
Linear �-Calculus and Categorical ModelsRevisitedNick Benton1, Gavin Bierman1, Valeria de Paiva1 and Martin Hyland21 Computer Laboratory, University of Cambridge, UK2 Department of Pure Mathematics and Mathematical Statistics, University ofCambridge, UK1 Intuitionistic Linear LogicGirard's Intuitionistic Linear Logic [7] is a re�nement of Intuitionistic Logic, whereformulae must be used exactly once. In other words, the familiar Weakening andContraction rules of Gentzen's sequent calculus [17] are removed. To regain the ex-pressive power of Intuitionistic Logic, these rules are returned, but in a controlledmanner. A logical operator, `!', is introduced which allows a formula to be used asmany times as required (including zero).In this paper we shall consider multiplicative exponential linear logic (MELL),i.e. the fragment which has multiplicative conjunction or tensor, 
, linear implica-tion, ��, and the logical operator \exponential", !. We recall the rules for MELLin a sequent calculus system in Fig. 1. We use capital Greek letters �;� for se-quences of formulae and A;B for single formulae. The Exchange rule simply allowsthe permutation of assumptions.The `! rules' have been given names by other authors. !L�1 is called Weakening ,!L�2 Contraction, !L�3 Dereliction and (!R) Promotion1. (We shall use these termsthroughout this paper.) In the Promotion rule, !� means that every formula in theset � is modal, in other words, if � is the set fA1; A2; . . .Ang, then !� denotes theset f!A1; !A2; . . .!Ang.2 Categorical considerations and term assignmentThe sequent calculus is best thought of as providing not proofs themselves, but ameta-theory concerning proofs. Hence a formulation in these terms does not alwaysprovide clear clues as to how it should be enriched to a term assignment system.Fortunately we can use the general form of a categorical model (of the proof theory)of the logic to derive an appropriate term assignment system for the sequent calculusformulation of this logic.The fundamental idea of the categorical treatment of proof theory is that propo-sitions should be interpreted as the objects of a category (or multicategory, or poly-category) and proofs should be interpreted as maps; operations transforming proofsinto proofs then correspond (if possible) to natural transformations (between appro-priate hom-functors) in the categorical sense. The maps modelling proofs are builtup using these categorical operations and so the problem of a term assignment is1 Girard, Scedrov and Scott [8] prefer to call this rule Storage.



IdentityA ` A�;A;B;� ` C Exchange�;B;A;� ` C� ` B B;� ` C Cut�;� ` C� ` A (IL)�; I ` A (IR)` I�;A;B ` C (
L)�;A
B ` C � ` A � ` B (
R)�;� ` A
B� ` A �;B ` C (��L)�;�;A��B ` C �;A ` B (��R)� ` A��B� ` B (!L�1)�; !A ` B �; !A; !A ` B (!L�2)�; !A ` B�;A ` B (!L�3)�; !A ` B !� ` A (!R)!� `!AFig. 1. Multiplicative Exponential Linear Logicessentially the problem of providing a syntax expressing these operations. Here wecarry out this programme for MELL.Deriving the term formation rulesSince we are dealing with sequents � ` A, in principle we should deal with multi-categories. However it simpli�es things to assume at once that the multicategoricalstructure is represented by a tensor product �, so that we are dealing with a monoidalcategory [13]. We shall write hi for the unit of this tensor product. To simplify thepresentation we use the same symbols both for propositions of linear logic and fortheir denotations in our monoidal category. The idea then is that a sequent of formC1; C2; . . . ; Cn ` Awill be interpreted as a map C1�C2�. . .�Cn ! A from the tensor product of the Ci toA. (Thus a coherence result is assumed [11].) When � is the sequence C1; C2; . . . ; Cn,



we write � ! A for this map. We seek to enrich the sequent judgement to a termassignment judgement of the formx1 : C1; x2 : C2; . . . ; xn : Cn ` e : Awhere the xi are (distinct) variables and e is a term; usually we suppress (irrelevant)variables and write � ` e : A for this term assignment.The whole process is based upon some simple assumptions about the interpreta-tion of the basic structural rules, and a simple procedure for dealing with the logicalrules, which we describe in turn.2.1 Structural RulesThe sequent representing the Identity rule is interpreted as the (canonical) iden-tity arrow A 1�! A from A to A. The corresponding rule of term formation isx : A ` x : A. The rule of Exchange we interpret by assuming that we have a sym-metry for the tensor product � (making our model a symmetric monoidal category).We henceforth suppress Exchange and the corresponding symmetry; thus we reallyconsider multisets of formulae, and as a result no term forming operations resultfrom this rule. The Cut rule � ` A A;� ` B Cut�;� ` Bis then interpreted as a generalized form of composition: if the maps � f�! A andA �� g�! B are the interpretations of hypotheses of the rule, then the composite� �� ���f � 1���������!A �� ���g������! Bis the interpretation of the conclusion. We take as the corresponding rule of termformation a textual substitution:� ` f : A x : A;� ` g : B Cut�;� ` g[f=x] : BOne should note that the contexts � and � are disjoint; namely the variables whichoccur in � do not occur in �. This restriction holds for all the binary multiplicativerules.2.2 Logical rules for MultiplicativesWe shall make the assumption that any logical rule corresponds to an operation onmaps of the category which is natural in (the interpretations of) the components ofthe sequents which remain unchanged during the application of a rule. Compositioncorresponds to Cut so clearly the logical signi�cance is that we are assuming thatour operations commute (where appropriate) with Cut.



