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0. INTRODUCTTICN

This paper is concerned with spaces of continuous functions in categories of
sheaves over topological spaces. As such it is & contribution to the underdeveloped
area of higher-order constructions in topos theory. Recent work on this includes
external representations of sober spaces Fourman and Scott [2] ) and Banachi spaces
(Hofmann [4] , Mulvey [10] ) and work in gensral topology (Grayson [3] ) . Here
we consider representations of objects (filter spaces) which are more general (and
sc have "less structure") than topological spaces. For these we can investigate a
significant higher order construction, the formation of function spaces. At the
moment however we have to pay for this generality; we can establish our most signif-
icant results only for filter spaces which "come from the real world" i.e. are
represented as sets by sections of a projection T x X —> T oyer T . Indeed
we restrict presentation throughout to such objects. Occasional glimpses of the
more general view occur (in sections 3 and 6 ), and the reader of Fourmarn and
Scott [2j will feadily see how to generalize our definitions and represent & wide
class of internal. filter spaces. But since I cannot i) characterize this ﬁide;

class in the internal logic mor ii) prove much about it, it seemed best to avoid

the unnecessary genersiities.

The paper divides irnto two parts. Sections 1 to L4 deal with gquite general
questions of continuity, convergence and function spaces in sheaves over a topol-
ogical space T . The material is constructive. Sections 5 and 6 discuss
situations wheére ali functiqgs gre-continuous (a phenomenon first investigated by
écott r13 ) . The treatmeﬁt T give is not detailed as I do not believe it can be
in its final form. In particular it is not comstructive. Tt seems likely that some

relation with the Cauchy approximations of Muilvey will emerge in a more constructive

treatment.

1

In the evolution of the ideas of this paper sections 5 and 6 came First.
They arose out of a suggestion of Scott's that the continuous functionals might
appear as higher types in sheaf models {see Corollary T of 86 ). I am grateful to
him for this and also for valuable advice on continuous lattices. At the time that
the strategy of the first part of the paper was crystallizing in'my mind, I had

useful discussions on topology with Michael Fourman and Robin Grayson.
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The material in this paper suggests further lines for investigation:

iy  function spaces in Grothendieck toposes (for example the Jobnstone topos
i o i
[8] , that suggested by Lawvere [91, SETSN P where N is Ershov's cabtegory

of enumerated sets);
ii)  other kinds of higher-order structure;

iii) some general theory of the interpretation of higher—order constructs

(here Lemma 1 of §6 is most suggestive).

I can only hope that the inadequacies of this paper do not discourage people

Trom pursuing such toples.

.

1. CONTINUOUS LATTICES AND THETR REPRESENTATION IN Sh{(®)

The basie theory of continuous lattices is set out in Scott [12]1 . This theory
can be readily developed in the logic of toposes. In particular the following hold

constructively:

i) continuous lattices can be considered either as special kinds of complete
lattices, or as topological spaces under Scott's induced topology {henceforth the

Scott topology);

ii) for continuous lattices topological continuity is identical with lattice

continuity (defined by the preservation of directed SUps) ;3

iii) the category of continuous iattices is cartesian closed.
(Eint for iii) If deD and d'eD' , them fd;d']l : D ——> D' should be defined
py [d;a*1l{x) = Vi{a |a<x} , vwhere we use <«  for the "striet less

than" relation.)

A certain smount of rewriting of [12} is necessary for a constructive
treatment, as some classical resﬁlts about general complete lattices appear Lo bé
essentially non—-constructive. The category of complete lattices with maps preserv-
ing directed sups is cartesian closed; however, the injection of this category into
that of topological spaces by taking the Scott topology does not appear construct-+
ively to be fuil. (Indeed it is not cleér constructively that the Scott topology in

a complete lattice 1s even To in a positive sense.}

We have a general way of representing an external topological space X in
shiT) (see Fourman and Scott [2] ). as a gpace Ky » whose (partial) elements are
continuous sections of the projectiom T x X —> T and whose topology is derdived
from the product topology on T X X in the obvious way. We will show that if X
is a conmtinuous lattice externally then XT is oneAinternallyu Recall that the

relevant order on a topological space X is defined by
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x <y iff ( V open 0 )( x€0 =+ yeO )
IEMMA 1. EanEbnlfasbl = In{t ] a{t)=<blt)?}

) Proef. Hote that the opens of any topological space X Torm a {possibly mnon-—
topological) filter space 0{X) , which is represented internally (at least as & set)
by O(XT) , the sheaf of continuous 0({X)-valued functions. Thus it is sufficient

a geometric

to observe that the formula defining x<y is strictly local (
sequent} (see Hyland [5] ).

LEMMA 2. Let D De a complete lattice; let Dy be the representeztion in Sh(T)
of the space cbtained by giving D the Scoit topology; let = e defined on D
by [x<y 3 = Tn{t] x{t)=<ylt) } (here = is strict). Then (DT,S)
is a complete lattice in Sh(T} .

T

Proof. The finitary V is continuous on any complete lattice, so we can define

v
on DT by

(xVy)(t) = x{t)vylt) ., for ‘beExﬁEy

Tt is simple to check directly that this definition gives the internal join. (The
formula expressing this is strictly local in the extended sense of Hyland [51 , so
there 1s a general reason}. It remains to show c;q_mpleteness of DT . Take &

, corresponding to a (global)

collection {=.}. of partial eclements of D
i1l T

subsheaf, and define in by :
Vz, () = VIx(t) ] tebx, }
i i i

We must show that in is in D {i.e. that it is contipuous). Suppose

T
in (t) ¢ O, with O Scott open in D ; then for some finite J <=1,
V1 xi(t) | ieT7}e 0 ; but the finitary join =x = vV { X, | 1eJ } dis in Dy,

and tex1(0) openin T 3 =0
Vx, (£) « Vx. (x71(0)) <0

which shows that in is contirucus. Now it is easy to check that ‘ in is
internally the sup of the subsheaf cérfesponding to {Xi}ieI . We have only to
localize the above to conclude that D is complete.
REMARK By Lemma 1 , the complete lattice D[[‘ of Lemmz 2 satisfies

( vxy)( x<y <> ( V Scott open 0 )( xe0 =+ ye0 vy, (%)

This holds for any complete lattice classically, but the proof is non-constructive;
however, I do not know of an example of a complete lattice in & topos which does not
satisfy (%) . (In Lema 2 , < is strict; as defined before Lemma 1, it is not

strict; either form could be defined in terms of the other and they ars equivalent
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when guantified zs in (*) . This kind of distinction is of no significance in

this paper and will henceforth be ignored.)

