Note that a FCF is by definition of program type; and it is either 2, or a number
n, or a definition-by-cases construct.

A map from finite canonical forms to compact innocent strategies. For PCF-
types A = (Ay,---,Ap, 1) and for any s € FCF[f; : A1,---, fn: Ay], we define by

3

recursion a partial function
OAf: As] : {P-viewsof A} —s {P-movesof A}

and prove simultaneously that 0[/\f.s] is a compact innocent function. There are
three cases.

Case 1: s is Q. The function 9[)\]?.9] is the everywhere undefined partial function.
Case 2: s is a number n. The function 9[)\]?.71] is the least partial function that

“[4” of A to the answer n.

maps the initial question
Case 3: s is the case-construct case f;(Ayi.t1) - (Aym-tm)[ro| - - -|rx] where i is a

number between 1 and n where

A;

I
Q

) "7cm7[‘)
Cj = (Djlg"';Djpj;If)

with r. € FCF[f: /f] for each 0 < ¢ < k; and t; € FCF[f: /_f, v; :5j] for each
1 <j < m. Write B; = (/T 577L). By the recursion hypothesis 9[)\]?.7“6] and
G[Afyf}.tj] are compact innocent functions. We then define [Af.s] as the least
partial function satisfying the following:

e O[\f.s] maps “[A” to the initial question “(A“’ of A4;in A

e foreach1 < j < m, ifﬁ[/\fy'_}.tj] maps [%7-p to m then A\ f.s] maps [A-(
tom

e for each 0 < ¢ < k, if O[Af.r.] maps [*-p to m then O[Af.s] maps [A : (A"-)f" P
to m;

A; Cj
[ -7.p

“(A4i7 and “[“” to denote the initial questions of A; and C; re-
spectively as they occur in A, and where “)4i”

where we write
is the answer ¢ associated with the
question “(4i”. For the definition to be sound, we need the following lemma, whose
proof is straightforward and we omit it.



LEMMA 7.1.

()If [A-(4[“p is a P-view of A then [Bi.p is a P-view of B;. Further if
the legal position [Pi-u of B;, in which the question “[%i”
swered, is in Z[ﬁj 0\ fyj-t;] then [4-(Ai.[% u is a legal position of A, and is in
Z[A‘(Ai_[Cj‘pe[Af.S].

(ii)If [A-(Ai)A - pis a P-view in A, then [*-p is a P-view of A. [ |

is not explicitly an-

It remains to show that #[Af.s] thus defined is an innocent function; its finiteness
is obvious. Suppose #[Af.s] maps the P-view [4-(4:.[%.p (say) of A to a P-move
m. By definition of G[Af.s], G[Afy}.tj] maps the P-view [Bi-p of B; to m. By the
recursion hypothesis (H[Afy'}.tj] is innocent), Z[Bj_pe[)\fy'}.tj] is non-empty; and
so, by (i) of the preceding lemma, so is Z[A_(Ai_[cj » H[Af.s]. Take any legal position
(4w e Z[A_(Ai_[cj _pG[/\f.s]. Since the innocent function G[Afyf}.t]’] maps [Bi-p
to m, we know that m is explicitly justified by some unanswered question which
appears in the P-view [Pi-p. By the preceding Lemma, m is explicitly justified by
some question which appears in [4-(4i-[%.p which by assumption is the P-view of
[4-(4i-u. Hence we infer that [*-(4-u-m is a legal position of A, and we are done.

For FCFs s and s’ in FCF[fy : Ay, -+, fn : Ay] suppose 8[Af.s] C O[Af.s']. W.lo.g.,
we may assume that s is a definition-by-cases construct defined as in the preceding.
Since B[Af.s] maps “[4” to “(“” and that [Af.s] C O[Af.s'], by definition of
O[Af.s'], we infer that s’ is a definition-by-cases construct of the shape

Af.case fi(Mi-t1) - Ayt )| -+ |7

We claim that G[Afy'}.tj] C G[Afy'}f;] To see this, suppose H[A,fy'}.tj] maps the P-
view [Bi-p to some move m. By definition of H[Afy'_}.tj], this must mean that [\ f.s]
maps [4-(4-[“-p to m. By supposition G[Af.s] C 9[)\]?.5’], and by the definition
of 9[)\]?..@’], we infer that G[Afy'}f;] also maps [Bi-p to m. Hence, by the recursion
hypothesis, we have #; <q ). Essentially the same reasoning justifies r. <q 7.
Hence we have s <q s'.

To summarize we have proved:

PROPOSITION 7.3. For any ¥CF s,s' € FCF[f1 : A1, -+, fn : Aul,
(i)the partial function 0[/\f.s] is a compact innocent function of the arena A =

(Ay,--, Apt).
(ii)s <q s' if and only if 0[/\f.s] C 0[/\f.s’]. [ ]

A map from compact innocent strategies to finite canonical forms. We show that
all compact innocent strategies of PCF-types are definable in PCF by induction on
the size of the defining innocent function.

PROPOSITION 7.4. For any PCF-type A = (A1, -, An, 1) and any compact inno-
cent strategies o and o' of A,



Aq A; An
//(% | |
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FIG. 10. Shape of arena A.

(i)there is a ¥CF s, € FCF[fi : Ay, -+, fu : A,] of P such that Af: As, defines
o

(it)o C o' if and only if s, <q So'-

Proof. For o = o ranging over compact innocent strategies, we define the FCF
S € FCF[f] ZA],"',fnZAn]

associated with o by recursion on the size of the domain of f. Suppose 0 = oy is
a compact innocent strategy of PCF-type A = (A, Aa,- -+, Ay, t). The trivial cases
are:

e the strategy o does nothing, in which case, the term )\f.ﬂ defines o;
e the strategy ¢ immediately outputs a number [/, in which case, the term )\f.l
defines o.

There are two cases, depending on whether A; is the program type. We consider
the non-trivial inductive case. Suppose in response to Opponent’s first move (which

A”) LL(A]”

must be the initial A-move “[*”), o asks an A;-question, say.

A] = (01:027"'70171:[')'

We imagine that Opponent chooses initially to compute in C; by posing a Cj-
“%” so the P-view at this point is [4-(41-[%5.
may subsequently switch from C; and bring in other Cj; but the P-strategy in

question Of course, Opponent
question is determined independently of that for whenever Opponent raises the
initial question in Cj, Player’s view immediately collapses to [4-(41-[%5".

Suppose that C; = (Dj1,Dja,- -+, Djp,,t) and consider the ensuing moves and

the effect on Player’s view. The P-question moves are of two kinds, see Figure 10:

e (M1,--- (" and questions which are hereditarily justified by them:;
o (Pin ..., (D“’J‘ and questions which are hereditarily justified by them.



”

So every P-view until “[“3” is answered can be regarded as a P-view in the arena

corresponding to:
(Djla" '7Djpj7A17“ '7An7[’)'

Thus we derive from our strategy o a strategy o; in such an arena. Note that f;,
is smaller than f, — f,, is defined on the P-view [4.p if and only if £, is defined
on [4.(41.(%.p. Hence, by the induction hypothesis, we have a term

—

)\yjl . Djl- e -)‘yjpj . Djp]. )\fl . A1 e )\fn . Anfj(’lj-gl f)

whose interpretation is o;. In the case where C; is the program type ¢, then the
corresponding term is Afy : Ay -+ fi, ¢ An.tj(f).

Note that the o;’s completely determine the action of o up to the moment that
Opponent answers the question “(“1”. Now consider the position once “(41” is
answered by an O-answer “)”: the P-view is [4-(41.). The O-answer ranges over a
finite number of possible natural numbers, say ¢y, -, ¢ in increasing order. When
we continue (Opponent will have “forgotten all that has happened”), Player’s view
will thereafter always start with [4-(41.); so for each value ¢1, - - -, cx, we get smaller
strategies p1, - - -, pr telling us how o continues. We get by the induction hypothesis

the corresponding terms:

—

A1t A A s Apun (f),

Afi i Avc A Apaue(f);

whose interpretations are p1, - - -, py respectively.
We write ¥ = yj1,- -, ¥jp,- Now consider the term:

Af s Acase fi(Ajit1) - (Mgmatm)ler = ur ()] - ex = ur(F)].

It is easy to see that o is the interpretation of the above term.
The second part of the Theorem is proved by induction on the size of the strate-

gies. We leave the essentially straightforward details to the reader. M
Putting the two preceding results together we can say the following.

THEOREM 7.1 (Strong definability). There are maps in opposite directions: for
any PCF-type A = (Aq, -+, Ap,t)

FCF[f1 : A1, -+, fn: Ay] === { compact innocent strategies of A}

fiiAy, o fni Ap ks O[\f.s]

flela"';fn:Anl_S(r | 0

(the choice of variables f: A in the above is of course immaterial). The pair of
maps defines a bijection and hence (by the two preceding propositions) an isomor-
phism between finite canonical forms and compact strategies. It is straightforward



to see that for any s € FCF[f: fY], the compact innocent strategy associated with s
coincides with its denotation in CA; that is to say

O0fs] = [AFs]

Remark.

