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1 Intuitionistic Linear Logic

Girard’s Intuitionistic Linear Logic [7] is a refinement of Intuitionistic Logic, where
formulae must be used exactly once. In other words, the familiar Weakening and
Contraction rules of Gentzen’s sequent calculus [17] are removed. To regain the ex-
pressive power of Intuitionistic Logic, these rules are returned, but in a controlled
manner. A logical operator, !’} is introduced which allows a formula to be used as
many times as required (including zero).

In this paper we shall consider multiplicative exponential linear logic (MELL),
i.e. the fragment which has multiplicative conjunction or tensor, ®, linear implica-
tion, —o, and the logical operator “exponential”, !. We recall the rules for MELL
in a sequent calculus system in Fig. 1. We use capital Greek letters I'; A for se-
quences of formulae and A, B for single formulae. The Ezchange rule simply allows
the permutation of assumptions.

The ! rules’ have been given names by other authors. ! is called Weakening,
!z_o Contraction, !z _3 Dereliction and (!g) Promotion®. (We shall use these terms
throughout this paper.) In the Promotion rule, !I" means that every formula in the
set I is modal, in other words, if I" is the set {41, As,... A, }, then !I" denotes the
set {14,,14,,.. .14, }.

2 Categorical considerations and term assignment

The sequent calculus is best thought of as providing not proofs themselves, but a
meta-theory concerning proofs. Hence a formulation in these terms does not always
provide clear clues as to how it should be enriched to a term assignment system.
Fortunately we can use the general form of a categorical model (of the proof theory)
of the logic to derive an appropriate term assignment system for the sequent calculus
formulation of this logic.

The fundamental idea of the categorical treatment of proof theory is that propo-
sitions should be interpreted as the objects of a category (or multicategory, or poly-
category) and proofs should be interpreted as maps; operations transforming proofs
into proofs then correspond (if possible) to natural transformations (between appro-
priate hom-functors) in the categorical sense. The maps modelling proofs are built
up using these categorical operations and so the problem of a term assignment is

! Girard, Scedrov and Scott [8] prefer to call this rule Storage.
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Fig. 1. Multiplicative Exponential Linear Logic

essentially the problem of providing a syntax expressing these operations. Here we
carry out this programme for MELL.

Deriving the term formation rules

Since we are dealing with sequents I' - A, in principle we should deal with multi-
categories. However it simplifies things to assume at once that the multicategorical
structure is represented by a tensor product e, so that we are dealing with a monoidal
category [13]. We shall write () for the unit of this tensor product. To simplify the
presentation we use the same symbols both for propositions of linear logic and for
their denotations in our monoidal category. The idea then is that a sequent of form

C,Cy,...,CFA

will be interpreted as a map C;eCse...e(C,, — A from the tensor product of the C; to
A. (Thus a coherence result is assumed [11].) When I is the sequence Cy, Cy, . .., Ch,
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we write I' — A for this map. We seek to enrich the sequent judgement to a term
assignment judgement of the form

1 :C1,29:Cy,...,2,, :C,Fe: A

where the z; are (distinct) variables and e is a term; usually we suppress (irrelevant)
variables and write I' F e : A for this term assignment.

The whole process is based upon some simple assumptions about the interpreta-
tion of the basic structural rules, and a simple procedure for dealing with the logical
rules, which we describe in turn.

2.1 Structural Rules

The sequent representing the Identity rule is interpreted as the (canonical) iden-

tity arrow A s A from A to A. The corresponding rule of term formation is
z: AF z: A The rule of Exchange we interpret by assuming that we have a sym-
metry for the tensor product e (making our model a symmetric monoidal category).
We henceforth suppress Ezchange and the corresponding symmetry; thus we really
consider multisets of formulae, and as a result no term forming operations result
from this rule. The Cut rule

r-A AAFB
IAFB

Cut

is then interpreted as a generalized form of composition: if the maps I A and
Ae A -Ls B are the interpretations of hypotheses of the rule, then the composite

ol,
Te A f »yAe A g >y B

is the interpretation of the conclusion. We take as the corresponding rule of term
formation a textual substitution:

r-f:4A r: A AFg:B
I''Avglf/z]: B

Cut

One should note that the contexts I and A are disjoint; namely the variables which
occur in I" do not occur in A. This restriction holds for all the binary multiplicative
rules.