We now wish to show that if D din Lemma 2 is & continuous lattice then so

is (DT,S as defined there. So we must consider the "atpiet less than” <« .
This relation is not so simple to characterize as = 5 put the information in

Lemna 3 1is all we need.

In general if we represent a space X by the sheaf X‘I of continuous X-valued

functions, we denote by Xy the element of XT with extend U open in T and

constant value xeX . When X 1is topological, O open in X , U open in T ,
then O denotes the (basic) open set of X satisfying '
[ aco; ] = Tna 1{0)

Given a continuwous latiice D , we let

]

'oaz {a]axal In{ad]a<d?l

be the (Scott) open set in D determined by aeb . .

LEMMA 3. Tet D be a continuous lattice and DIII be' the represented complete

lattice (as in Lemma 2 ).

i) Given =x in DT . we define a subsheaf Sx of D'I' of extent Ex ‘by '

giving its set of partial elements:

8, = {aUl (V teU ) axx(t) )} .

Then in DT .

3‘:-‘=\/SK ) .

ii) If aed , yeD

T and UcEy , then . : : oo

Unla<yl Uny {0,)
Proof. )
For i) : If axx(t) , then x(t)eC . Let U = x"1(0_) . Then &, isin
- L=h
5. - Since a<x(t) was arbitrary, - ‘ -

x(t) = st(t) )

For ii) : Recall =& <y iff ( Vairested 8 ) Vszy + (% se8 ) s=a,)

Suppose LelUn y_l(Oa) and tel 8 is directed A V Szy J . BSince an
internally directed set is locally directed when looked at from the outside (by
Lemmz 1 ) , we can conclude from -

[

a <y(t) = V8 (%)

that for some s din B with +teBs , a<s(t) . But then clearly tel sZaU]]

nsing Lemma 1 . So we have T el aU<<y 1 . Couversely suppose
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teUn[[aU«y]i; then by 1) there is s 1in S.Y with tel sza_] , so for

U
tteUn|[ szaU] R

v(t!) =»s(t') 22 .,

whence te:y‘l(Oa) » This completes the proof.

THEOREM L. Suppose D is a continuous latiice, DT is the representation of D
as a topological space in Sh(T) and < is as irn Lemmas 1 and 2 . Then (Dg,<)
is a contimuous lattice and the internal Scott topology on Dy is the same ag that

given by the topological representation.

Proof. (DT,S) is a complete lattice by Temma 2 . By ZLemma 3(ii)} the elements

ay of SX for xeDT satisfy
Le<xla2u ,

s0 by Lemma 3(i) for any x in D

x = Viylyex).

T 3

By the general theory of contimuous lattices, the sets (Oa)U (and their restrict—
ions) form a basis for the topology, and by Lemmas 1 and 3 , these are SBcott open
internally. On the other hand by Lemma 3(i) every Scott open set is a union
(locally) of sets OaU (which is the restrictipn of (Oa)U to U and hence is

open in the topological representation). Thus the two topologies coincide.

COROLLARY 5. Suppose D, D' are continuous lattices and DT R D'T as above,

Then  [D;,D',]  the sheaf of continuous maps from D, %o DiT is the same

T
whether we take lattice or topological continuity.

Proof. By Theorem 4 , DT and D'T are Internal continuous lattices, so the

result holds by ii) of the first parsgraph of this section.

THEOREM 6. Let D and D' be continuous lattices. Then the following (internal)

continuous lattieces are isomorphic:

i) [DT,D'T] the internal funection space with the topology of pointwise

convergence (product topology) and usual order;

ii) [D,D']T the representation of the extermal function space [D,D'] .

Proof. The topological representation (Fourman and Scott [2] ) identifies sections

over U of [DT,D'T3 with continucus maps U x D——= D' ; by adjointness these

can be identified with continuous maps U — [D,D'] . This gives the bijection

between [DT,D'T] and [D,D']T as sheaves {i.e., internal sets). To show

igomorphism as continuous lattices we consider the partial order < . In
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[DT,D'T] , (the strict version of) this can be defined by
f<g iff (va) rlaysglda) A~ Ef A Eg .

But sir}ce £ on D'T is s.trictly local, so is < on DT and hence (by Hyland [5])
I f<gl] = Tn{t] fe)sgx)l .

But this is just how < dis defined on [D,D']T so the two continuous lattices are

iscmorphic in lattice structure (and cf. Theorem L +topological structure).

REMARK One can show constructively that continuous lattices are sober spaces (the
necéssary information is in Scott [12] ) . Hence it is not surprising that one can
generalize the material of this section to give an sccount of the behaviour of the

category of all continuous lattices in sn(T) . We leave this to the reader; we ..

already have all the information we will be able to apply.
2. TFILTER SPACES AND CONTINUQUS LATTTCES 1IN shiT)
We first deseribe the main abstract theorem in Hyland L[T1 . ‘Tt gives a

(constructive) way of representing filter spaces as structures on continuous

lattices.

A convergence structure | Ax | X} ona continuous lattice (D,<) 1is

a collection of subsets Ax of D such that
i}  each AX has a maximal slement P, 3
ii) if d<esp and ded then eeh .
x X x

A | AX | %X} on D and { B.Y | veY } on D' aré two convergence struc—

tures, we take as continuous maps, functions £ : X—>7Y on the index sets for

which there exists a continuous f:D—>D"' such that E(Ax) c Bf(

) x)
Convergence structures with continucus maps as morphisme form the category CSCL

of convergence structures on continuous lattices.

As in Hyland [7] , we adopt the following notion of filter space. A filter
space (x,F) is a set X with a notion of filter convergence F which associates

with each xe¥X a collection F(x) of filters on X such that
i) . [x] the principal filter generated by 'x 1is in Flx) 3
ii) it e 2 V¥ e F{x) then K 2eF(x) ; ‘ |
iii) for any & » oecF(x) iff en[x]eF(x) .