We start by considering the connective 
. The (
L) rule�;A;B ` C (
L)�;A
B ` Cgives an operation taking maps � � A � B ! C to maps � � (A
B) ! C. Anappropriate syntax is �; x : A; y : B ` f : C (
L)�; z : A
B ` let z be x
y in f : Cwhere we understand that the variables x and y are bound in the term let z be x
y in f .Naturality in � is clear since we may substitute for the corresponding variables,whilst naturality in C gives rise to an equationg[let z be x
y in f=w] = let z be x
y in g[f=w] (1)The (
R) rule � ` A � ` B (
R)�;� ` A
Bgives an operation taking arrows � ! A and� ! B to an arrow � ��! A
B. Thismight suggest a quite complex syntax, but fortunately our naturality assumptionsimply that this operation is completely determined by a map A � B ! A
B. Itfollows that an appropriate syntax is� ` e : A � ` f : B (
R)�;� ` e
f : A
BThe (IL) rule � ` A (IL)�; I ` Agives an operation taking maps � ! A to maps � � I ! A. An appropriate syntaxis � ` e : A (IL)�; x : I ` let x be � in e : Aso that in e�ect we simply introduce a dummy free variable for the assumption I .Naturality in � is clear since we may substitute for the corresponding (free) variables.However naturality in A gives rise to an equationf [let x be � in e=y] = let x be � in f [e=y] (2)The (IR) rule (IR)` Igives simply a map hi ! I . An appropriate syntax is(IR)` � : I



Our treatment of the (��L) rule� ` A �;B ` C (��L)�;A��B;� ` Cfollows traditional treatments of the left implication rule in sequent systems (whichall involve a Yoneda Lemma argument). It follows from our naturality assumptionsby a straightforward application of a Yoneda Lemma that an operation as aboveis determined by its action on a pair of identity arrows. Thus it is enough to givean operation of application app:A � (A��B) �! B. Then given arrows e:� ! A,f :B �� ! C the required arrow � � (A��B) �� ! C is the composite� � (A��B) �� ���e � 1 � 1����������! A � (A��B) �� ���app � 1��������!B �� ���f������! Cand an appropriate syntax is� ` e : A �; x : B ` f : C (��L)�; g : A��B;� ` f [(ge)=x] : CAll the naturality assumptions are now dealt with by substitution. The (��R) rule�;A ` B (��R)� ` A��Bgives an operation taking an arrow � � A ! B to an arrow � ! A��B. This is aform of abstraction and an appropriate syntax is�; x : A ` e : B (��R)� ` �x:A:e : A��B2.3 Logical rules for the connective `!'Next we consider the `!' connective. The left rules are reasonably straightforward,the right rule is a bit more involved. We consider the Dereliction and Promotionrules �rst.Dereliction and Promotion. Consider the Dereliction rule�;A ` B Dereliction�; !A ` BSince it gives an operation taking an arrow � � A ! B to an arrow ��!A ! B, anappropriate syntax is �; x : A ` e : B Dereliction�; z :!A ` let z be !x in e : Band indeed this is the syntax given by Abramsky [1]. With this formulation naturalityin B gives rise to an equation



f [let z be !x in e=y] = let z be !x in f [e=y]However it is a consequence of naturality that our operation is determined by itse�ect on identity arrows, thus it is enough to give a map !A "�! A. Then given anarrow e:� �A! B, the required arrow ��!A! B is the composite��!A ���1 � "������! � �A ��� e������!Bso another appropriate syntax (and the one we shall use in what follows as it sur-presses further naturality equations) is�; x : A ` e : B Dereliction�; z :!A ` e[derelict(z)=x] : BNext consider the problematic Promotion rule!� ` A Promotion!� `!AThis gives an operation (of Promotion) taking an arrow !� ! A to an arrow !� !!A.Now it is not a priori clear what form of naturality should be assumed for this rule.If we assume that the operation should be natural in !� , then Abramsky's rule [1,Section 3], x :!� ` e : Ax :!� `!e :!Awould give an appropriate syntax2. However nothing in the idea of a categoricalmodel suggests this assumption. (Note in passing that the categorically appealingassumption would be that ! is a functor and that we have naturality in � .) Theimportant point to realize is that if the operation is not natural in !� , then theoperation should not preserve substitution for the free variables implicitly declaredin !� . Hence we are restricted to giving an operation on `higher-order' terms, wherethe variables which appear initially must be bound and fresh variables introduced.These considerations lead to the term assignment rulex :!� ` e : A Promotiony :!� ` promote y for x in e :!AWe do not claim that there is a clear reason in terms of the category theory givenso far to prefer one rule to the other, but we choose our rule simply so as to avoidany premature assumptions.2 This assumption has the e�ect that in the categorical model, which we shall considerlater, the comonad is idempotent : a point noted by Wadler [18].