(i) In Proposition 7.1 we only consider the case of PCF generated from one pro-
gram type . Nevertheless it is entirely straightforward to extend the same argument
therein to deal with PCF proper i.e. where both ¢ and o are program types. The
boolean conditionals would then play exactly the same role as that of definition-
by-cases constructs.

(ii) The strong definability result can be straightforwardly extended to innocent
strategies in general. Of course the correspondence would then be with possibly
infinitary canonical forms.

We can take advantage of the Strong Definability Theorem as a representation
device to explain the structure of the dialogue game model. For example it is easy
to see that the arena o = o is infinite: the following represents a family of distinct
strategies:

Az :ocond z (cond z (---(cond zt Q)---)Q) Q

~

e

n

corresponding to the prime innocent strategy generated by

7.4. Strong adequacy and order full abstraction
Building on the definability result we can now prove that dialogue games and in-
nocent strategies give an order-extensional, order (or inequationally) fully abstract
model for PCF.

PROPOSITION 7.5 (Strong adequacy). For any P-program s, and for any value
v, s v if and only if [s] | v (in the category CA ).

Proof.  Our proof is similar to Plotkin’s proof of adequacy of the Scott func-
tion space model for PCF. Plotkin used a reducibility-style argument pioneered by
Tait [74] and Girard [31]. Since the argument is standard and well-documented

(see Plotkin’s proof in [61]; see also [34] for an exposition), we omit it here. B

PROPOSITION 7.6. For any PCF-terms s and t of the same type, s & t in PCF if
and only if s © t in the extended language P.



To prove the proposition, consider a translation of terms from P to PCF s — s
defined by recursion as follows:

st = 5t

Ao :As & \x: A3
Y(s) = Y(3)

case sto| - - [tr] = cond(eqs0)tg(cond(eqsl)ty - - - (cond(eqsk)tL Q) - - -);

where eq is a PCF-term of type (¢, t,0) satisfying

e equwll if and only if both u{} and »l}, and further,
e equo | t if and only if v | n and v |} n, for some natural number n.

In addition the translation preserves variables, constants and all PCF-terms. Note

that for any P-terms s and ¢, s[t/z] = 5[t/ z].
LEMMA 7.2, For any closed term s of the language P, and for any value v (which
may be an abstraction), s |} v (in P) if and only if 3 ¥ (in PCF).

Proof. We sketch the proof of the direction “<=” as an illustration; the other
direction may be proved in a similar way. The proof is by induction over the rules
that define the relation s || v. The base cases are trivial. Consider the case of the
following rule:

s t; Jo .
0<ji<k
case s[to| -+ |tr] Y v SIS
Suppose case s[to| - - - [tx] 4 v in PCF. Since case s[to| - - - |tx] is

cond(eq3s0)ty(cond(eqs1)t; - - - (cond(eqsk)t,Q) - - -),

this can only be so provided eqsi |} t (or equivalently 5 || ) and ¢; |} v, for some i. By
the induction hypothesis, s | ¢ and ¢; {} v; and so, by the rule in question, we have

case s[to| - [tg] Yv. W

The direction “<” of Proposition 7.6 is immediate since a program context of
PCF is also a program context of P. To prove the other direction, take a program
context C[X] of P such that both C[Af.s] and CJt] are programs, where s and

t are PCF-terms. Suppose C[)\f.s] U v. Since C[)\f.s] is 6[)\]?..9] and 7 is v, by
Lemma 7.2, C[Af.s] | v in PCF. Assuming s & ¢, we have C[t] | v. Hence, by
Lemma 7.2 again, C[t] | v in P. This concludes the proof of Proposition 7.6.

Take any (closed) PCF-terms s and ¢ of the same type, A say. Write [s] for the
denotation of s in the CA. By definition [s] < [#] means that for any innocent
strategy p of the arena A = 1, for any number n,

[slipdn = [t];pin.



[ [12

FIG. 11. Tree of questions of arena ((o,0,0), 0).

Since the map p — [s];p from A = 1 (the dI-domain of all innocent strategies of
A = 1 ordered by inclusion) to ¢ is a continuous function between cpos, [s];p | n
if and only if [s]; v | n for some compact approximant v of p. Hence it suffices to
consider only compact innocent strategies v of the arena A = .

So suppose s £ t in PCF, and suppose for some compact innocent strategy v,
[s];v U n. By the P-definability of compact innocent strategies (Proposition 7.1),
there is a FCF h corresponding to v such that [hs] | n. Since CA is strongly
adequate for P (Proposition 7.5), this is equivalent to hs | n in the extended
language P. Since s £ ¢ in PCF, by Proposition 7.6, s £ ¢ in the extended language
P. Hence ht | n which is equivalent to [ht] § n in CA, by the same adequacy
result as before. To summarize we have proved:

THEOREM 7.2 (Full abstraction).  The observational quotient CA of the cate-
gory CA gives rise to an order-extensional, order fully abstract model of Pcr. N

7.5. Examples and counter-examples

A type-2 strategy. Consider the type-2 PCF-term (see e.g. [11, p. 129] or [24])

F = Af:(0,0,0).f(ftQ)(fQ) : ((0,0,0),0)

For ease of explanation we label the questions of the arena ((0,0,0),0) as in Fig-
ure 11. We describe the innocent strategy denoted by F' informally in terms (see
Figure 12) of its interaction with the innocent strategy “left or” l-or which corre-

sponds exactly (in the sense of Theorem 7.1) to the PCF-term
l-or = Az :o0.\y:o.condzt(condytf) : (0,0,0).

The legal position in Figure 12 is precisely the trace of the computation F - l-or.
Formally it is the uncovering of the maximal legal position “[°-];” in accord with

(F,l-or) ev

1 ((0,0,0),0) x (0,0,0) — o.

The dotted arrows pointing “backwards” are the justification pointers. We num-
ber the moves from 1 to 10 for ease of identification. In response to the opening
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FIG. 12. Trace of F - l-or.
move “[”, Player makes the move “(;” corresponding to the head variable f of F.

»

Opponent, playing l-or and regarding “(;” as its opening move, raises the question
“[1.1” corresponding to the head variable z (left argument) in l-or. From this point
onwards until the 3rd move is answered (in the 8th move), Player plays the substrat-
egy Fi = Af : (0,0,0).ft) corresponding to the subterm ftQ2 of F. The strategy
F regards the 3rd move “[;;” as its opening move, and responds by raising the
question “(;” (4th move) corresponding to the head variable f in F;. Opponent
regards the 4th move as an opening move (distinct from the 2nd move) of a new
play. He responds as before by raising the question “[1.;” (5th move) corresponding
to the left argument in accord with l-or. This corresponds to querying the first of
the two arguments of the head variable in F; = Af.ft{), so Player supplies the
answer “J;” (6th move). The strategy I-or now has enough information to supply
the answer “);” to Player’s earlier question (4-th move). In response Player con-
cludes the substrategy F; by supplying the answer “|;” to Opponent’s question in
the 3rd move. Opponent can now respond to Player’s question in the 2nd move by
returning the answer “),”; whereupon Player concludes the play by “],”, echoing
the preceding move.

Remark. There can be no innocent strategy of the arena ((o, 0, 0),0) which tells
[-or and r-or apart, say, by mapping the former to t and the latter to f. This is just
as well in view of Curien’s observation in [24, p. 358]:



FIG. 13. (4, a (non) strategy that tells left-or and right-or apart.

((o, o, o), o) ((eo o o) o)
1 — —
— —
3 1 2
4 | |
\_1\ [
5 ~t ~t
. T~ \
—t —f

FIG. 14. @G>, another (non-innocent) strategy that tells left-or and right-or apart.

The type-2 function of type ((0, 0, 0), 0) which sends the left-or to t and the right-or
to f is not pCr-definable.

Curien’s observation highlights an important feature of PCF-style higher-type se-
quential composition: higher-order functionals interact extensionally with their
functional arguments.

One way to see why the preceding type-2 function is not definable as an innocent
strategy is to appeal to the correspondence between compact innocent strategies
and finite canonical forms (FCF) of the language P, and then argue syntactically
following Curien. It is instructive however to sketch an explanation from first
principles in terms of the definition of innocent strategy. Consider the strategies
(G4 and G defined informally in Figures 13 and 14 respectively. The question-moves
therein (all from arena ((0, 0, 0),0)) are annotated with occurrences as in Figure 11.
It is easy to see that both GGy and G5 take I-or to t and r-or to f. Fortunately neither
is an innocent strategy.

e (G1’s response in the 4th move (see Figure 13) violates the last-asked-first-
answered condition so that the two sequences of moves are not even legal posi-
tions. This is essentially the catch (and throw) facility which has been studied by
Cartwright, Curien and Felleisen in [18].

e In the case of G5, both sequences of moves in Figure 14 are legal positions, and
we definitely have a strategy. However (G5 is not innocent because its response at
the 6th move is different in the two cases despite the fact that both legal positions
have the same P-view (which is “[-(;-);”) when truncated at the 5th move.



FIG. 15. Tree of questions of arena (((¢,¢),t),¢).