As usual, the continuous maps from a filter space (X,F) to a filter space S (Y,6)
are those T : £—>=7Y which carry convergent filtérs to convergent filters

{i.e. the "image" under £ of ®c¢ F(x) is a filter base which generates a filter
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f{2) e a(f{x)) ). Filter spaces with continuous maps as morphisms form the category

FIL .

Given a convergence structure { AX | xeX 1 on D , we define a Filter

structure 'on X as follows. For O open in D , define U <X by

0
UO = { x| PXEO } .
Clearly . UynU,, = Uppor » S0 for dcD  we mey define a (possibly degenerate)
Tilter @d as that generated by the filter hase
i U0 | de0 } .

Now define a filter structure F on X by setting

Mx) = {o]ooe for some deA_ } .

d ,
Conversely, given a filter space (X,F) , we take the continuous {in fact algebraic)

lattice Fil(X) of all filters (including the degenerate ones) on X . Define
F'(x) = F(x)n{o|ocix]?} .
Then { F'(x) | xeX } 1is a convergence structure on Fi1(x) .
The main abstract result of Hyland [7] can now be stated as follows:
THEOREM 7.  The above constructions {of objects of ¥FIL from objects of - CSCTL
and viee versa) pregerve the continuous maps in the categories so that we have full
-and faithful funetors from CSCL to FIL and from FIL to CSCL . These functors

give rise to an equivalence of categories whereby FIL is mapped to a reflective

subcategory of C8CL .

In this paper we exploit the fact that Theorem 1 is constructive.

We now consider how to represent a convergence structure { AX | X} on
a continuous lattice D , in Sh(T) . The representation D, of D was given in
§1 . We represent X as follows: give X +the filter structure corresponding to

the convergence structure { A_ | X } 3 represent X by X, the sheaf of
X-valued functions on T which are continucus with respect to this filter structure.
Finally, we must give a value to [ peAa I where p dis in D_ and a in X .

T T
We let

Fpea 1 = In {4%| p(t)eAa(t) } .
This defines Aa < DIII for a in XT . Then we have the following:
LEMMA 2, { Aa | anT } on DlIl is a convergence structure on a continuous lattice
in 8h(T) .

Proocf, The proof is straighitforwird, bub note that the maximsl element T, of Aa

is defined by
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p () = \I{opt)|tel pea 11

a
In perticular, pa(t) is not equal to Py () ; this latter is not necessarily

continuous in t .

REMARK  In the (important) case where the. AX'S are disjoint {j.e. are given as the
equivalence classes of A = U1 AX | xeX 1 under an equivalence reiation ~ Y, A

we can get at the above representation in the following simple manner. We let

Ay = Lol (v teBp ) plt)es}

and define for p and g 1in AT N

[p~el = In{t]plt)~alt)};
This defines an internal equivalence relation ~ on AT , and when we gquotient out,
we getb XT ; then the equivalence clasges are Just the Aa's with a 1in XT as

defined above.

(We sketch a proof of this. The quotient is

A/~ = Llel | pedr } i
where ;)
el .= {qllB + p~al = T} and E[pl = Ep s

we have the obvious restrictions; and do not need to sheafify as the presheaf AT/ﬁ’
is already a sheaf. The equivalence class L[pl corresponds o the filter contin-

uous map
Bp—>X 3 t & [p(s}]

(where [p(t)] is the eguivalence class of p(t) in A ). Conversely, any contin-

nous map & : V—=>X gives rise to an element of AT/EU , defined by setting
g, () = a(v(,zt)) .
(where v(t) is the neighbourhood filter at t )} , and taking [q.d .)

It is a trivial but useful fact that our representation,provides an injeetion
of the category CBCL into the category of convergence structures-on contimious

lattices in Sh(T) with (global) continuous maps as morphisms.

LEMMA 3. Let { AX | xeX } and {-By | ye¥ } Be convergence struectures on
D and D' respsehively. Let 2 ¢ X¥—=7Y be a continuous map. Then the map

g X —> T defined by
2(a) () = =zlalt))

. ] .
55 a continuous map from { Aa | anT } omn DT to { Bb 1 bEYT } on D oo

Proof. ThHere is & continuous map - £ D—3 ni such that
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f(Ax) = Bz(x)

We define the internal continuous map F . DT———a-D'III by
(B(p)) (&) = z(p(t)
"f(AX) < Bz(x)" is strictly local in the sense of Hyland [5] , so
A .
Thus £ is a continuous map.

COROLLARY L, I { AX | zeX }
D and D' which determine the same filter structure on ¥ )

snd { A' | aeX_ }
a T

and { A'X | x¢X }  are convergence structures
on continuous lattices
{ A | anT}

internal filter structure on XT .

then on DT and D'T determine the same

r

Proof. This is immediate by Lemma 3 and the constructivity of Theorem 1

In virtue of Coroliary 4 , our representation of convergence structures on
continucus lattices gives vise to a well-defined representation of external filter
(XL,F)

canonical convergence structure

gpaces in Sh(T) . Supposze is'a filter space. Associated with it is the

{ F'{x) | =X } on Fil{x)~

a

and this is represented internally. by

, .
{ F'{a) | acX,, 1 on (Fll(X))T

Thus we can characterize our internal representation | (XT,FT) of (X,F) by
E@EFT(a)Il = [ (ZpeFr(a) ) @2@13]1 s {*)

where & is in the internal Fil(XT) and a 1is in XT . The main aim of the

rvest.of this section is to determine what (%) means in concrete terms.