2.2 Logical rules for Multiplicatives

We shall make the assumption that any logical rule corresponds to an operation on
maps of the category which is naturael in (the interpretations of) the components of
the sequents which remain unchanged during the application of a rule. Composition
corresponds to Cut so clearly the logical significance is that we are assuming that
our operations commute (where appropriate) with Cut.



We start by considering the connective ®. The (®) rule
I''A,B*-C

0 (@
RA®BFCA )

gives an operation taking maps I"e A e B — C to maps I' ¢ (ARB) — C. An
appropriate syntax is

Ie:Ay:BFf:C
I'z: AQBFletzbezx®yin f:C

(®r)

where we understand that the variables z and y are bound in the term let z be x®y in f.
Naturality in I" is clear since we may substitute for the corresponding variables,
whilst naturality in C gives rise to an equation

gllet z be z®y in f/w] = let z be xRy in g[f /w] (1)

The (®%) rule
r+A4A AFB

A+ A®B

gives an operation taking arrows I' - A and A — B to an arrow I'e A — A®B. This
might suggest a quite complex syntax, but fortunately our naturality assumptions
imply that this operation is completely determined by a map A e B — A®B. It
follows that an appropriate syntax is

®r)

I'Fe: A AF f:B
I'AFexf: A®B

(®r)
The (Iz) rule
I'FA
ri-A

gives an operation taking maps I' — A to maps ['e I — A. An appropriate syntax
is

(Ic)

I'ke:A
Iz:IFletxbe xine: A

so that in effect we simply introduce a dummy free variable for the assumption I.
Naturality in I' is clear since we may substitute for the corresponding (free) variables.
However naturality in A gives rise to an equation

(Ic)

flletz be x ine/y] = letx be * in fle/y] (2)
The (Ig) rule
o7 (Ir)
gives simply a map () — I. An appropriate syntax is
(Ir)

Fx: 1



Our treatment of the (—o) rule
I'-A A,BFC
I''A—oB, AFC

(—oc)

follows traditional treatments of the left implication rule in sequent systems (which
all involve a Yoneda Lemma argument). It follows from our naturality assumptions
by a straightforward application of a Yoneda Lemma that an operation as above
is determined by its action on a pair of identity arrows. Thus it is enough to give
an operation of application app: A @ (A—oB) — B. Then given arrows e: ' — A,
f: Be A — (C the required arrow I" ¢ (A—B) e A — (' is the composite

eelel appel
I'e(A—oB)eA——5 Ao (AoB)e A——— s BeA——(C

and an appropriate syntax is
I'Fe:A Az:BF f:C
I''g: A—oB At f[(ge)/z]: C

(—oc)

All the naturality assumptions are now dealt with by substitution. The (—oz) rule

I''AFB
T amn )
gives an operation taking an arrow I'e A — B to an arrow I' — A—oB. This is a
form of abstraction and an appropriate syntax is
I''z:Akre:B

I'FXe:Ae: AoB

(—ow)

2.3 Logical rules for the connective ‘!’

Next we consider the ‘" connective. The left rules are reasonably straightforward,
the right rule is a bit more involved. We consider the Dereliction and Promotion
rules first.

Dereliction and Promotion. Consider the Dereliction rule
I'A+B

———— Dereliction

I'AFB

Since it gives an operation taking an arrow I'e A — B to an arrow ['e!A — B, an
appropriate syntax is

I'c:AkFe:B
I'z:'!At-letzbelzine: B

Dereliction

and indeed this is the syntax given by Abramsky [1]. With this formulation naturality
in B gives rise to an equation



fllet zbelzine/y] = let z be lz in fle/y]

However it is a consequence of naturality that our operation is determined by its
effect on identity arrows, thus it is enough to give a map !4 —= A. Then given an
arrow e: I' ¢ A — B, the required arrow I'e!A — B is the composite

lec e
[elA — s ['eA— 3B

so another appropriate syntax (and the one we shall use in what follows as it sur-
presses further naturality equations) is