The (counter-) example G illustrates well the rationale for studying strategies
which are invariant over P-views. This is the essence of innocence. |

A type-3 strategy. As another example we consider (much more briefly) the
interpretation of the following type-3 terms:

Fi = M ((b0),0).fOy e fOzey) = (((10),0),0)
Fy = A (), 0).fOy e fQzez)) = (((1,0),0),0).

We illustrate the strategies defined by F} and F, respectively in terms of their
interaction with the term

G = M:(no)gl = ((1,0),0)

The questions of the arena (((¢,t),t),t) are annotated with occurrences as in Fig-
ure 15. We present the play corresponding to F} G and F»G in Figure 16. We have
omitted the justification pointers of all moves except the 6-th. Note that F; and
F; are only subtly different: in their respective interaction with G, the underlying
sequences of moves (as a trace of the play) are identical, they only differ in the way
the 6-th move is justified. This example was communicated to us by Gandy and
Pani.

7.6. Representation of innocent strategies as canonical forms revisited

We have seen in §7.3 and especially in the proof of the Strong Definability The-
orem 7.1 how compact innocent strategies of PCF-arenas may be given precise
representation as finite canonical forms (FCF). Now we turn to the problem of
representing (compact) innocent strategies of an arbitrary arena A.

The forest of questions of A may be infinite and infinitely branching. Call an
arena pointed if its forest of questions is a tree; and call it basic if its forest of
questions is a singleton tree. It is worth noting the following fact concerning the
structure of arenas.

e Every arena A can be expressed as a (possibly infinite) product [],.; P; of
pointed arenas P;.
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FIG. 16. Two subtly different strategies.

e Every pointed arena can be expressed as a function space arena A = 1 where
A is an arena and ¢ a basic arena.

Correspondingly each innocent strategy o of an arena A is a tuple (o; |i € Z) of
component strategies o; of pointed arenas. We shall just show how a compact
innocent strategy of a pointed arena can be given a precise representation in terms
of a class of syntactic objects.

Take a compact innocent strategy o of A. Observe that only the questions (and
some of their respective associated answers) of a certain subarena of A appear in the
corresponding game tree of o. The definition of the graph of the innocent function
(corresponding to) ¢  being a finite collection of pairs of the form “(P-view, P-
move with pointer)”  depends only on a finite subarena of A. We shall call the
(necessarily finite) subarena of A consisting only of questions and all associated
answers that appear in graph of the innocent function f, the o-subarena of A.

The tree of questions of a pointed arena A = ([[;c; 4i) = 1 has the general
shape in Figure 17. There are three ways by which ¢, a compact innocent strategy
of A, can respond to the opening question “[,,”.

(1) o has no response
(2) o returns an answer ¢, say; or

(3) o raises the question “(4,”, say. Suppose A; has the form (Hjej Cj) =
where each C; is a pointed arena.



FIG. 17. Forest of questions of arena A.

Consider case (3). We shall assume that of the “level C” questions (see Figure 17),
Player has a non-trivial response only to O-questions [¢, -, [c,, (so these are
the only ones that occur in the graph of the innocent function of ¢). For each
1 < j < m, suppose C; has the shape D;j = 1+ where D; = [[, .x Djx and each Dy
is a pointed arena.

Following the argument of the proof of Theorem 7.1 in constructing the canonical
form corresponding to o, we would then arrive at an expression of the shape:

)‘.inEI Ai-case P4, (f)( )‘yl P 'al[f: yl]: B )‘ymnm-am[f: ym] ‘ ﬁ) [dk [f]]kEP

where

e P is a finite subset of the answers associated with “(4,”
o f : IljezAi F pa,(f) : Ar where pa,(f) is the projection onto the A;-
component of the product arena [[;.; A4;

o M Prailf,ml, o My P am[f,ym] | @) is a tuple of type [];c, C; such
that the only non-{) components are the ones on the l.h.s. of the vertical bar.

We shall call this expression the finite canonical form of o. We shall not elabo-
rate on the formal syntax of finite canonical form introduced here; suffice it to say
that it is a slight variant of that defined earlier in §7.3, adapted in the obvious way
to describe strategies of an arbitrary arena.

Though we have not spelt out in an entirely formal way, it should be clear how the
same representation scheme can be extended to a correspondence between innocent,
strategies in general on the one hand, and infinitary canonical forms on the other.



8. UNIVERSALITY

In this section we extend the full abstraction result (Theorem 7.2) by showing
the following;:

(i) every map between PCF-types in CA is PcF-definable in some (partial) func-
tion parameter;

(ii) every map between PCF-types in RA is pcF-definable.

(Recall from §5.6 the definition of the category RA of computational arenas and
recursive innocent strategies). Results of this kind are often called universality
theorems.

To establish the results we show that for every PCF-type A there is a PCF-term
ua:(t=>1)=>A

(we shall suppress the dependence of u on A) with the following property.

Suppose that o is an innocent strategy of type A with coding function ¢, as indi-
cated in §5.6. Let ¢, be the canonical strategy in . = ¢ associated to ¢, € P. Then
o is observationally equivalent to ¢,;[u], where [u] is the interpretation of u in
CA.

Tt should cause little confusion to drop the brackets and the bar; so henceforth we
write the more natural equivalence as u(¢,) ~ o.

Of course the existence of a u as described immediately gives (i). (Note that
definition in a partial function comes out of the proof but it is not difficult to
replace it with a total function if preferred.) For (ii) we know that if o is in
RA, then ¢, is partial recursive. Now by Proposition 7.5 CA is computationally
adequate. So by Proposition 2.9 ¢, is representable in the strong sense in CA by
the interpretation of a PCF-term s say. It follows (from the context lemma for CA)
that ¢, ~ s. Hence u(s) ~ o and we have (ii).

8.1. Retracts of pure types

The construction of (generalized versions of) the term u just described involves
a pretty standard “use of the recursion theorem” (here the fixed point operator).
However it seems right to sketch a proof in some detail. We do this in the notation-
ally simple case when A is a pure type (see below). There is no loss of generality as
the full result follows in view of simple coding facts. (However some best possible
estimates on the use of Y are lost in this approach.)

We start our simplifying scheme by introducing the notion of pure types which
are conventionally denoted by natural numbers n: the pure type (denoted by) n is
a particularly simple (PCF-) type of height n. For the rest of this section we shall
assume that ¢ is the only ground type.

DEFINITION 8.1. The pure types 0,1,2,--- are defined recursively by:

n+1 = (n=0).



Little confusion should arise from the (overloading) use of numbers both as

elements of N (and indeed strategies in CA) and as (names for) pure types. We
shall need a simple lemma.

LEMMA 8.1. Any pure type n is a retract of the pure type n+ 1 by PCF-definable
maps. Thusn<an+ 1 in T.

Proof. We have 0«1 via

n:0—= Az:n:1

f:1 = f(0):0,

and then proceed inductively. MW

When studying total type theories over the natural numbers, recursion theorists
standardly exploit the fact that any type A is recursively a retract of the pure type
ht(A4). However in the case of partial type structures the situation is more subtle.

We define by recursion the notion of the rank rk(A) of a PCF-type A.

k(1) = 0

rk(Aq) + 1 ifk=1
rk(AO7"'7Ak71:L) = ( 0)
max(rk(Ag), -, rk(Ag—1)) +2 if & > 2.

PROPOSITION 8.1. Any PCF-type of rank n is a retract by PCF-definable maps'>
of the pure type n. (So for any PCF-type A there is an n with A<n in T.)

Proof. We start by establishing the following:

LEMMA 8.2. Any finite product of a pure type n is a retract of n + 1.

Proof. By induction on n. In case n =0 we have 0 X --- x 0«1 via

(no, - +,ng_1) — Az :t.cond(eqz0)ng(cond(eqzl)n; - --)

12Here we mean maps of the PCF-type theory T (see Remark 2.3).



For the induction step, assume the result for  and let n be r + 1. Then

nx--xn = (r=0)x---x(r=0)
2 (r=0x---x0) CCC isomorphism
@ (r=(0=0)
= (rx0=0) CCC isomorphism
4 (rxr)= Lemma 8.1
4 (r+1=0) inductive hypothesis
= n+ 1L

Now we prove the proposition by induction on the structure of
A = (Ao, -, Ap_1,1).
Suppose k =1 and rk(A) = r + 1 then by the induction hypothesis
A=A=1) < r=0 = r+1L

Suppose k > 2 and A has rank r + 2. Then by definition rk(4;) < r for each i.
Hence

Ag X+ X A 1=t 4 rx---xr =0 by induction hypothesis
4 (r+1)=0 by preceding Lemma

= r+2.