Weakening and Contraction. Finally we consider the Weakening and Contractionrules. The rule � ` B Weakening�; !A ` Bgives an operation taking an arrow � ! B to an arrow ��!A! B. An appropriatesyntax is � ` e : B Weakening�; z :!A ` discard z in e : Bwhere we have simply introduced a fresh dummy variable of type !A. Naturality in �is as before clear since we may substitute for the corresponding variables. Naturalityin B gives rise to an equationf [discard z in e=y] = discard z in f [e=y] (3)The Contraction rule �; !A; !A ` B Contraction�; !A ` Bgives an operation taking an arrow ��!A�!A ! B to an arrow ��!A ! B. Anappropriate syntax is �; x :!A; y :!A ` e : B Contraction�; z :!A ` copy z as x; y in e : Bwhere we understand that the variables x and y are bound in the term copy zas x; yin e.Naturality in � is clear since we may substitute for the corresponding variables, whilenaturality in B gives rise to an equationf [copy z as x; y in e=w] = copy z as x; y in f [e=w] (4)This concludes our derivation of a term assignment system for MELL from gen-eral considerations of the form of a categorical model. We display this system ofterm assignment in Fig. 2. We stress that rather elementary assumptions and un-sophisticated categorical observations have been used in this analysis. However, ouranalysis has not only led us to a term assignment system, but has also uncovered aseries of naturality equations , which are listed in Fig. 3.3 Linear Natural DeductionIn the previous section we have provided a term assignment for a sequent calculuspresentation of linear logic. Here we brie
y consider a corresponding natural deduc-tion formulation. In such a system a deduction is a derivation of a proposition froma �nite set of assumption packets by means of inference rules. In intuitionistic logicthese packets consist of (possibly empty) multisets of propositions. The restrictionneeded to make the derivations linear is that packets contain exactly one proposi-tion, i.e. a packet is now equivalent to a proposition. Whereas before we typicallyhad rules discharging many packets of an assumption we now only discharge the one.Thus we can label every proposition with a unique natural number.



x : A ` x : A� ` e : A �; x : A ` f : B Cut�;� ` f [e=x] : B� ` e : A �; x : B ` f : C (��L)�; g : A��B;� ` f [(ge)=x] : C �; x : A ` e : B (��R)� ` �x:A:e : A��B� ` e : A (IL)�; x : I ` let x be � in e : A (IR)` � : I�; x : A; y : B ` f : C (
L)�; z : A
B ` let z be x
y in f : C � ` e : A � ` f : B (
R)�;� ` e
f : A
B� ` e : B Weakening�; z :!A ` discard z in e : B�; x :!A; y :!A ` e : B Contraction�; z :!A ` copy z as x; y in e : B�; x : A ` e : B Dereliction�; z :!A ` e[derelict(z)=x] : Bx :!� ` e : A Promotiony :!� ` promote y for x in e :!AFig. 2. Term Assignment System for sequent calculusOthers have considered systems of natural deduction for linear logic [15, 18, 14].Our main contribution is in our treatment of the Promotion rule. Previous authorsformulated it as the following: !A1 � � �!An���B Promotion!BClearly this rule is not closed under substitution. To ensure that the rule enjoysclosure under substitution we use the following formulation:



f [let x be � in e=y] = let x be � in f [e=y]f [let z be x
y in g=w] = let z be x
y in f [g=w]f [discard z in e=y] = discard z in f [e=y]f [copy z as x; y in e=w] = copy z as x; y in f [e=w]Fig. 3. Naturality Equations
���!A1 . . . ���!An [!A1 � � �!An]���B Promotion!BOne should be aware that this rule carries an implicit side condition that not onlymust all assumptions be exponential, but that all are discharged (and re-introduced).Our subsequent term assignment is given in Fig. 4. We note at once a signi�cantproperty of the term assignment system for linear natural deduction. Essentiallythe terms code the derivation trees so that any valid term assignment has a uniquederivation.Theorem1 (Unique Derivation). For any term t and proposition A, if there is avalid derivation of the form � ` t : A, then there is a unique derivation of � ` t : A.Proof. By induction on the structure of t. utAs mentioned above, our system enjoys closure under substitution.Theorem2 Substitution. If � ` a : A and �; x : A ` b : B then �;� ` b[a=x] : BProof. By induction on the derivation �; x : A ` b : B. utAs one would expect there is an exact equivalence between the natural deductionand sequent calculus formulations (indeed the substitution property is essential forthis). The details of this equivalence are given in [2].4 Cut EliminationIn this section we consider cut elimination for the sequent calculus formulation ofMELL, extended or decorated with terms. Suppose that a derivation in the termassignment system of Fig. 2 contains a cut:



x : A ` x : A�; x : A ` e : B (��I)� ` �x:A:e : A��B � ` e : A��B � ` f : A (��E)�;� ` ef : B` � : I � ` e : A � ` f : I (IE )�;� ` let f be � in e : A� ` e : A � ` f : B (
I)�;� ` e
f : A
B � ` e : A
B �; x : A; y : B ` f : C (
E)�;� ` let e be x
y in f : C�1 ` e1 :!A1 � � � �n ` en :!An x1 :!A1; . . . ; xn :!An ` f : B Promotion�1; . . . ; �n ` promote e1; . . . ; en for x1; . . . ; xn in f :!B� ` e :!A � ` f : B Weakening�;� ` discard e in f : B� ` e :!A �; x :!A; y :!A ` f : B Contraction�;� ` copy e as x; y in f : B� ` e :!A Dereliction� ` derelict(e) : AFig. 4. Term Assignment System for Linear Natural Deduction
D1� ` e : A D2�; x : A ` f : B Cut�;� ` f [e=x] : BIf � ` e : A is the direct result of a rule D1 and �; x : A ` f : B the result of a ruleD2, we say that the cut is a (D1; D2)-cut. A step in the process of eliminating cutsin the derivation tree will replace the subtree with root �;� ` f [e=x]:B with a treewith root of the form �;� ` t : B. The terms in the remainder of the tree may bea�ected as a result.Thus to ensure that the cut elimination process extends to derivations in theterm assignment system, we must insist on an equality f [e=x] = t, which we canread from left to right as a term reduction. In fact we must insist on arbitrarysubstitution instances of the equality, as the formulae in � and � may be subject tocuts in the derivation tree below the cut in question. In this section we are mainlyconcerned to describe the equalities/reductions which result from the considerations



just described. Note, however, that we cannot be entirely blithe about the processof eliminating cuts at the level of the propositional logic. As we shall see, not everyapparent possibility for eliminating cuts should be realized in practice.As things stand there are 11 rules of the sequent calculus aside from Cut (andExchange) and hence 121 a priori possibilities for (D1; D2)-cuts. Fortunately mostof these possibilities are not computationally meaningful in the sense that they haveno e�ect on the terms. We say that a cut is insigni�cant if the equality f [e=x] = twe derive from it as above is actually an identity (up to �-equivalence) on terms (soin executing the cut the term at the root of the tree does not change).Note that any cut involving an axiom ruleIdentityx : A ` x : Ais insigni�cant; and the cut just disappears (hence instead of 121 we must nowaccount for 100 cases). These 100 cases of cuts we will consider as follows: 40 casesof cuts the form (R;D) as we have 4 right rules and 10 others; 24 cases of cuts ofthe form (L;R) as we have 6 left-rules and 4 right ones and �nally 36 cases of cutsof the form (L;L). Let us consider these three groups in turn.Firstly we observe that there is a large class of insigni�cant cuts of the form(R;D) where R is a right rule: (
R), (IR), (��R), Promotion. Indeed all such cutsare insigni�cant with the following exceptions:{ Principal cuts. These are the cuts of the form ((
R); (
L)), ((IR); (IL)), ((��R);(��L)), (Promotion, Dereliction), (Promotion,Weakening), (Promotion, Con-traction) where the cut formula is introduced on the right and left of the tworules.{ Cases of the form (R;Promotion) where R is a right rule. Here we note that cutsof the form ((
R));Promotion), ((IR));Promotion) and ((��R);Promotion)cannot occur; so the only possibility is (Promotion ;Promotion).Next any cut of the form (L;R) where L is one of the left rules (
L), (IL), (��L),Weakening , Contraction, Dereliction and R is one of the simple right rules (
R),(IR), (��R) is insigni�cant (18 cases). Also cuts of the form ((��L);Promotion) and(Dereliction ;Promotion) are insigni�cant (2 cases). There remain four further casesof cuts of the form (L;Promotion) where L is a left rule.Lastly we have to consider the 36 cuts of the form (L1; L2), where the Li are bothleft rules. Again we derive some bene�t from our rules for (��L) and Dereliction : cutsof the form ((��L); L) and (Dereliction ; L) are insigni�cant. There are 24 remainingcuts of interest.We now summarize the cuts of which we need to take some note. They are:{ Principal cuts. There are six of these.{ Secondary cuts. The single (strange) form of cut (Promotion ;Promotion) andthe four remaining cuts of form (L;Promotion) where L is a left rule other than(��L) or (Dereliction).



{ Commutative cuts. The twenty-four remaining cuts of the form (L1; L2) just de-scribed. These correspond almost3 case by case to the commutative conversionsfor natural deduction (considered in [3]) and are not considered further here.4.1 Principal CutsWe do not dwell on the cases of principal cuts involving tensor, the constant I andlinear implication as they are standard. We shall consider in detail the principal cutsinvolving the Promotion rule.� (Promotion;Dereliction)-cut. The derivation!� ` B Promotion!� `!B B;� ` C Dereliction!B;� ` C Cut!�;� ` Cis reduced to !� ` B B;� ` C Cut!�;� ` CThis reduction yields the following term reduction(f [derelict(q)=p])[promote yi for xi in e=q] = f [e=p]� (Promotion;Weakening)-cut. The derivation!� ` B Promotion!� `!B � ` C Weakening!B;� ` C Cut!�;� ` Cis reduced to � ` C Weakening*!�;� ` Cwhere Weakening* corresponds to many applications of the Weakening rule.This gives the term reductiondiscard (promote ei for xi in f) in g = discard ei in g� (Promotion;Contraction)-cut. The derivation!� ` B Promotion!� `!B !B; !B;� ` C Contraction!B;� ` C Cut!�;� ` Cis reduced to3 The exceptions are the cases where (��L) is the (second) rule above the cut. In thesecases we obtain slightly stronger rules.