¥irst we analyse what ¢ dis. Given AcX we define ATEQXT by
I aeAT I = In {t | a{t)ed }
Now given p in (Fil(X))T we define a filter ¢(p) on Xy by stipulating that

Paged®) T = (%] Aep(s) Py [aey 1)

and that for an arbitrary subsheaf” S8 of §

E]

T

[ se¢(p) T [ (@ Aaed(p) ) A E8 ] VLT Aged(p) Ah cs || Acx )

Note that 4(p) is generated by the (restrictions of the) AT‘S

an internal £ilter on XT with extent Fp .

in ¢(p) Tt is
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LEMMA 5. i) TFor Ac<X , let 0{A) (= { ¥ | Aey }T in the notaticn of section

1 ) be the internal set in  (Fil(X)) determined by

T
[ pe0(a) ] = {t ] Aepl(t) } .
Then AT = UD(A) . "
i) e = ey ;
Proof. For i) , first note that .
U
I aEUOﬁA) I =1 PaEO(A) T = {t] AEPa(t) 1 s
and { t | Aepa(t) } ¢ In{t]alt)eA} = [ aeh, 1 as pa(t)SPa(t) .

On the other hand if Aea{t) for all t in V open.in T , then
p:V—=Fil(X) ;3 t t alv(t)) : ; : ¢

(where w(t) is the neighbourhood filter on + ) is a continuous map such that for
all +teV p(t) € P (al(t)) , and Aep(t) .

Hence Ve{ bt ] (@Zp) tel peF'(a) T and” Aep(t) } = { t | Aepa{t) 1 .
This completes the proof of i) (but ef. Lemma 8 ) .

For ii) note that since the sets { ¥ | Ae¥ } form a basis Tor the topology
on PFil(X) , ‘@p és generated by the (restrictions of the) Ub(A)'S in it. Now
by the remark that the same goes for ¢(p) and the An's 5 by i) it remains to
check that

l[UO(A)Eq’p]] = [ peo(a) ] = P Ly laey ) = (t | Aep(t) }

= I ATedJ(P) 1 .

Next it will be useful to debermine the relation between the two internal con-

tinuous lattices Fil(XT) and (Fil(X)), . (That there is something significant

T
here is indicated by the fact that [ pe0(a) ]| = T Ane ¢{p} 1 .) We consider

the map
$:p p olp) .
Clearly it is a sheaf map from (Fil(X))T to Fil(XT) . Also

¢(p) = ¢(a) iff P H( {9 |Ae¥}) = gl {¥]|Aer}) all
AcX . iff P=4q ;

g0 it is clear that ¢ dis injective (externally and internally). Furthermore if
{Pa} ig an internal directed set in (Fil(X})T (i.e. externally it is "locally
directed”), then ' )

Fageo(Ve) 1 = (1 aeVa () b= ULt |acp () )
u .

n

\; Tageoln) |l
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Thus & 1 p + $(p) is an injective continuous map from -(Fj.l('}ii))T to

Fil(XT) . Clearly ¢ has a one-sided inverse which we can define as follows.

Given @ in TFil(X,) we define ~f, : E6 — Fil(X) by

£(t) = {altela el

[}

Since .7 o{vy ] aev}) = & Ane? 3, Ty ig continuwous and sc elearly the
map & f@ is a gheaf map from FJ.IL(X ) to (Fil(X)) .  PFurthermore
o b f@ ~ is continuous as if {@a} is an internally dlrected setb 1n Fil XT)

then

H
s
—
o
<
f

oAl t€i[ATeAV@u]1}

{Al(!’z{@u) telIATstbuII
'\/f%(t)

We can now state the preciée relationship between Fil(XT) and (Fil(X))T .

n

LEMMA 6. (Fil(X))T is a projection (in the sense of geott [121 ) of --Fil(XT)

via the maps

F:Ll(XT Fll{x)) 5 LI S
and (Fil(x))T—>Fil(XT) S L 16
Proof. - Aftér the above discussion, it remains to check
i) f(p(p)(t) = { a1 tel ATE¢(P) 1 1 = P{t) s B8O F = f¢(P) s
agd ii) [ ATe'q:(f@) I = IIATeq'J 1 , so ¢(f®)5® {or iiyou prefer,
A o

Telrpe ol =T ).

The next Lemma relates the maximal element pa of F'(a) to pther conceplbs :
. !

which we have introduced.

1oMMA 7. Let [al be the principal fiiter generated by a 1in Fil(XT) and
1et v(t) represent the neighbourhood filter at t . Then

pa(t) = f[a]{‘c) = al(v(t))

Proof. f[aj(t) = {A] tek ATe[a} 113
= {AlteIn{sIa(s)eA}}i= av(t) H
whence also throughout the extent of a , f[a](t) P (alt)) . S8ince clearly

if plt)eF'{a{t)) throughout an open get V , then in V , $(p) = [2] .
using TLemma 6 , we see that in V , p'g i‘[a] - 3 thus f[a] is P, the

maximal element in F'{a)

We may define F‘T(a) by



I @eFT(a) 1

and £FF'(a)} by

T ge7*F'(a) 1

Tt is easy to see that

[ 2e£*F'(a) ]

whernce we Sce that

I @e'F‘T(a) 1 ¢ [ oef*F!

while we would not expect The converse to hold.

erizes FT
marEoREM 8. i) I @eFT(a) 1
ii) e (X,F) is a
filter) then
I @eFT(a) 1] = Infd

Proof. 1)
obvicus that if te®e FT(a) .

and teIni sl f@(S)EP(S} }

is straightforward

get the converse
teIn{ s | f@(s)eF(a(S)) }
as s f@(s) epa(s)

tel @eFT('sj 1

REMARK

only for the s in I¥F'(a) .

3.

There is an injection of TOP

uous maps) into FIL @

those filbters which include the neighbourhood

I f@eF'

~, whence

we use the fact that if each T{x)

18 conbinuous,

associate Lo points
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(i c'peFT(a) Adoclal b

(a) 1 .

<
il ®€FT(a) A f@—palﬂ s

(a) 3

We now give a theorem which charact—

{ (zy( Yo A‘PEF‘T(a) V|

Il

| :M"h))( Ycp A Yet*ri{a) ) 1

I

Ui{m{tl f@(t)?_p(t) e 7' (alt)) Hpe(Fil{X) )t

Fx) a’

limit space (i.e. for each xcX , is
t ] f'@(t)eF(a(t)) hi .
with the help of Temmas 6 and T. For ii) it is

teIn{ s | p(s) eF'(ala)) }
To

then for some P »
teIn{ s | f@(s)eF(a(s)) .
is a filter, then if
npa(s) e F'{a(s)) } .and
to show that

then tGtelIn{ s} f@(s)

this is sufficient

1t appesrs that in general, the pleasant characterization as in ii} holds

THE INDUCED TOFOLOGY ON FILTER SPACES

(the category of topological spaces and conbin—
(%,0(x})

maps are

¥ of a topological space

filter wvix) at %3

topologically ZGontinuous 1ff they are contipuous with respect to the dorresponding

filter structures.
Given a Filter space (X,7)

iFf whenever xe(O and

The induced topclogy provides
we say that

a left adjoint tTo this injection.