8.2. Preamble to the main construction

Suppose that o : mg X --- X mg_7; — ¢ in CA is an innocent strategy whose
arguments are all pure types m; < n + 2. Then we have the following three cases:
Undefined case. o does not respond to the initial question “[”.
Constant case. o responds to the initial question “[” with an immediate answer
“].” for some value c.
Inductive case. o responds to the initial question “[” with the initial question “(” in
the i-th game m; (0 < i < k—1). Now the general circumstance is when m; = m+2
is at least 2 and we analyze this first. The only interesting response for O is the
initial question in (m + 1) which is now justified. The play until that question is
answered is (effectively) a play in the game

mXxXmg X -+ Xmy_1 =0,

and we write o’ for the strategy in this game derived from o. (See below for the
simple relation between the representing innocent functions.) The special circum-
stances when m; = 1 or m; = 0 are simpler. In case m; = 1, the only interesting



response for O is the initial question in 0 which is now justified. The play until that
question is answered is effectively a play in the game mg X --- x mg_1; = 0 and we
write ¢’ for the strategy in this game derived from o. Finally in case m; = 0, O can
only give an uninteresting immediate answer ¢ to P’s question. In all three circum-
stances, the analysis now continues in the same fashion. At some stage (possibly at
once — the “uninteresting” response, possibly after many completed plays against
c') O may reply to P’s initial question in m;. If the answer is the value ¢, then the
P-view will be “[-(-).” and P is then essentially back in the position of playing in
a game mg X - -+ X my_1 = 0 again. We write o, for the strategy obtained from o
for the succeeding play. (Again see below for the relation between the representing
innocent functions.)

We consider the output behaviour of o in these three cases. Let ¢ : mg, - -+, Tp—1 :
my_1 be k innocent strategies of pure type. Then the composite

(T0=”'7Tk*1);0 = 0—(7—07"'7ka]) . 0

is a strategy in ¢. So it is either the unresponsive strategy or else directly responds
with answer a natural number.

In case 1, o(79, -+, Tk_1) is the unresponsive strategy.

In case 2, o(7p, -+, Tx_1) responds with some natural number c.

In case 3, o(79, -+, Tk_1) is the unresponsive strategy unless

(a) the interpretation of 7;(Aa.o’(a, o, -+, Tk—1)) (in the general circumstances),
or 7;(¢' (10, -+, Tk—1)) in case m; = 1, or 7; in case m; = 0, is some natural number
¢, and

(b) o.(10,- -+, Tk—1) responds with some number d, in which case o (9, -, Tk—1)

responds with d.

Clearly the strategy o' and sequence of strategies . depend in a simple way
on ¢: omitting justification indices and coding details the representing innocent
functions satisfy:

for(u)=a = f(“[-(u")=a
fo.([v") =a = [fo(*[-()c-v") =a.

This dependence is reflected in terms of the codes ¢, for ¢ introduced in §5.6:
there are (least) recursive operators &' : P — P and ® : N x P — P (where P is
the set of all partial functions from N to N) such that for all o : mg x -+ xmy — 0
in CA,

(p,(d)a) = ¢ and (P(C: (Zsa) = ¢q.-
We suppress the dependence of ® and ®' on the sequence (myg, - - -, mg_1), and shall

write ®(c, ¢) in its curried form ®.(¢). We need an explicit choice of ®' and ®.
The natural choice to make is of the least such recursive operators, so we set

d'(p) = U{ ¢, 1 7 is a (finite) innocent strategy with ¢, C ¢ }
and

b(p,c) = U{ ¢r, : 7 is a (finite) innocent strategy with ¢, C ¢ }.



8.3. Representability of recursive operators

It does not seem profitable to extend ideas of numeralwise representability to
higher types; but in §8.2 we decomposed codes ¢, using certain recursive operators
so one minor extension proves useful in the proof of universality.

We write P for the set of all partial functions from N to N. We shall need to use
the fact that certain (simple) recursive operators @ : P — P can be represented
in a suitable sense in PCF. More generally we should consider ® : P¥ x N — N
and ® : P¥ x N — P. The idea is to use the type ¢ = ¢ as a substitute for P,
since every map + — ¢ in a model will numeralwise represent (in the strict sense)
a unique partial function, that is, an element of P. However we face a number of
problems.

1. Not every partial function need be numeralwise representable in the model.
For example in the initial model T the representable functions are exactly the partial
recursive functions.

2. The same partial function may be numeralwise represented by distinct maps
in the model. For example the constant term Az.0 and the term defined implicitly
by the recursive equation

f(z) = if 2 =0then 0 else f(pred0)

will generally denote different maps but both will represent the constant function
with value 0.

3. We can no longer dodge issues of sequentiality. Some recursive operators
® : P — N can in no sense be represented in PCF: consider for example

®(p) =0 <= either ¢(0) =0 or ¢(1) = 0.

As regards point 3. we shall simply have to be careful to check PCF representabil-
ity: in the cases where we need it, it is quite trivial. (There are in effect a number
of exact characterizations of PCF-definability at this level in the literature.) As
regards the first two points it seems best to cope with them as follows. First recall
from Proposition 2.9 that for any finite partial numerical function we can find a
term of PCF (in the sense of Remark 2.3) which numeralwise represents the func-
tion in T. Such terms weakly represent their functions in any model but represent
(without qualification) them in any adequate model. Secondly we can restrict at-
tention to (Scott) continuous functions: any recursive operator is continuous and
so determined by its values on finite functions; and a PCF-representable operator
must be of this form. This motivates the following definition.

DEFINITION 8.2. Suppose that C is a cartesian closed category and that IV is an
object of C equipped with0:1 — N and s : N — N. Take numeralsn : 1 — N
as usual and adopt the notion of (numeralwise) representability of partial functions
from §2.4. A map ® : P¥* x N — Nis representedby F : (N = N)* x N\ — N
just when for any numeralsny,---,m;: 1 — N in Cand maps f1,---, fr : N — N
in C representing ¢1,---, ¢, € P we have

¢(¢]1"':¢k7n17"'7nl):m iff F(f]7"'7fk7n17"'7nl):M: 1— N.



Amap ®: P*xN —— Pis represented by F : (N = N)* x N\ — (N = N) just
when the corresponding map ® : P* x N+t! — N is represented by the exponential
transpose F : (N = N)* x N'*! — N in the sense just given.

Remark. We have given this definition quite generally but it has a clearer sense
if one assumes that all finite partial functions are representable in C and that we
are concerned only with the representability of continuous ®. The reader may wish
to reflect on the following easy observations about representability in the initial
model T.

PRrROPOSITION 8.2.

(i)For any F : (1t = 1)*¥ x ! — 1 in T there is a unique recursive operator
®:PF x N — N such that F represents ®.

(ii)If ® is a continuous operator represented by F in T then ® is the recursive
operator represented by F. |

We close this section by showing that a term F', which represents a continuous
functional ® in the initial model, does so also in CA. The proof relies on a number
of results which it seems best to collect together at this stage. First we need some
simple facts about representability of partial functions from §2.4.

ks | represents ¢ : NV — N

(1) If C is an adequate model for PCF and f : ¢
in T then f represents ¢ in C. (Proposition 2.9)

(2) For any model C of pCcF if n < s:¢ then n = s: . (Proposition 3.3)

(3) For any model C of pcF, if f < g: % = 1 represents ¢,¢ : N¥ — N then
PC .

(4) Suppose the model C of pPCF satisfies the context lemma and that (the obser-
vational quotient) CA is standard. If f, g : 1% = 1 represent ¢, ¢ : NV — N with f

strict in CA, then

o CY if and only if f<g.
(Proposition 3.5)
We can apply these results to CA.

(a) CA is standard and (hence) so is CA.
(b) CA is adequate (Proposition 7.5).
(c) CA satisfies the context lemma (Theorem 6.1).

Secondly the proof depends on some continuity properties of CA.

(5) CA is enriched over dI-domains in such a way that a finite element 7 : ¢ = ¢
is either a constant function and so PCF-definable or strict and represents a finite
partial function. In either case we can find g : ¢ = ¢ in T such that if 7 represents
1) : N — Nin CA then g represents ¢ in T. It follows by (1) above that g represents
1 in CA and hence by (4) above that g ~ 7 in CA.



PROPOSITION 8.3. Suppose that F': (1 = 1)F x 1! — 1 represents the continuous
functional ® : P* x N — N in the initial model T of PCF. Then F represents ®
in CA.

Proof. For simplicity we treat the case of F': (1 = 1) X + —> 1 representing
®:PxN— Nin T. Take o : (+ = ¢) representing ¢ € P in CA.

Suppose first that ®(¢)(n) = m in CA. As & is continuous there is a finite ¢ C ¢
with ®(¢)(n) = m. Take a strict g representing ¢ in T. We have by assumption
F(g)(n) = m in T and hence in CA. Applying (4) above to CA we get g < o in
CA. But then m = F(g)(n) < F(o)(n) in CA and so by (2) above F(o)(n) = m.