!� ` B Promotion!� `!B !� ` B Promotion!� `!B !B; !B;� ` C Cut!�; !B;� ` C Cut!�; !�;� ` C Contraction*!�;� ` Cor to the symmetric one where we cut against the other !B �rst. This gives the termreduction copy (promote ei for xi in f) as y; y0 in g =copy ei as zi; z0i in g[promote zi for xi in f=y; promote z0i for xi in f=y0]As would be expected these principal cuts correspond to the �-reductions which canbe derived from the natural deduction system outlined in Section 3 (and detailedin [3]). let f 
 g be x
 y in h = h[f=x; g=y]let � be � in h = hh[(�x:A:f)g=y] = h[f [g=x]=y](f [derelict(q)=p])[promote yi for xi in e=q] = f [e=p]discard (promote ei for xi in f) in g = discard ei in gcopy (promote ei for xi in f) as y; y0 in g = copy ei as zi; z0i ing[promote zi for xi in f=y;promote z0i for xi in f=y0]Fig. 5. Principal reduction rules
4.2 Secondary CutsWe now consider the cases where the Promotion rule is on the right of a cut rule. The�rst case is the `strange' case of cutting Promotion against Promotion, then we havethe four cases (
L), (IL), Weakening and Contraction against the rule Promotion.Here we discuss only the `strange' case of



� (Promotion;Promotion)-cut. The derivation!� ` B Promotion!� `!B !B; !� ` C Promotion!B; !� `!C Cut!�; !� `!Creduces to !� ` B Promotion!� `!B !B; !� ` C Cut!�; !� ` C Promotion!�; !� `!CNote that it is always possible to permute the cut upwards, as all the formulae inthe antecedent are modal. This gives the term reductionpromote (promote z for x in f) for y in g = promote w for z in (g[promote z for x in f=y])We present all the term equalities given by the secondary cuts in Fig. 6. Observethat the last four equations are particular instances of the naturality equationsdescribed in Section 2, while the �rst encapsulates the naturality of the Kleisli oper-ation of Promotion. One is tempted to suggest that perhaps the reason why the rulePromotion gives us reductions with some sort of computational meaning is becausethis rule is not clearly either a left or a right rule. It introduces the connective onthe right (so it is mainly a right rule), but it imposes conditions on the context onthe left. Indeed there does not appear to be any analogous reductions in naturaldeduction.promote (promote z for x in f) for y in g = promotew for z ing[promote z for x in f=y]promote (discard x in f) for y in g = discard x in (promote f for y in g)promote (copy x as y; z in f) for y in g = copy x as y; z in (promote f for y in g)promote (let z be x
y in f) for w in g = let z be x
y in (promote f for w in g)promote (let z be � in f) for w in g = let z be � in (promote f for w in g)Fig. 6. Secondary reduction rules



5 The Categorical ModelMuch work has been done on providing such (categorical) models of IntuitionisticLinear Logic. Here we shall just mention the work of Seely [16] and de Paiva [4].With a view to understanding what is involved here, let us consider the traditionalanalysis of the proof theory of some basic intuitionistic logic via the notion of a carte-sian closed category. (Lambek and Scott [12] is a good source for this material.) Inthat case, the basic normalization process gives rise to �-equality on the terms of thetyped �-calculus. The �-equality rule is valid in any cartesian closed category, butthe attractive categorical assumption of being cartesian closed amounts to requir-ing ��-equality, that is, to a further `extensionality' assumption. Thus one way tounderstand what we do is that we make a minimal number of attractive simplifyingassumptions about the basic categorical set up introduced in Section 2 which at leastentail the (desired) equalities between proofs. In this section we simply discuss thecategorical assumptions we make and give the resulting equations.5.1 Categorical interpretation of the multiplicativesWe start by considering the connective 
. The categorical signi�cance of the �-rulefor 
 is that any map of the form � � A � B ! C factors canonically through themap A �B 
�! A
B which results from the instance of the (
R) ruleA ` A B ` B (
R)A;B ` A
BThe simplifying `extensionality' assumption is then that this factorization is unique.This can be expressed by saying that (generalized) composition with A �B ! A
Binduces a natural isomorphism between maps� � (A
B)! C=============� �A �B ! CIn other words that the operation of composing with A � B ! A
B provides aninverse to the (
L)-operation taking maps � �A �B ! C to maps � � (A
B)! C.Thus we may as well assume that the logical
 coincides with �. We get two equationsexpressing this isomorphism. One of these equations is, of course, the �-rule fortensor: let u
v be x
y in f = f [u=x; v=y] (5)The other can be regarded as an �-equality:let u be x
y in f [x
y=z] = f [u=z] (6)The case of I is like that for 
. Thus (generalized) composition with hi ! Iinduces a natural isomorphism between maps� � I ! C=========� � hi ! C