0cX 1s open (in the induced topology)

g e¥F(x) , then 0e€® .
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Filter conbimuous maps are continuous with respect to the induced topologies.
Tt is fairiy easy to see that the Tact that the induced topology provides s left .
adjoint to the injection of TOP- in FIL , is constructive. We need this fact

together with information about the induced topologjr on our represented filter

spaceg in sh(T) , in order to prove the most genefal form of cur results about

function spaces. . ‘

THEOREM Let (X,F) be a filter space. Buppose O S TxX is opén in the induced

topology on the preduct TxX (in FIL ), and O & X ig defined by

T
!IanT]] = {t] {t,alt))eO ¥

Then Oy, is open in the induced topology on (XT,FT) , and every such open arises

in this way.

Proof. First suppose O open in TxX and V open in % are such that
& t
Velao, § o [ecki(a) 1

for some a in X, and ® in Fil(Xy) . We wieh to show that Vel Opee ] .
Let p =1, , 80 that Vel peFr(a) ] . Thus for any teV , v{t) x plt)
converges to (t,a(t)) im TxX . Hence Oev(t)xp(t) ; so there is open U
comtaining t , and Aep(t) with UxAcO0 . Let U'= TUn pl ({¥]AcY}) .
TPhen clearly teU' , U' <l AT€¢(p)-]] and U' c A< 0p 1 . Hence

tel OTe¢> J and since t was an arpitrary point of V , V & 'l OTe€I> 1 sas

required.

Now suppose W is open in the induced topology on XT . We first prove the

following:

SUBLEMMA  Suppose a and a' are in XT and a(%) = a'(t) 3 then

tel aeW ] iff tel a’'eW ] . N o

- Proof of sublemma . Tt is gufficient to show that if a ig in XT and al{t) =x ,

then

tel aeW 1 iff ts[[xli‘eW]i

Tf tef acW § , take p { : % & av(t)} , say) quch that tel pe¥F'(a) 1 .
Tow tel Wedl{p) I , and hence for some AcX,

te[[ATEW]]ﬂ{slAep(s)}. .
Since Aep(t) , =xeh so0 [{xTeAT]] = T ; thus
te{[xTeAT ATEW]]_{;[[XTEW}I

Conversely, if t el XT€W]] , define p(s) = av(s) and let «q be (p(t))T .
“ Since ple)eF'(x) , 1 qu(XT) 7 = 7. Now tel Wegla) J , so that Lhere is
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open V containing t and Ac q(t) such that Vel ATEWB . But ql(%) =
p{t) = av(t) , so we can find open V' containing t such that a(V')ei . Then

tevnV' el aeAT A ATEW Tl aeWw] . This completes the proof of the sublemms.

Now we define 0 ¢ TxX by

0 = { (4,x) ] tel xTew 11}

Take (%,x)e O and an arbitrary scF'(x) . Since [ b€ F'(XT) 1 = T,
tel XTGW‘]] cl We ¢(®T) 1 . Hence there is open V containing t and Aed

such that
Vel AcW ]
Ciearly VxA cO . Hemce O« v(t) x4 . B8ince oeF'(x) was arbitrary this

shows that O is open in the indueed topology on TxX .

Now we observe that

Taco,t = {1t | {t,a(t))e0 }
5= Lt L tel alt)peW 1)
= {+t|tefaw]} Dby the sublemma
= [ acW ] .

Hence OT = W , and this completes the proof.

L. TUNCTICN SPACES IN Sh(T)

We first determine what is the sheaf of conbinuous maps between represented

convergence structures in sh(T) . As is the case with topological spaces, We need

a condition on the range space to ensure a good representation of the continuous

maps. We state this in terms of the induced topology on filter spaces (see e.g.

Hylend [6] and §3 ).

~ LEMMA 1 Let { AX | xeX} and { By | ye¥ }  be convergence struc:‘l:.ureé on D |
and D' respectively; 1let their representations in sh(T) be LA | aeky, 1
on D, and {3, | be¥ } on Dy - Let (X,F) and (Y,G) be the filter spaces
corresponding to the convergence structures and let their function space in FikL
be ([X,Y],H) . Then '
i) an element c¢ : U =+ [X,¥1 of _[X,Y}T gives rise internally %o a
. A .
continmuous map c¢ (of extent U } from {Aa I anT } on DT to . 4 Bb i b:—:YT i

on Dé by the eguation

BaN(s) = {eENalt)) ¥
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ii) if the induced topology on (Y,G) is T then every internal continuous
map arises in this way, so that the sheaf of continuous maps between the convergence

sbructures can be identified with [X,Y]T .

Proof. We +treat the case when the convergence structures are [ F'(x)} | xeX }
on Fil(X) and { G'(y) | ye¥ } on Fil(Y) . The general case follows in view

of the constructivity of Theorem 1 of ~§2 .

For 1)} , let e : U—>[X,Y] ~ be continuous. Define a continuous map

r 1 U— [Fil{X),Pil(Y}] by
(r(t)}e) = (elv{t)})(2) ,

where v(t) is the neighbourhood filter at + . We identify r with the corresp-
onding element of 4[(Fi1(X))T,(Fil(Y))TI by Theorem 6 of §1 . As the condition
" p(F(a)) c G'(c(a)) * is strictly local in the semse of Hyland L[51,

[}

UnEan | r(F'(a))ca'(8(a)) 1 In { © | o(£)(F'{alt)) c6'(c(t){alt))) }

U n Ba .