Suppose conversely that F'(o)(n) = m in CA. By (5) above we can take 7 < o
finite in + = + with F(7)(n) = m; and we can find g : + = ¢ in T with g ~ 7
in CA, and both g and 7 representing ¢y : N — N in CA. We deduce that
F(g)(n) = m in CA and hence as CA is adequate F'(g)(n) = m in T. By as-
sumption we deduce that ®(¢))(n) = m. Now 7 < o and so a fortiori 7 < o (Re-
mark 3.1), and so by (4) above ¢p C ¢. As ® is continuous we deduce ®(¢)(n) =
m. N

8.4. Notational preliminaries
Before starting the main construction we establish some notation.

(i) We need a natural number code m = (my, - --,mg_1 ) for sequences of natural
numbers; and a function to add a number at the head of a list

def

m*<m/07“'7mk71> <mam07“'7m'k71>-

(ii) We consider pure types m < n + 2. By Lemma 8.1 one is a (PCF-definable)
retract of the other. We write this as

€miMm —>n+2 and Pm:n+2 — m.
(iii) In analyzing o : mg X --- X mg_1 —> 0 we are led to consider
!

o oomXmgX--Xmp—y — 0

as we cannot (of course) keep fixed the number of arguments of “substrategies”.
Hence we are led to represent elements of mg X - - - X my,_; as elements of (+ = n+2).
We do this by means of PCF-definable retractions:

fun : mog x - xXmp_1 — (L=>n+2)

tup : (t=>n+2) — mo X - Xmg_q
where

fun(ap,---,ax—1) = Az :t.cond(eqz0)(en,a0)(cond(eqzl)(em,ar)---)

tup(F) = (Pmo(F(0)), -+, pmi_, (F(k — 1)),



(iv) We need a further pCF-definition. If F: 1 = Aand a: A defineaxF : 1= A
by
axF = \z:i.cond(eqz0)a(F(predz)).
The final piece of notation that we need arises from a basic lemma which we need
for the proof of universality. Recall the recursive operators ®' and @ from §8.2.

PROPOSITION 8.4. There exist PCF-terms H' and H that represent ®' and ® in
the initial model T.

Proof. 1In principle this is easy as we have simple equations:

for(u) = fo(“[- (u”)
fo.([-07) = fo(“[- ()e - 07)

determining f,» and f,_ in terms of f,; however the equivalence required for rep-
resentability requires a little thought. We treat the case of H'; the case of H is
similar.

First we need to observe in effect that being a finite play in accord with a strategy
is semi-decidable. One can readily define using fixed points a term

accord : (N=N)xN — N

which represents the operator accord : P x N — N defined by

. n = F#u for some play u in accord with a
accord(¢,n) =0 iff

finite innocent strategy o with ¢, C ¢.

(The ideas used in the definition of accord were introduced in §5.6.) Then we can
define H' in a proto-PCF by

H'(h)(n) = if (n = #u and accord(h, #“[ - (-u”) = 0) then h(#“[- (-u”).

To show that H' represents ®' take f : N — N in T representing ¢ : N — N and
neN

Suppose first that ®'(¢)(n) = m. Then there is &, C ¢, 7 a finite innocent
strategy and ®,(n) = m. In particular it follows that n = #u where u is play in
accord with 7', so that “[ - (-u” is a play in accord with 7. As accord represents
accord we deduce that accord(f,#“[- (-u”) = 0 and so H'(f)(n) = f(#]- (-u”).
But g, (#(- (4") = drs(n) = m 50 that p(#°[ - (4) = m and s0 f(#[- () = m
as f represents ¢. Thus H'(f)(n) = m.

Conversely suppose that H'(f)(n) = m. Thenn = #u where accord(f, #“[ - (v”) =
0 and f(#“[- (-u”) = m. Aso accord represents accord and f represents ¢ we have
accord(¢, #“[- (-u”) = 0 so that #¢[ - (-u” is a play in accord with some finite inno-
cent o with ¢, C ¢. But also ¢(#“[ - (-u”) = m so we can extend o to 7 with ¢, C ¢

and ¢, (#] - (-u”) = m. But then ¢, (n) = ¢, (#u) = m so that ®'(¢)(n) =m. N



8.5. A universal function
The argument for universality rests on the construction of a suitable universal
function. We shall show how to define, for each natural number n, a PCF-term

U @ 1 x(=20)x(t=>m+2)=>.

with a property which we now spell out.
Suppose we have the following data:

(i) A code m = (mq,---,my_1 ) for a sequence myg,---,mi_1 < n + 2 of pure
types. We write T also for the corresponding strategy in the arena .

(ii) An innocent strategy o : mg X - -- X my_1 — 0 in CA; f, is the representing
innocent function and ¢, the partial function code (explained in §5.6). We write
¢, also for the standard representation of ¢, as an innocent strategy in the arena
t = ¢ (see Remark ).

Consider the composite in CA

tu o
(L=>(n—|—2))—em0><---><mk,1 — 0.

The universal property of U is that this is observationally equivalent to (the trans-
pose of)
AF: (= (n+2).UmMm, ¢, F) : (1L=>(n+2)=.

If we introduce a free variable F' of type (¢ = (n +2)) and unravel the definition of
tup, we can write the required property as

U, 60 F) = 0pmgF 0, pmy F(k—1) ¢ (1= (n+2) —1

PROPOSITION 8.5. For each natural number n there is a PCF-term

U @ ix(=2)x(t=>m+2)=>.
so that for any m = (mg,---,mp_1) and o : mg X --- X mp_1 —> 0 in CA,
(1) UM, ¢o, F) =~ 0(pmeF(0), - .pm,  F(k—1)) : (= (n+2) —

Proof. Define U using the fixed-point operator to satisfy the following informal
equation:

if p(%[”) = “|;” then d else
vimo ) = T

if $(“[”) = “(” — the initial question in the i-th game m; then

e cither (in the general case that m; = m + 2) if py,, (F(i))(Aa : m.U(m *
7, H'(6), em(a) * F) = ¢ then U (7, Ho(6), F)
e or (in case m; = 1) if p,,,, (F(3))(U(m, H'(¢), F)) = ¢ then U(m, H.(¢), F)



e or (in case m; = 0) if py,, (F(i)) = ¢ then U(m, H.(¢), F);

which we have written in a kind of proto-PCF using notation introduced in the
previous section. It is easy to translate this (in an “up to observational equivalence”
sense) into true PCF; the only unobvious point of detail is made clear in the proof
below.

First we note that a simple continuity argument shows that it suffices to prove
that U has the stated property (f) for finite (compact) strategies o. Secondly note
that the context lemma for CA turns (}) into what is essentially a point-wise claim.

To prove (f) for a finite o we proceed by induction on the structure of o. We recall
the analysis from our preamble. In the undefined case when o does not respond
and the constant case when o responds at once, the result is clear. (F does not
come into it at all.) Hence we turn to the inductive case.

We deal with the inductive case in the general circumstances that m; = m+2 >
2, leaving the other simpler circumstances to the reader. Take a finite strategy
o:mg X -+ X mg_qg — 0. By our induction hypothesis we have the result (1) for
o' and also for each .. In particular we have

U(m*mz QSU’:G)
~ o' (pmG(0), Do G(1), -+, D, G(E)) + (1= (n+2)) — ¢
It follows that

U(m * 177, ¢U'7em(a) * F)

~ o' (a,pmo F(0), Py F(k—=1)) : mx (1= (n+2) —
and so

Aa.U(m * M, dor, en(a) * F)

~ Xa.o'(a,pm,F(0), -, pmy_ F(k—=1)) : = (n+2)) — (m+1).
Applying pp,, (F(i)) we deduce that
Py (F(0) AU 57, 6,1, em(a) * F))
= Pm; (F(i))()\a.al(a,pmoF(O), e 7pmk—1F(k - 1)))

as maps (1 = (n+2)) — 0.
Now we aim to show

Um,ds, F) =~ oPm,F0O), ,pm._,Fk=1) : (= (Mn+2))—0.

By the context lemma for CA it is enough to prove this equivalence pointwise, so
take p : © = n 4+ 2 an innocent strategy. Suppose then that

U(pmop(o)f'%pmk,lp(k}_ 1)) = d



a value in CA. First it follows from our analysis of ¢ that we must have

pml.p(i)()\a.a'(a,pmop(O),---,pmkqp(k:f 1))) = ¢

a value in CA. But then we have just seen that it is a consequence of the induction
hypothesis that

Prap() AU (m 57, 80 em(@) 5 ) = c
Now ¢, ~ H'(¢,) by Proposition 8.3 and Proposition 8.4, so we have
P p(D)(Aa.U(m 1, H' (¢5), em(a) x p)) = c.
Secondly it follows from our analysis of o that
e (Pmop(0), -+, pmy_yp(k — 1)) = d.

But then again by the induction hypothesis

um, ¢s.,p) = d.
Again ¢,, ~ H.(¢,) by Propositions 8.3 and 8.4, so we have

U(m, He(¢5),p) = d.

Putting these two facts together we see from the definition of U that

Um,¢s,p) = d.

We have shown that o (pm,p(0), -, pm._,p(k — 1)) = d implies U(m, ¢, p) = d,
which is enough to show

o(Pme F(0), o, F(k—=1)) < UM e¢s,F) : (=>n+2)—

Now to establish the opposite inequality, take p : © = n + 2 an innocent strategy
again and suppose that

Um,ds,p) = d

a value in CA. Now we require that the translation of our proto-PCF in true PCF is
such that this means that

P p(1)(Aa.U(m 1, H'(¢5), em(a) xp)) = ¢
is a value in CA, and that
U(m, He(ds),p) = d.

(This is easy to arrange.)