We identify hi and I , and use I both as a logical operator and to interpret theempty sequence on the left hand side of a sequent. As before we get two equationsexpressing the natural isomorphism. One is the �-rule and the other can again beregarded as an �-equality: let � be � in f = f (7)let u be � in f [�=z] = f [u=z] (8)The �-rule for �� has a slightly more complicated interpretation, it means thatany map f :A
B ! C factors asA
B ���1
cur(f)����������!A
(A��C) ���app������! Cwhere app:A
(A��C) ! C is the map that results from an instance of the (��L)rule A ` A C ` C (��L)A;A��C ` CAgain the natural simplifying assumption is that the factorization is unique, whichmeans that there exists a natural isomorphism between mapsA
B ���������! C==============A ���������!B��CThus �� provides us with a closed structure on our category corresponding to thetensor 
. Again we have two equations to express our natural isomorphism. One isthe �-rule and the other is the (linear form of the) traditional �-rule:(�x:f)e = f [e=x] (9)�x:fx = f (10)5.2 Categorical interpretation of Dereliction and PromotionNow we consider the meaning of the �-rule for ! involvingDereliction. The categoricalimport of this rule is that any map !� ! A factors in a canonical way as a composite!� ���������! !A ���"A������! Awhere !A "A�! A is the canonical map obtained by Dereliction from the identity asdescribed in Section 2. Given any proof � ` B there is obviously a canonical two-step process that transforms it into a proof !� `!B by applying the Dereliction rule(several times) followed by Promotion.� ` B Dereliction*!� ` B Promotion!� `!B



If � f�! B interprets the original proof, we write the resulting arrow as !� !f�! !B.As a preliminary simpli�cation, we assume that this de�nition gives the extension of! to a multicategorical functor. This amounts to the assumption that ! is a monoidalfunctor [5]; that is, the functor ! comes equipped with a natural transformationmA;B : !A
!B !!(A
B)(natural in A and B) and a morphism mI : I !!I making a standard collection ofdiagrams commute. Note that the �-rule for Dereliction certainly implies that forany f :� ! A, the equation !f ; "A = "� ; f holds. Either composite gives the e�ectof Dereliction on f . This shows that ": ! ! 1 will be a multicategorical naturaltransformation and so a monoidal natural transformation.We need one further piece of structure. We apply the Promotion rule to theaxiom !A ` !A to obtain the derivation!A `!A Promotion!A `!!AIn other words, from an identity arrow !A �!!A we can get a canonical arrow�A: !A !!!A. With the equations to hand we know rather little about �. One caneasily check that the composite!A ����A������! !!A ���"!A������! !Ais the identity on !A, and that is one of the triangle identities for a comonad, butthat is about it. However it is compelling to add to our preliminary assumption that! is a monoidal functor, the assumption that � (as well as ") is a monoidal naturaltransformation and that (!; "; �) forms a comonad on our category. Note that givena monoidal comonad (!; "; �), the Promotion rule can be interpreted as follows: givena map f : !C1 
 . . .
!Cn �! A we obtain the `promoted' map as the composite!C1 
 . . .
!Cn ��� �������! !!C1 
 . . .
!!Cn ���m������! !(!C1 
 . . .
!Cn) ���!f������! !AWe can formulate the conditions that (!; "; �) be a monoidal comonad directly interms of the basic operations given by MELL. In addition to the �-equality (equation(11) below) we obtain: derelict(promote ei for xi in f) = f [ei=xi] (11)promote z for x in (derelict(x)) = z (12)promote (promote zi for xi in f); wj for y; yj in g =promote zi; wj for z0i; yj in (g[promote z0i for xi in f=y]): (13)Equation (12) can be thought of as an �-rule, as it provides a kind of uniqueness ofthe factorization mentioned above; equation (13) expresses an appropriate form ofnaturality of the operation of Promotion and it arises from a secondary cut elimina-tion.



5.3 Categorical interpretation of Weakening and ContractionWe �nally consider the categorical signi�cance of the �-rules involving Weakeningand Contraction. To do so let us �rst introduce a further canonical pair of maps.Using Weakening (and the right rule for I) we have a deduction` I Weakening!A ` Iwhich gives a canonical map !A eA�! I (where e is used to remind the reader that thismap corresponds to `erasing' the assumption). From the rules (
R) and Contractionwe obtain !A `!A !A `!A (
R)!A; !A `!A
!A Contraction!A `!A
!Awhich gives a canonical map !A dA�!!A
!A (again d is used to hint at `duplication'of assumptions).It follows from the �- and �-rules for 
 and I as well as from the naturalityassumptions on Contraction and Weakening described in Section 2 that any map�
!A f�! B arising from the use of the rule of Weakening is the composite�
!A ���1
eA��������! �
I �= � ���f������! BSimilarly the e�ect of the rule of Contraction is that any map !A
� f�! B arisingfrom the use of Contraction is the composite!A
� ���dA
1���������! !A
!A
� ���f������!BThe �-equalities for Contraction and Weakening namely,discard (promote ei for xi in t) in u = discard ei in u (14)copy (promote ei for xi in t) as y; z in u =copy ei as x0i; x00i in u[promote x0i for xi in t=y; promote x00i for xi in t=z] (15)say that maps obtained using the rule Promotion preserve the structure (on objectsof the form !A) given by e and d. It follows at once that the canonical morphisms(e and d) are natural transformations. One might also expect that e and d givestructure on the coalgebras, or (what amounts to the same thing) that they arethemselves maps of coalgebras. This leads to the equationspromote e; ei for x; xi in discard x in t = discard e in promote ei for xi in t (16)promote e; ei for z; zi in copy z as x; y in t =copy e as x0; y0 in promote x0; y0; ei for x; y; zi in t (17)We believe that there is some computational sense to this interplay betweenPromotion on the one hand, and Weakening and Contraction on the other. Further-more our intuitions about the processes of discarding and copying suggest strongly