Thus r witnesses the fact that ¢ is a continuous map from { F¥(a) | aeXy }

on (Fil(X))T to [ ar(p) | beYT} on (Fil(Y})T (defined over U )

For dii) , let 2 be in [XT,YT] with Bz = V . First we must show that if

a(t) = a'(t) , then =z{a)(t) = z(a')(%) . Now since =z is an internal continuous
“map from (XT,FT) to (YT,GT) , it is a continuous map between the corresponding
(internal) induced topologicsl spaces. Let P be open in the induced topology on

Y and suppose z(a)(x) Py 1let U= z(a) }(P) . Then,

teUEEZ_(a?ePTll = {s!z(a).(é)eP} .

iy
XT , 80 by the sublemma in Theorem of §3 .

Thus, +te€ Ucl ae z“l(PT) I . Now z=1(P_) is open in the induced tépology on
tel a'e Z_I(PT) 1
Thus z{a"){t)eP .

This shows that for all open P in v, zla){t)er iff =z{a'){t)eP ,
whence since the induced topology on Y is T, > z(a)(t) = =z(a')(%) . Now
it is emsy to see that the map e @ VT A z(xT)(t) , satisfies

z{a)(t) = c(t){alt))

Since =z dis in [XT,YT] we can find contimuous meps r, : V,—> [Fil(X),Fil{¥)] ,

where the Vi cover V and
BanV, < I ri(F'(a)) c G'{z(a)) T,

for any a in XT . It simplifies matters to ‘take sups and find an r in
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[Fil(X),Fil[Y)]T with Er = V such that
Banv el v(F'(a))car(zla)) 1 -

for any a in Xp - Now using the strictly local form of " r(Ft{a))ce (z(a)) ",

" we can deduce that
BanV c { t | r{t)(F(alt)) ca{c(t)(al{ed}) } .
In ?he first place this shows that for = in V ,
r(t)F' (x) c o' (c(t)(x)) ,
g0 that e maps V to [X,Y] . Furthermore by taxing the obvious projectionlof

[Fil(¥),Fil{¥)] to Fil([X,¥]1) we can find a continuous ' : v—Fi1( X,Y ) ,
such that for t in V and 9 in Fil{X) , '

rt{t){(e) = r(t)(e) ,

<

(where on the left-hand side we have the usual application of filters). But it is

casy to see that for t in V we have w1 () c ev(t) , so we can deduce
ev(t)(F'(x)) e ¢ {c(t)(x)) , ;

wherce ¢ is continuous from V to [X, Y1, i.e. e is in [X,YjT .

This completes the proof.

o . . .
We can now immediately deduce our main theorem on function spaces. Note
that it is an analogue for filter spaces of Theoren 6 of §1 for continuous

Jattices.

THEOREM 2- TLet X and Y be filter spaces and suppose the induced topology on

Y is TO . Then the following (internal) fitter spaces are igomorphic:

1) [XT,YT] the jinternal function space of XT and YT {with the usual

Pilter structure determined by continuous convergence) 3

ii) Fx,Yl, the representation of the external function space [X,Y] .

Proof. In view of Lemma 1 and §2 it only remains to check that the filter
structures coincide. If H is the filter structure on [X,Y] , then for (ii) ,

Hy, is determined by H'(e) , ce EX,Y]T , where

[ red’'(c) 1. = In{t | r{t)ed {c(t)) }
For (i) +the infernal filter structure is determined in just the same way from

H%(c) say where
[ rea®(c) § = [ { Va)( VpeF'(a))r(p)ec'(c(a))] ]

( F,G being the filter structures on ¥ and Y ). But the condition determining
H¥ is strictly local and so we deduce that H' and H¥* coincide whence the filter

gtructures colncide.
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REMARK T simply do not know for what Tilter spacss in Sh(T) , a generalization
of Theorem 2 , will go through.

5. WHEN ALL FUNCYIONS ARE CONTINUQOUS

Yor the classical mathematician, the most bigzarre feature of Brouwer's view
of mathematics is his theorem that all functions from reals to reals are continuous
(indeed uniformly continuous on compsact intervals). However Scott [1i] showed
that this theorem holds for the Dedekind reals in sheaves over Baire space. Scott's
srgument can be generalized in = veriety of ways. We present some of these general-
ized "all funciions are conbinuous" results in the next two sections. (Wote that
the wifornity of the continuity is auwtomatic in spatial topoli - see Hyland [5] ,

Fourman and Hyland [1] .)

In order to avoid repetition in proofs, we skelch the strategy of the argument

in Scott [11]1 . We are given external spaces X, Y and we wish to show that
Sn(T) & all mapglfrom XT “to Y are continuous
1) Given a map z from XT to YT with Ez = U , we show that for all t in
¥ ,and a , a' in XT .
if a(t) = a'(t) then z(a)(t) = z(a')(%) .

This enables us to define & map € : UxX—> Y guch that for t in U and a

.}

a(a)(t) = &(t,a(t)) )

2) We show that & is (in a suitable sense) continuous. Thus we 'can identify
A . ] . . .
¢ with a comtinuous map e : U—>[X,Y] , where (x,¥] is a suitable space of

continucus funetions from X +o Y .

3)  We deduce from 2) +that 7t holds in Sh(T) +that =z is in a sultable sense

continuous.

In this section we will be concerned with parts 1) and 2) of this argument;

part 3} will e discussed in §6 .

Much of the ensuing argument is in terms of sequential convergence. The reader
should be aware of the cartesian closed category of sequeantial spaces (a coreflective
gubeategory of topological spaces) and its relation with Ie-spaces and filter spaces
as in Hyland [6] . Johnstone [E81 gives much information on sequential convergence
in a general setting; he has introduced the name "subsequential space' for the
T—spaces of [6]1 , and we shall adopt this terminology. We continue to write

"ankx” for ”(xn} converges to x" ; " =" is reserved for implication and to
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indicete mappings,

For our Tirst result, we let T be Eausdorff, first counbable, zero—dimension—
al {i.e. with a basis of clopen sets) and without isolated points. BSuppose that
¥ and Y are segquential spaces and that Y is Hausdorff: suppose further that

Y satisfies the following condition:

(¥) if y_ +y, but y ¥y , then there is a strietly increasing m(n) with
ynm(n)-'y-y .