It follows that we can run the argument just given backwards to deduce (in view
of our analysis of the output behaviour of o) that

U(pmop(o)z"mek,lp(k_ 1)) = d.

This show that
U, do, ) S 0(@moF(0),,pmy  F(k—1)) (= (n+2) =1

Thus we have established ().
Inductively we have established () for all finite strategies o and hence by continu-

ity for all . This completes the proof. R

We now come to the results which we discussed at the start of this section. In
case A = n+21is a pure type, the function u discussed there is simply a special case
of the function U of the last proposition. But it follows easily from the fact that
any object in T is a retract of (the interpretation of) a pure type, that universality
at pure types implies universality at all PCF-types. Hence we have established our
main results.

THEOREM 8.1 (Universality).

(i) Every map between PCF-types in CA is PCF-definable in some (partial) function
parameter.
(ii) Every map between PCF-types in RA is PCF-definable. [ |

Remark. We could prove a more general version of Proposition 8.5 if we replaced
the code

m = <m07"'7m'k71>

with some system of codes for all possible sequence of arguments of height < n + 2.
This would avoid the detour through pure types at the cost of some notational
complexity.



9. CONCLUSIONS AND FURTHER DIRECTIONS

In this work (comprising Parts I, IT and IIT) we begin by giving a survey of
the so-called full abstraction problem for PCF tracing its roots to old foundational
problems in recursion theory considered by Platek and also (in a related but differ-
ent direction) by Kleene, Gandy, and others. We then set out a (cartesian closed)
category of arenas and innocent strategies, and show that this gives rise to an
order-extensional, order fully abstract model of pPCF.

9.1. Comparison with related work
The nature of our approach, based on two-person dialogue games, goes back to
Berry and Curien in one tradition, and to Kleene and Gandy in another. (See §1.4
for a discussion.) We are aware of related work of a similarly concrete nature by
several people.

Sazonov’s approach

In the 1970’s Sazonov (see for example [65], [68], [67], [66]) outlined a concrete
machine-oriented approach to the problem of providing a model for PCF satisfying
the universality theorem. This work is not as well known as it deserves to be and
we give a brief indication of its nature.

In Sazonov’s approach a (recursively sequential) function of higher type is repre-
sented by some Turing machine with oracle (TM0). A TMO F communicates with
its arguments Gy, - - -, Gy, (all assumed to be of simple type) by asking for the value
of one such (G; say) on TMO’s of types appropriate to be arguments (of G1) codes
for which are provided by the TMO F'. The arguments of (G; are in effect themselves
TMOs parametrized by G1,---,Gg. In the published presentations the arguments
provided by F' are explicitly of the form )\i'.t(é, H, %) where t is an applicative term
and codes for the subsidiary arguments H are provided by the T™MO F'; but clearly
there are other equivalent formulations. Sequentiality of the computation process
is ensured by the requirement that a numerical answer must be provided (by G)
before F' can continue computation. What we effect by the condition of innocence
is provided more directly by Sazonov via the requirements that questions essentially
ask for extensional information (that this is so can be seen by a straightforward
inductive argument) and that the questioning TMO only receives the answer and
not how it is got. The several arguments G1,---, G of F' operate independently
and when they are called again a fresh copy of the TMO is made available.

These ideas, while hard to formalize (for example the interpretation of the T™MOs
as extensional functions of finite type is given directly by a least fixed point), are
if anything more immediately intuitive than those involved in our more abstract
setting of games and innocent strategies. On the other hand Sazonov’s approach
has a lurking syntactic quality: his questions have a specific syntactic form involv-
ing application in PCF. There is a sense however in which the relation of Sazonov’s
approach with ours is very close. The order of communication of the TMOs precisely
mirrors the pattern of questions and answers in our approach. This is clearly demon-
strated by a translation of innocent strategies into Milner’s w-calculus. Elaborations
of this can be found in [40]. The results can also be seen as control information for
TMOs in Sazonov’s sense.



Gandy’s approach

Robin Gandy has for some years been engaged in a project to refine the dialogue
ideas considered by Kleene [47] so as to provide a model for pCF satisfying the
universality theorem. Latterly in collaboration with his student Giovanni Pani he
has produced many examples and counterexamples; and also at least the outline of
a definition. Our comments on this approach are based on discussions with Gandy
and Pani and on a handwritten account by Gandy [30].

The discipline of questions and answers which we use has long been a part of
Gandy’s framework; he calls it the “no dangling question mark” condition, and
one of us (Hyland) learnt its significance from him. However further restrictions
are needed to capture PCF definability and we do not fully understand the other
components of Gandy’s approach. In [30] Gandy uses a notion of relevant record
which is superficially similar to our notions of P-view and O-view. We are unsure
of the exact form and the force of Gandy’s notion. On the one hand Gandy raises
questions about consistency and extensionality which simply do not arise for inno-
cent strategies; and Pani’s counterexample which motivates further restrictions on
the notion of a good strategy is not given by an innocent strategy in our sense. On
the other hand parts of [30] suggest, and discussion with Gandy and Pani confirm,
that they have their eyes on a greater prize. For they appear to regard a relevant
record as if it coincides with purely extensional information and were this carried
through they would meet the Jung-Stoughton criterion.

The Abramsky-Jagadeesan-Malacaria (AJM) approach

At the same time as we were working on our treatment of PCF in terms of inno-
cent strategies, Abramsky, Jagadeesan and Malacaria were developing a different
approach also involving games and strategies [3]. We make some very tentative
remarks about the relation between the AJM game-theoretic approach and our own.

Both the two approaches make use of the discipline of questions and answers
(which had been identified earlier by Gandy), but they differ in terms of the notion
of strategy. Our approach exploits our new notion of innocent strategy, while
AJM use the simple notion of history-free strategy which was already considered in
Abramsky and Jagadeesan work on game semantics for multiplicative linear logic
[2]. On the other hand AJMm rely on a rather subtle notion of move; moves and plays
are considered up to equivalence under some group action. By contrast our notion
of move is relatively straightforward.

It seems that the intensional models of PCF which result from the two approaches
may well coincide. However the underlying linear categories appear to be different.
Our impression is that a function such as strict-and (defined on the obvious simple
boolean game) will not be linear in the AJM setting, which it will be in ours. This
suggests that the AJM analysis is in some sense deeper than ours and that our linear
setting may be obtainable from theirs (for example as the Kleisli category of some
comonad).

Nickau’s approach

In a recent study [56], Nickau has introduced the notion of hereditarily sequential
functions based on a game-theoretic setting similar to that which we have intro-
duced i.e. each play describes the interaction between a functional and its arguments



during a computation. The background to and motivation for Nickau’'s work were
both different from ours. Nickau started from Kleene’s formulation of his dialogues
and sought to vary the notion so that it would make clear sense at all types; and
he was motivated amongst other things by an interest in questions of complexity
of higher-order functions. Computable elements of the game model he considers
are strategies that depend on a certain abstraction of the history of play (which he
also refers to as view). Based on what we have seen, it would appear that Nickau
has independently discovered the notion of innocence. We regard this confluence
of ideas as a very positive sign!

Other related work

Stable bistructures, first introduced in Winskel’s thesis [79], are a generalization
of event structures to represent function spaces at higher types; the partial order
of causal dependency is replaced by two orders, one associated with input and
the other output in the behaviour of functions. Recently both Curien [25], and
Plotkin and Winskel [62] have independently showed that stable bistructures give
a (categorical) model of Girard’s classical linear logic. While the former builds on
Winskel’s unpublished work in the thesis, Curien’s approach is based on a recon-
struction of Winskel’s earlier work along the lines of Girard’s coherence space. A
key discovery of both is that the co-Kleisli category of the of-course comonad is
equivalent to a cartesian closed full subcategory of Berry’s bidomains, whose maps
are continuous with respect to the extensional (Scott) ordering and stable with
respect to the stable (Berry) ordering. Unfortunately the PCF-theory (inequalties
on terms which hold in the model) of bidomains does not include that of the Scott
model. By equipping stable bistructures with an appropriate notion of extensional
conflict [81], Winskel was able to construct a new model of PCF, combining both
Scott and Berry orders, whose pPCF-theory does include that of the Scott model.

Mention should also be made of recent work by O’Hearn and Riecke [58]. They
have achieved a new characterization of the order-extensional, order fully abstract
model of PCF in terms of continuous functions that are invariant under a kind
of “Kripke logical relations”, introduced earlier by Jung and Tiuryn [42] to char-
acterize A-definability. We believe that this model can be described in abstract
categorical terms along the lines indicated in [5]. This abstract character of the
model means that it is unreasonable to expect to extract information about PCF-
definability from it without a closer analysis. Such an analysis is given in effect
by Sieber in [70] which presents a construction of a model of pPCF, fully abstract
up to rank three types, consisting of continuous functions that are invariant under
certain finitary logical relations.

FURTHER DIRECTIONS

Our study of the category CA of computational arenas and innocent strategies
(in Part IT) has been quite extensive, but it is certainly not complete. In Part IIT we
show that the category CA gives rise to a fully abstract and universal model of PCF.
A number of questions pertaining to the fully abstract game model remain open,
some of which seem conceptually important. In addition there are many possibilities



for extension and generalization of our results. In this section we pick out some of
the more promising topics for further research and sketch some preliminary results.