that the natural transformations e and d give rise to the structure of a (commuta-tive) comonoid on the free !-coalgebras. (As a consequence all coalgebras have (andall maps of coalgebras preserve) the structure of a (commutative) comonoid.)5.4 The categorical model of Intuitionistic Linear LogicMuch of the categorical analysis that we have just given is quite familiar, though thecorresponding equational calculus seems new (if only because our syntax is new).We note however that (following Seely [16]) it has become standard to analyze thecategorical meaning of Weakening and Contraction in terms of the relationship be-tween the additives and the multiplicatives. Our analysis dispenses with additivesand hence gives a more general account of the force of the exponentials. Even in thepresence of the additives our formulation is not equivalent to Seely's and it certainlycovers cases of interest not covered by his. To sum up the analysis in this section wegive the following de�nition.De�nition 3. A categorical model for MELL4 consists of:1. a symmetric monoidal closed (multi)category (modelling tensor and linear im-plication);2. together with a comonad (!; "; �) with the following properties:(a) the functor part `!' of the comonad is a monoidal functor and " and � aremonoidal natural transformations,(b) every (free) !-coalgebra carries naturally the structure of a commutativecomonoid5 in such a way that coalgebra maps are comonoid maps.We have indicated in the text above what are the equations in our term assign-ment system corresponding to this notion of categorical model. We display all theseequations in Fig. 7.The connection between these equations and the notion of a categorical modelcan be made precise along the following lines. First assume that we have a signaturegiven by a collection of ground types and of typed function symbols. From this data,types and terms in context are de�ned inductively by the clauses of Fig. 2 givingrise to what we call a term logic for MELL.Next assume that C is a categorical model for MELL. Then in particular C hasthe structure outlined in Sect. 2. Here hi and � are identi�ed with the I and 
 ofC. The required operations for I , 
, and �� are given by standard operations in asymmetric monoidal closed category. As explained in Sect. 5.2 the map ": !A ! Aused to interpret the Dereliction rule can be identi�ed with the counit "A: !A !A, while the operation of Promotion involves the comultiplication � and the mapwhich gives the monoidal structure of the functor !. Finally as explained in Sect. 5.3the operations for Weakening and Contraction are given in terms of the comonoidstructure on the (free) coalgebras.4 Note that in our formulation it is not necessary to consider the additives to model theexponential.5 This means not only that each !-coalgebra (A;hA:A !!A) comes equipped with mor-phisms e:A! I and d:A! A
A but also that e and d are coalgebra maps.



let � be � in e = elet u be � in f [�=z] = f [u=z]let e
t be x
y in u = u[e=x; t=y]let u be x
y in f [x
y=z] = f(�x:A:t)e = t[e=x]�x:A:tx = tderelict(promote ei for xi in t) = t[ei=xi]promote z for x in derelict(x) = zpromote (promote zi for xi in f); wj for y; yj in g = promote zi; wj for z0i; yj in(g[promote z0i for xi in f=y])discard (promote ei for xi in t) in u = discard ei in upromote e; ei for x; xi in discard x in t = discard e in promote ei for xi in tcopy (promote ei for xi in t) as y; z in u = copy ei as x0i; x00i inu[promote x0i for xi in t=y;promote x00i for xi in t=z]promote e; ei for z; zi in copy z as x; y in t = copy e as x0; y0 inpromote x0; y0; ei for x; y; zi in tcopy e as x; y in discard x in t = t[e=y]copy e as x; y in discard y in t = t[e=x]copy e as x; y in t = copy e as y; x in tcopy e as x;w in copy w as y; z in t = copy e as w; z in copy w as x; y in tf [let z be � in e=w] = let z be � in f [e=w]f [let z be x
y in e=w] = let z be x
y in f [e=w]f [discard z in e=w] = discard z in f [e=w]f [copy z as x; y in e=w] = copy z as x; y in f [e=w]Fig. 7. Categorical equalities



Given the structure outlined in Sect. 2, for any interpretation of a signature� in C there is a standard inductive de�nition of the interpretation of types andof terms in context of the term logic given by � in C. The steps in this inductivede�nition6 were considered in Sect. 2 and for the convenience of the reader we presentan indication of these steps in Fig. 8. A! A� ! A A ��! B Cut� ��! B� ! A (IL)� � I ! A (IL)hi ! I� �A �B ! C (
L)� � (A
B)! C � ! A �! B (
R)� �� ! A
B� ! A � �B ! C (��L)� � (A��B) ��! C � �A ! B (��R)� ! A��B� ! B Weakening��!A! B � � !A � !A! B Contraction��!A! B� �A! B Dereliction� � !A ! B !� ! A Promotion!� ! !AFig. 8. (Outline of the) interpretation of Term LogicThe interpretation is sound and complete in the following sense.Theorem4.1. (Soundness) For any signature and interpretation of the corresponding systemin a categorical model for Intuitionistic Linear Logic (all the equational conse-quences of) the equations in Fig. 7 hold in the sense that the interpretation ofeither term gives the same map in the category.2. (Completeness) For any signature there is a categorical model for IntuitionisticLinear Logic and an interpretation of the system in it with the following property:6 Note that strictly speaking the induction is on the derivation (in the sequent calculus)of � ` e : A. Hence one has to show that the interpretation in C is independent ofthe derivation. It is laborious to show this directly and the result also follows from aconsideration of the equivalent natural deduction formulation sketched in Sect. 3.