PROPOSITICN 1 Given T , X, ¥ as above, U open in T , a comtinuous map

¢ 1 U—s [X,Y] {where [¥X,Y]1 is the sequential function space) gives rise to

T T
efa)(t) = c(t)(a(t)) ,

a partial sheaf map e X —Y with extent U , defined hy

and every partial sheaf map arises in this way. Thus the sheaf of all functions

from XT to YT is isomorphic to [X’Y]T -

Proof. The only problem is to show that any sheaf map =z : X,'I———>-YT with £z = U
arises as indicated.
For part 1) of the general strategy, let a(t) = a'(t) . From the conditions on

T we can easily find disjoint open sets V , V' included in FanEa'nU  such that

W = Vuv'u{t} iz open and +LteCLVNCLV' . Define a with Fa= W, by
2 V = a Vv, a v' = a' V', a(t)=al(t)=a'(t) . By construction a is
in XT ., and ‘

tece(in{ s | als) =ae) }) n Ce(In { s | a'(s) =als) } )
Now- gince Y 1s Hausdorff, we have 'fox.' general b , ,b' in XT s
Ceftn {5 | bs) =b'(s) 3 ) € {8l a®(s)=a)s)}
by the extensionality of 2z . Thus
Ca(a)(®) = a(@)(t) = a(at)(t)
Thus we can define jc\ : UXX— ¥ such that

z(a)(t) = &(t,a(t))

For part 2} of the general strategy, suppose there is xn% ®x in X and tnlr t

. A A . )
in T such that c(tn,xn) ¥ ¢(t,x) din Y . First we show that we may assume that
the tn‘s are distinet from © . We may assume that the tn’s and xn's are
. A S
chosen so that no subseguence of Q(tn,xn) converges to c(t,x) . If infinitely

marny tn's are distinet from t , we get what we want by taking subsequences.
. T, ) A A
Otherwise we may assume the tn's are all t , i.e. that c(t,xn)vc(t,x)
while Xn+ % . As T has no isolated points we may plck sn+ t with 5, digtinet

. A . .
fream t . Now for each n , jc\(sm,xn) +c(t,xn) , 50 we may apply (%*) and find
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AL A . :
m{n) such that c(sm(n),xn)¢c(t,x} . Setting tn = Sp(a) > Ve have what we want.
Now we may take xn-Lx 5 tn+t , with the tn‘s 811 distinet from t and from

. A . .
each other and with c(tn,xn)¢é{t,x) . Tow {taking subseguences if necessary) we
may find disjoint clopen sets Un included in U , with tneUn and
+ e U\ U {UnEneN} . Consider a : U—+X defined by

' X if se¢U
n n
a(s} = {

x if seU\'U{UnMEN} .

Clearly a 1is continumous, i.e. a is in X 5 and af{t) = x . Also =z(a} is in

. A . . ..
T 5 80 z(a)(tn) 4+ z(a)(t) i.e. g(tn.,xn)x}c(t,x) , which is a contradiction.

A . . A . . .
Thus ¢ is continuous. By adjointness < gives Iise to a conbinuous

¢ : U—>[X,¥] , =nd clearly 7z is in c as defined in the statement of the

Proposition. This completes the proof.

REMARK The condition (%) used in the above proof may seem artificial. But it

ig satisfied by most interesting examples, and it is inherited by function spaces

(if a subsequential space Y satisfies (#) then so does [X,Y] for any subsegu-

entisl ¥ ) . We state some particular corollaries of Proposition 1

COROLLARY -2 If T is.as above, the sheal model for the finite types over the
natural pumbers are the sheaves of sequentially cortinuous "continuous functional
valued functions of the appropriate Sype. (The continuous functionals are discussed

in detail in Eyland [6] .)

COROLTLARY 3 If T is as above, ( & by Prop. L if T is a manifold), the sheaf

model for IR]R { IR the Dedekind reals) is the sheaf of continuous [R, Ri-valued
functions on T . (Eere [R,R] is the space of continuous maps from R to T

with the compact—open topology which is the sequential space topology.)

Fof‘ our next result, we suppose that T is (loecally) of the form TRxS5 where B

is some first countable, normal spate.

PROPOSITION L4  Given T as above, U open in T , a conbtinuous map ¢: U—=[R,R]

gives rise to a partial sheaf map ¢ :R—>=HR with extent U , defined by
c(a)(t) = elt)alt))

and every such map arises in this way. Thus the sheaf of all functions from R o

T]R is isomorphic to [IR,IR]T .

Proof. Again the problem is to chow that any partial sheaf map 2 : E—R with

Ez = U , arises as indicated.

For pert 1) of the general strategy, let a{t) = a'(t) . The case when ¢

is in the interior of { t' | a(t") = a'(t') } is trivial and need concern us no
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further. Otherwise, ¢ is in the closure of cne of V = {tt]alt')>a’(t')}
and V' = {t'[alt)<a'(t')} . Were t ¢ CLVNCRV' , we would be home as we
could define ) , '
a(t) if a(t')>ar(s)
a(t?) = at(t') ir ale')<a'(t")

a(t') = a'(s!) otherwise ,

end the argument would be as in the proof of Proposition 1 . Now write convention-
ally +t = {r,s) , t‘=(rtsﬂ , T,r'eR and s,s'ed , and assume teCLV .
Then t must be in the closure of one of {6'|t'eV and z'<vr} and
{+t']|t'eV and r'>r } . Assume without loss of generalilty that it is in the

former. Define

a'(r',s") if . r'ss
a'(r',s") = {
a'{r',s') +alr',s) —a'(r',s) + (r'-r) if rtzr .
BN
Then (&) % ¢ CL In {t'Eg‘(t') =_a"(t')} , so that z(a'}(s) = =z(a"}(t) ,
and (b) % ech {t'lalt)>a"(t')} n ce {t']alt?)<a™(t)} .,
so0 that by an argument above z(a')(t) = z{a"){t) . Hence z(a)(t) = zla™)(t} .

This completes the argument for all cases, so we can define ¢ : UXR—> R such

that
z(a)(t) = clt,a(t)) .