9.2. Linear decomposition of CA

In this work we have consciously chosen a simple framework of games determined
by computational arenas which is suited to addressing the semantics of PCF directly.
The style of our approach is close to that of Kleene and Gandy in one tradition,
and to Berry and Curien in another. There is a wider framework (larger categories
of games) in which the function space of innocent strategies may be given a linear
decomposition of the kind pioneered by Girard. Here we shall be content with just
a brief account, and hope to give a systematic presentation elsewhere.
A general framework Consider “dialogue games” given by a tree (or forest) of
moves:

e O starts and thereafter moves alternate between P and O.

e Moves are either questions or else answers and these are played so as to satisfy
the bracketing convention (last asked first answered).

e Moves are explicitly justified save that the initial O-question and some further
O-questions are not justified (or perhaps are notionally justified by some “First
Cause”); questions are justified by a preceding question of the other player, answers
are justified by the question they answer (i.e. the open bracket which they close);
unjustified questions contain data as to the subgame which they initiate.

e There is a notion of P-view as before and a notion of O-view (note the notion
of O-view in A roughly coincides with that of P-view in “e - A-” so that O sees all
the initial moves he / she may have cared to make). And we apply the visibility
condition that the justification of any move made is visible to the player concerned
(at the time he / she makes the move).

In this context we have the following.

Tensor product A ® B consists of sequences of moves (identifiably) from A or B
(with justification pointers) satisfying the general conditions above. In addition we
require that when sequences are projected into A or B (and the justification indices
adjusted appropriately) then we get a (legal) play in A or B.

Note that at any stage of the game the only P-move available will be in the game
in which O has just played, so it is automatic that only O can change games. (It is
true but essentially irrelevant that a P-view is always in one game or in another.)

The empty game is the identity I for this tensor product.

Linear hom (—) B —o C consists of sequences of moves (identifiably) from B+
(that is B with roles of players reversed) or C (with justification pointers) satisfying
the general conditions above. We additionally stipulate that any initial move in B+
(which is to be a P-move in B — (') may be justified by any initial C-move. Again
we require that when sequences are projected into C' or B+ (and indices adjusted)
then we get a legal play in C' or B (with roles reversed).

Note that after the initial O-move (in C') the only O-move available will be in the
game in which P has just played, so it is automatic that only P can switch games.
(Of course O’s view can contain information about both games.)

Note that A B — C =2 A — (B — (') as trees of moves with justification.
(Play takes place in three components A+, B+, C' and only P will be able to switch.)



A linear category The category has dialogue games as objects, and innocent strate-
gies (in precisely the sense that moves depend just on the view) for P in the game
A — B as the maps from A to B. The identity is still the copy-cat strategy. This
category is clearly symmetric monoidal closed.

A categorical product A x B is obtained as the disjoint union of the game forests
for A and for B. So the opening O-move in C — A x B is either in A or in B and
determines that we are either going to play in C' — A or in C' — B. The terminal
object 1 is the empty game.

Of course exponential Finally we need an exponential ! with all the good properties
identified in [7] and [12]. One good choice seems to be a kind of merged infinite
tensor product: that is, !4 is given by sequences of moves named as in A (with
justification pointers) and satisfying general conditions above. We stipulate that
any play can be regarded as the interleaving of a sequence of plays from A. The
comonad structure e : 'A — A § : !A — ! A, and comonoid structuree : 14 — [
and d: 1A — 1A ®1A(= (A x A)) need careful checking.

9.3. Linear categories of games
Further details of the above linear category of games can be found in [38]. Hy-
land’s paper gives a systematic account of how games can provide an intensional
semantics for functional programming languages, and for a theory of proofs. Other
aspects of linear categories of games are treated in [1]; and Abramsky has recently
applied linear categories of games to provide models for “idealized parallel Algol”.

9.4. Towards a calculus for describing strategies

As we have already observed in Remark , it is unfortunate that even for rela-
tively simple PCF-terms, precise description of their denotations as strategies very
rapidly becomes unwieldy and opaque. One way to remedy the situation is to have
an expressive formal language that lends itself to a succinct and economical repre-
sentation of innocent strategies. Our first attempt gives just such a representation
in terms of an appropriately sorted polyadic m-calculus, reading input 7-actions as
Opponent’s moves, and output w-actions as Player’s moves. This correspondence
captures every essential aspect of the dialogue game paradigm so precisely that the
m-representation may as well be taken to be the basis for its formal definition. An
account of this work can be found in [40].

Although this representation is in complete accord with the dialogue game frame-
work, it is still not optimized for capturing the wuniform or schematic nature of
(innocent) strategies which are denotations of A-terms. Here we have in mind the
various kinds of “tit-for-tat” startegies in which P simply copies O-moves from one
“component” of the play to the other. Such strategies also occur in various game
models of linear logic. It would be very useful to have a generic calculus capable
of capturing a general class of such parametric strategies. For a start, a descriptive
tool of this kind will no doubt simplify considerably the construction of a game
model for polymorphism. The existence of such a model is almost intuitively ob-
vious, but it is highly non-trivial to find the right formal machinery that gives a
reasonable handle for managing the complexity of “syntactic” details. Once such a
model is available, it would be highly interesting to determine its exact parametric
nature. Is it, for example, parametric in the sense of Reynolds? It has been sug-



gested to us that a calculus along the lines of Sangiorgi’s higher-order m-calculus
may well fit our requirements, but we have not yet investigated the matter.

9.5. Abstract machines

As we finished writing this paper Vincent Danos and Laurent Regnier were mak-
ing connexions between the notions of legal position and innocent strategy on the
one hand, and the operation of their variant of Krivine’s Environment Machine on
the other. In a similar spirit Baillot has described in detail a connexion between
the history-free strategies of AJM and the Geometry of Interaction. This suggests
an explanation at the computational level of the equivalence between our approach
and AJM’s to modelling PCF. We are not sure of the significance of the way in which
the Danos-Regnier variant of the Environment Machine encapsulates some form of
optimal “hyper-lazy” execution strategy (as they call it).

A related development is Curien’s Strategic Abstract Machine, a presentation of
which one of us saw after the completion of this paper. We are encouraged by the
close connexions being drawn between our work and simple abstract machines; and
we hope to see some implementations.

9.6. Other open questions

There are a number of other open questions. We shall just mention two which
seem especially important. This first concerns the characterization of higher-type
sequentiality. In our view one cannot properly claim to understand higher-type
sequentiality until an appropriate axiomatic characterization has been obtained.
This is definitely related to what we call “Kleene’s problem” in §1.4 (see also the
discussion in §1.3). We believe that this is the main thrust of the full abstraction
problem.

The second question is a more mathematical one: is the observational quotient
enriched over CPOs? The observational quotient CA is enriched over the category
of posets. Is it enriched over the category of cPos (and continuous functions)? We
do not know the answer to this question. A natural way to attack the problem is
to take advantage of the Strong Definability Theorem (7.1) and argue syntactically,
but this approach does not seem to work.



APPENDIX: PROOF OF THE PROJECTION LEMMA

The proof is rather complex and it requires a detailed analysis of what we call
bounded segments in a function space arena.

A.1. BOUNDED SEGMENTS

Let s be a legal position of the arena A = B. A segment 6 of s beginning
with a P-move z and ending with an O-move y is said to be bounded if the two
end-moves ¢ and y are an explicitly justifying pair, i.e. either both are questions,
and z explicitly justifies y or the question z is explicitly answered by the answer y.
Henceforth whenever x and y are thus related, we say that x explicitly justifies y.
We call 8 an (A, a)-bounded segment (respectively a B-bounded segment) if either,
and hence both, end-moves are in the component (A,a) for some instance a of
an initial A-move occurring in s (respectively B). We shall write (A, a)-bounded
simply as A-bounded. The two simplest bounded segments have the shapes o - e
and o -e-o-e respectively. In both cases all moves of the bounded segment belong
to the same component.

We consider two ways by which a bounded segment may be decomposed. First,
spine decomposition.

LEMMA A.1. Any bounded segment 8 with end-moves x andy may be decomposed
in the following way:

5
z Y
O'|pm"'qm| |p1q1| v [pL qu -
| — | ——— [ ——
gm 51 51

where p; is an O-move which explicitly justifies the P-move q;, for each 1 <i < m
and for some m > 0.

Proof. For suppose not, then for some m > 1, we have the following decompo-
sition:

fm fz fl

where z is in &, but is not q,,. By the visibility condition, 2 which explicitly
justifies y appears in Ls¢,, 1. But

LS<gprd = LS<pp - Pm dm P11

which does not include z. Hence we get a contradiction. N

Given a bounded segment 6 as in the preceding lemma, we call the following
sub-segment of §

r Pm dm bt g1 Y
- e -6 ...'e .0 -®

the spine of 6.