{ If � ` t:A and � ` s:A are derivable in the system then t and s are in-terpreted as the same map � ! A just when t = s:A is provable from theequations in Fig. 7 (in typed equational logic).We can make some comments on the proof of soundness and completeness. Wederived the equations of Fig. 7 from a consideration of the categorical model. Sothe proof of soundenss amounts to �lling in the details of that derivation. As alltoo often the proof of completeness is given by a construction of a categorical termmodel. One has to check that the equations given are su�cient to establish all theproperties of a categorical model as exhibited in Defn. 3.Now we try to make clear the force of our de�nition in terms of a discussionof (the background to) Girard's translation of intuitionistic propositional logic intolinear logic. We start by recalling some folklore results about the Eilenberg-Moorecategory of coalgebras.Theorem5.1. If a symmetric monoidal category C is equipped with a monoidal comonad (!; "; �),then the tensor product of C induces a symmetric monoidal structure on thecategory of coalgebras C!.2. { If, furthermore, C is symmetric monoidal closed, then all free coalgebras are`exponentiable' in C! (in the sense appropriate to the monoidal structure);what is more any power of a free coalgebra is a free coalgebra. So the fullsubcategory of �nite tensor products of free coalgebras forms a symmetricmonoidal closed category containing the category of free coalgebras.{ If, in addition, the (Kleisli) category of free coalgebras is closed under the ten-sor product in C!, then the category of free coalgebras is symmetric monoidalclosed.3. If on the other hand C is symmetric monoidal closed and C! has equalizers ofcore
exive pairs of arrows then C! is symmetric monoidal closed.We make clear what is the force of our stipulation that every (free) !-coalgebracarries naturally the structure of a commutative comonoid in such a way that coal-gebra maps are comonoid maps.Theorem6.1. If a symmetric monoidal category C is equipped with a comonad (!; "; �) satisfyingpart 2(b) of De�nition 1, then the tensor product induced on the category C! ofcoalgebras is a categorical product.2. If, furthermore, C is symmetric monoidal closed, then all free coalgebras areexponentiable in C! (in the standard sense); and so the full subcategory of ex-ponentiable objects forms a cartesian closed category (containing the category offree coalgebras).3. If, in addition, the (Kleisli) category of free coalgebras is closed under the productin C!, then the category of free coalgebras is cartesian closed. In particular thisfollows when C has �nite products (1;&) and we have the natural isomorphismsI �= !I!A
!B �= !(A&B)



4. If, on the other hand, C! has equalizers of core
exive pairs of arrows then C! iscartesian closed.This theorem, which in essence goes back to Fox [6], is the basis for the Girardtranslation of intuitionistic logic into Intuitionistic Linear Logic. In the usual formu-lation this translation is based on 3, that is on the natural isomorphisms introducedby Seely [16], and so essentially takes place in the category of free coalgebras. (Thisoption is still available in cases where the relevent natural isomorphisms do not hold.)However, the general theorem demonstrates that at the proof theoretic (computa-tional) level a more subtle analysis (which involves the full category of coalgebras)is possible.6 Conclusions and Future WorkWe have described a new term assignment system for a sequent calculus version ofMELL, based on a generic idea of a categorical model for MELL. This term as-signment system, unlike its predecessors has an exact correspondence with a LinearNatural Deduction system which satis�es the essential property of closure undersubstitution (unlike all previous proposals). Using this term assignment system andan analysis of the process of cut-elimination we produced some �-equalities. Furtheranalysis of the �-equalities as well as the judicious addition of some extra `extension-ality' assumptions (similar to the usual ones in Categorical Proof Theory) provideda precise notion of a categorical model, more general than the traditional one forIntuitionistic Linear Logic. For this general notion of categorical model we havesoundness and completeness.But we can identify a number of areas which need to be covered in the future.Clearly we need to consider the additive connectives. We should also like to considerquanti�ers within this framework. Especially we should like to consider some of themany variants of Intuitionistic Linear Logic that have been proposed [10, 9, 8].AcknowledgementsWe should like to thank Andy Pitts and two anonymous referees for detailed com-ments on this work. This paper was prepared using Paul Taylor's TEX macros.References1. Samson Abramsky. Computational interpretations of linear logic. Technical Report90/20, Department of Computing, Imperial College, London, October 1990.2. Nick Benton, Gavin Bierman, Valeria de Paiva, and Martin Hyland. Term assignmentfor intuitionistic linear logic. Technical Report 262, Computer Laboratory, Universityof Cambridge, August 1992.3. Nick Benton, Gavin Bierman, Valeria de Paiva, and Martin Hyland. A term calculusfor intuitionistic linear logic. In Proceedings of International Conference on TypedLambda Calculi and Applications, Lecture Notes in Computer Science, March 1993.
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