For part 2} of the general strategy, the aréument proceeds as in the proof
of Froposition 1 , untll one comes to extend s continuous map on a convergent
sequence. Then we.make use of the Tietze extension theorem. The proof ig then

completed as Proposition 1

REMARK Recently Grayson has made a eivilized generalization of Propositicn 4 to

first countable completely regular spaces.

6. ALL FUNCTIONS ARE CONTINUOUS (INTERNALLY)

In this final section we investigate cases when our sheaf models satisfy "all
functions are continucus". We concentrate on the case which we considered first
in §5 , that is the case when T is Hausdorff, first countable, zero-dimensional

and without isolated points.’
A mumber of questions immediately arise from consideration of Proposition 1
of §5

i) does it hold that every map is sequentially conbtinuous ?
ii) does it hold that every map is topologically continuous ?

iii)  is either the sequential convergence or topolegy on [X,Y]T internally
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definable from the (internal) topological spaces XT and Yo 7

iv)  what connection (if any) is there beitweer the materizl of the final two

sections of this paper and the earlier sections ¢

Firgt let us see what we can say about the relation + of seguential

convergence on an internal topological space of the form XT :  we have

an-lra iff (Vopern 0 ){ae0 =+ (Em){ Vnzmn ) aneO}

LEMMA 1 ILet UgT Tbe an open set ineluded in the extent of ae X, and
a € (XT) B et [anJ be the Fréchet filter determined by the a.n's restricted
to U and for teU Xet v(t) be the neighbourhood filter of +t within U . Then,

Ucla+al iff forall teU, [an}(u(t)) converges to aft) .

{More sloppily and merorably, [ g Va T = In{+'] [an] (v(t})+a(t)}.)
Proof.  First suppose Ucl a.n+ a] and telU , and congider an open set ©
containing a(t) . Then tel aEOT 1 ., so we have,

" e Una"t(0) c [ (L n){ Ym=n ) amEOT]]

Thus we can pick an n so that

te[[(‘\fman).amef)T]i W : say . , j

Then clearly,

{ amlmzn Y} (W)co,
i.e. Oe¢ [a.n](v(t)) as required.

Conversely, suppose [an](u(t)) converges to a(t) for teU . If O open
containing a(%t) , then there is n and open WeU with teW , such,that

{am[mzn}(w) < 0 . Thus

teWel { vmzn ) ameoT]I.

But since (the restrictions of) the OT's form & basis for the topology on XT .

i
I
I
|
!
|
I
|
I-

" this is enough o show U c [[-an+a I .

i

COROLLARY 2 If T ‘s first countable, then U c [ a ta ¥ iff whenever t bt
in T, then a {t )} ¥+ a(s) . .
n n

PROPOSITION 3  Under the conditions of Proposition 1 of --85 ,

E every map from X, to T, is sequentially continuous.

Proof. This follows directly from Lemmz 1 and Proposition 1 of 85 .

It is a routine matter to check that the basic theory of sequeniial and
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subsequential spaces {definitions as in Jcknstone [8] ) is constructive. In
particuiar, given sequential continuity, topological continuity of the maps from

XT to YT will follow if XT ig & sequential space. However this is not generally
 the case. We recall an example from §7 of Hyland [61 . The space C1 is Baire
gpace and 02 the space of continuous functions from C1 to the natural numbers
with the discrete topology. There is a sgt 0c C~1>:C2 such that O is clopen

in the sequential topology on C1><02 but ircludes no non—emply O1 XO2 with Q1

cpen in C1 and O2 open in 02 (see (7.3) and (11.1) of Hyland [6] ). Take

T +to be 01 , X to be CB and Y to be the two point diserete space. Then this

example provides a map from XT to YT which by Proposition 3 is sequentially
continuous but by Fourman and Scott is not topologiéally continuous. This example
also provides sequentially open subsets of XT which are not open (take the inverse

image of an element of T, ).

The following rather weak result does give some cases when it does hold that

every map is topdlogically continuous.
[N

PROPOSITION 4  Suppose the conditions of Proposition 1 of 55 are satisfied
and furthermore X is first countable. Then, F every map from XT to YT

is topologically continuous.

Proof. The partial maps are represented by sequentially continuous maps
UxX—s Y . But under the given conditions UxX 1is sequential, so the maps will

all be topologically continuous. The result now follows from Fourman and Scott [2].

Given the fzcts sketched above, it is 1mplau51ble that the topology on
[x, Y] could he internally deflned from that on XT and YT . For the relation
of sequentlal convergence, there is-the following result, whose proof is simple,
except for a step much like the proof of Proposition 1 of §5 , and which is there-

fore omitted.

PROPOSITION 5 In the circumstances of Proposition 1 of §5 , the relation of
sefuential convergence on [X,Y]T can he characterized by
I cn4fe-] = E ( Vx +x ) cn(xn)J»c(x) 1

(Here we have identified ¢ e[X,Y]T with the corresponding sheaf map ¢ .)

A connection between the work on sequential convergence and that on filter
spaces is given by §9 of Hyland [6] . The material there is constructive once
axioms of countable and dependent choices are given. Thus we have the following

resﬁlt :

PROPOSTTION 6 Suppose that T is (locally) second countable but that otherwise

we are in the situation of Proposition 1 of 583 3 we may give X and Y the
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counttably-generated filter structures described in 59 of Hyland "[6] ; XT and
YT are then the underlying sheaves of internal filter spaces as defined in 52 ;

and then

= all maps from XT to YT are Filter continuous

COROLIARY 7 For T as in Propositionl6 , the finite types over the natural
numbers are represented by the sheaves of continuous "continuous functional’-valued

functions of appropriate type (see Hyland [61 ) ; =and

F a1l maps between these types are sequentially and filter continuous.

REMARK A result similar to Corollary T holds for finite types over the Dedekind
reals., The argument from Proposition & to internal continuity is given in essence

in Scott [111 . 8o we state,

PROPOSITION 8 If T is as in Proposition 4 of §5 , then

E  all maps from R to TR are continuons, (in any of the many equivalent

senses) and in fact uniformiy continuous on closed bounded intervals.

It remains to state the following:

CEALLENGE Constructivize the results of §35 and 6
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