Projection decomposition. A bounded segment 6 with end-moves z and y may
be decomposed in terms of bounded segments in the following way:

oz e [o o] .yo Y
S— ——

——
0n+1 on 91

where = and y are explicitly justifying pair; and for each 1 < i < n+1, 6; is a
bounded segment (with end-moves z; and y;) which may be either A-bounded or
B-bounded. Let y~ be the move which immediately precedes y in . Note that x
may be the left end-move in 6,11. Observe that apart from y~, every move in 6
belongs to a (unique) constituent bounded segment.

LEMMA A.2.

(i)Suppose 6 is A-bounded. For any 1 < i < n+ 1, let m be a P-move in the
bounded segment 6;. If m appears in Ls¢,- 1 then 0; is an A-bounded segment.
In particular since by visibility, the P-move x (which explicitly justifies y) is in
LS<y~ 1, we conclude that the segment 041 is A-bounded.

(i) The statement obtained from (i) by replacing the adjective A-bounded with
B-bounded is valid.

Proof. To prove the lemma, we use the following claim:
Claim. The O-view Ls¢,- 1 has the following form:

. Yi, Ti_, - Yi_a Ty - Yi, Y
- = _ N
spine of 6;, , spine of 6;,
where
e for some [ > 1, the sequence i1,i2, -,4; is a subsequence (not necessarily

initial) of 1,2,---,n + 1;
e y;, explicitly justifies y; and for each 1 < j <1, y;,,, explicitly justifies x;,;
e for each 1 < j < [, the segment x;; - - yi; is the spine of the bounded
segment 6;, which is A-bounded,
e m is an element of { z;,, %y, - i,y }.

To prove the claim, first observe that by visibility the explicitly justifying move of
¥~ must appear in the P-view:

" —

r a
S<yn = S<a 41

Tn+1 Yn+l Tp Yn Ty Y1

e e s T e
where z; explicitly justifies y; for each 1 <7 < n+1. Hence y~ is explicitly justified
by yi,, for some 1 <i; < n+1 (and not by a move from "s.,, .7, for if so then z
is excluded from Ls,- o thus violating the visibility condition applied to y). Note
that y;, is an A-move; hence the segment 6;, is A-bounded. By Lemma A.1 Ls¢, - .

has the form:



Inductively suppose Ls¢, - has the following form:

where the segments 6;,,---,6;, are all A-bounded. Now the last two moves of
LS<e;, o are w and x;; where w is the O-move which explicitly justifies x;;. By the
J
visibility condition w appears in the P-view:
Tnt+1 Yn+il Tij+1 Yij+1
'—s@“ﬁl To= Tscany | Tngd e e o e .
If wisin "s<,, ., ' then set [ to be j; otherwise set i, to k such that y, = w. Note

that y;,., is an A-move; hence the segment 6 is A-bounded. By Lemma A.1,
we have Ls¢,- 1 =

| S ——
spine of 6;,

B4

Hence the claim is established.
Let m be a P-move in 6;. Suppose m appears in Ls¢,- 1. Then, by the Claim, m
appears in the spine of some 6;; which is an A-bounded segment. Hence the lemma is

proved. W
Let 6 be an A-bounded segment in a legal position s of an arena A = B with
end-moves = and y. By an abuse of notation we define "8 | B™ as the subsequence

of "s¢y | BT consisting only of moves in 6 occurring immediately after (and not
including) x.

LEMMA A.3. Let 6 be an A-bounded segment in s with end-moves x and y.

(i) The segment "6 | B has the following form:

g1 B = I)OT.q: Iﬂ}.q.l
for some r >0 (as opposed to @-0-e ... o-e) where p; explicitly justifies q; for

each 1 < i < r. Note that p; - - - q; is a B-bounded segment in s, for each 1 <i < 7.
(ii)For any P-move m in 8 which appears in _s<,1, m does not belong to any of
the B-bounded segment p; -+ -q; for 1 <i < r.

The assertions obtained from the preceding by interchanging A-bounded segments
with B-bounded segments remain valid.

Proof. We prove both (i) and (ii) by induction on the length of s¢,. The base
case of # of the form o - e for both (i) and (ii) is trivial. For the inductive case,
consider the projection decomposition of the A-bounded segment 6 as follows (using
the same notation as in Lemma A.2):

oz e o e - .yo Y

_ —(— (e——
0n+1 en th




where for 1 < ¢ < n+ 1, 6; is a bounded segment with end-moves z; and y;.

For each 1 < i < n+1,if 6; is A-bounded then by the induction hypothesis of
(i), "6; | BYiS piy; - Qi - Pin - ¢, for some 7; > 0. Note that z is by assumption
a P-move in 6,,;1, and so, by Lemma A.2, 6,,,1 is an A-bounded segment. Since z
appears in Ls<,, by the same analysis as the Claim in the proof of Lemma A.2, z
appears in Ls<y, ,, 4. Applying the induction hypothesis of (ii) to the A-bounded
segment 6,4y, (which has end-moves z,y1 and y,y1), we infer that = does not
appear in any of the B-bounded segment py41,; - @nt1,4, forany 1 < i < rpq1. So
suppose = appears in between g,y1 41 and py41,, for some 1 < I < r,q1. Then
"0 | B"iS Yp+1 - Yo - - - 71 where the segment ~;’s are defined as follows:

e for 1 < i < n, we have

i Yi if f; is a B-bounded segment,

T9; | B if §; is an A-bounded segment;

® Yn+1l = Pn+1,0 " Gn+1,01 " "Pn+1,1 " Gn41,1-

Hence (i) is established for the inductive case. As for (ii) take any P-move in § which
appears in Ls<, 1. Then m appears in s, 1 for some A-bounded segment 6;. Ap-
plying the induction hypothesis of (ii) to the A-bounded segment 6;, we infer that m
does not appear in the B-bounded segment pj ;. - - - q; x, for each 1 < k < r;. Hence

the result follows. W

We are now ready to prove the projection lemma.

A.2. PROOF OF THE PROJECTION LEMMA

(). We prove by induction on the length of s. The base case is immediate but
the inductive case requires some work. If the last move m is a P-move, then
Ts1="Ts<m;m ' -m. There are two cases. If the move preceding m in s is in B, then
we have:

s B "S<m ' | B-m by the induction hypo.

N

"Sem [ B7-m

"s| B™.

Suppose the move y; preceding m is in A. Let m be the B-move preceding m in
Ts7. We have

Ty Yr rr Yr m
[ — r | .
s = S<m 'O - ® -0 -8 -0 (A.1)
A-moves

where z; explicitly justifies y;, for each 1 < i < r, for some r > 1, and they are all
A-moves.

Example 4.2 shows that for each 1 < i < r, the A-bounded segment z; -- - y; in
s may contain B-moves, some of which may appear in "s [ B". To complete the
argument for the inductive case, it suffices to establish the following;:



Claim. "s | BT ="s¢p | B -[o---e] - [o---e].[o---e]-m where each d; is

S—— S—— ~——
Or P 0

a segment, of B-moves.
For then, from (A.1) we have

"s7|B = "s¢m ' [ B-m by the induction hypo.

A
-

Sg<m [ BT-m

Sem | BV:[0®] -+ [o8][c--e]m by the Claim
[ —p—

S—— S——
Or 02 0

A
-

= "s| B
It remains to prove the Claim. By (A.1) we infer that s has the following form:

S<m | Tr o Yr Ty Yy |-m;

S——— S——
O 01

where each segment §; = x; - - - y; is an A-bounded segment. It suffices to note that
by Lemma A.3(i) each 4; is just 76; | B™.

The case of m being an O-move reduces to the preceding case. The proof for (ii)
is entirely symmetrical, and we omit it. |
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ADDENDUM, JUNE, 2000: SELECTED FURTHER REFERENCES

Since the submission of the paper there has been much work related to issues
arising from it. A comprehensive survey of the material stimulated by the paper
and a proper analysis of the current position would take time and probably deserve
a separate account. We aim here to give no more than a list of pointers to some
recent work more or less based on, or inspired by, innocent strategies.

Several doctoral theses have been completed. It is appropriate first to mention
Nickau’s thesis [18] which independently develops the idea of innocence from a
somewhat different point of view. McCusker’s thesis [17] develops a category of
games which can model product, function space, sum and recursive types i.e. the
structure of Plotkin’s functional language F'PC. More recently, Hughes [13] has
constructed a fully complete innocent game model for System F; Laird’s thesis [16]
gives a game-semantic analysis of functional control by dropping the well-bracketing
condition; and Harmer’s [10] gives an account of finite non-determinism.

Abramsky and his co-workers have constructed fully abstract models for Algol-
like languages [2, 4, 1], and proposed descriptions of call-by-value innocent games
[3] (see also [12]). The idea of representing innocent strategies by the m-calculus has
been taken up by Fiore and Honda who have given a translation of FPC-terms into
Pict-code (asynchronous polyadic w-calculus without summation) in [9]. Interesting
connexions between innocent strategies and abstract machines have been identified
in a series of papers [8, 6, 5] etc. Danos and Harmer [7] have considered probabilistic
strategies, extending the earlier work [11]. Finally Ker, Nickau and Ong [15, 14]
have constructed universal models for the Nakajima-tree and Bohm-tree A-theories
based on what they call effectively almost-everywhere copycat strategies.
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