I''z:Akre:B
Iz 1A+ e[derelict(z)/z] : B

Dereliction

Next consider the problematic Promotion rule

' A
A

Promotion

This gives an operation (of Promotion) taking an arrow !'I" — A to an arrow !I" —!A.
Now it is not a priori clear what form of naturality should be assumed for this rule.
If we assume that the operation should be natural in !I", then Abramsky’s rule [1,
Section 3]

dAMke: A
z:I'Hle 1A

]

would give an appropriate syntax?. However nothing in the idea of a categorical
model suggests this assumption. (Note in passing that the categorically appealing
assumption would be that ! is a functor and that we have naturality in I'.) The
important point to realize is that if the operation is not natural in !I", then the
operation should not preserve substitution for the free variables implicitly declared
in !I". Hence we are restricted to giving an operation on ‘higher-order’ terms, where
the variables which appear initially must be bound and fresh variables introduced.
These considerations lead to the term assignment rule

T:!'Fe: A
Promotion

y:!II'F promotey forTine :!A

We do not claim that there is a clear reason in terms of the category theory given
so far to prefer one rule to the other, but we choose our rule simply so as to avoid
any premature assumptions.

2 This assumption has the effect that in the categorical model, which we shall consider
later, the comonad is idempotent: a point noted by Wadler [18].



Weakening and Contraction. Finally we consider the Weakening and Contraction

rules. The rule
I'B

TAFB

gives an operation taking an arrow I' — B to an arrow ['e!A — B. An appropriate
syntax is

Weakening

I'+e:B
Iz 'At discardzine: B

where we have simply introduced a fresh dummy variable of type !A. Naturality in I
is as before clear since we may substitute for the corresponding variables. Naturality
in B gives rise to an equation

Weakening

fldiscard z in e/y] = discard z in fle/y] (3)
The Contraction rule
I'"AJ'A+B
—— Contraction
I'AFB

gives an operation taking an arrow ['e!Ae!A — B to an arrow ['e!A — B. An
appropriate syntax is

Iz:'Ay!A+e: B

- Contraction
I''z:'!1A+copyzasxz,yine: B

where we understand that the variables 2 and y are bound in the term copy zas z, yin e.

Naturality in I" is clear since we may substitute for the corresponding variables, while

naturality in B gives rise to an equation

flcopy z as x,y in e/w] = copy z as z,y in fle/w] (4)

This concludes our derivation of a term assignment system for MELL from gen-
eral considerations of the form of a categorical model. We display this system of
term assignment in Fig. 2. We stress that rather elementary assumptions and un-
sophisticated categorical observations have been used in this analysis. However, our
analysis has not only led us to a term assignment system, but has also uncovered a
series of naturality equations, which are listed in Fig. 3.

3 Linear Natural Deduction

In the previous section we have provided a term assignment for a sequent calculus
presentation of linear logic. Here we briefly consider a corresponding natural deduc-
tion formulation. In such a system a deduction is a derivation of a proposition from
a finite set of assumption packets by means of inference rules. In intuitionistic logic
these packets consist of (possibly empty) multisets of propositions. The restriction
needed to make the derivations linear is that packets contain exactly one proposi-
tion, i.e. a packet is now equivalent to a proposition. Whereas before we typically
had rules discharging many packets of an assumption we now only discharge the one.
Thus we can label every proposition with a unique natural number.
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Fig. 2. Term Assignment System for sequent calculus

Others have considered systems of natural deduction for linear logic [15, 18, 14].
Our main contribution is in our treatment of the Promotion rule. Previous authors
formulated it as the following;:

14, 14,

— Promotion
'B

Clearly this rule is not closed under substitution. To ensure that the rule enjoys
closure under substitution we use the following formulation:



flletz be * ine/y] =letz be  in fle/y]
fllet z be z®y in g/w] = let z be xRy in fg/w]

fldiscard z in e/y] = discard z in f[e/y]

flcopy z as x, y in e/w] = copy z as z,y in fle/w]

Fig. 3. Naturality Equations

Promotion

One should be aware that this rule carries an implicit side condition that not only
must all assumptions be exponential, but that all are discharged (and re-introduced).
Our subsequent term assignment is given in Fig. 4. We note at once a significant
property of the term assignment system for linear natural deduction. Essentially
the terms code the derivation trees so that any valid term assignment has a unique
derivation.

Theorem 1 (Unique Derivation). For any term t and proposition A, if there is a
valid derivation of the form I' -t : A, then there is a unique derivation of I' =t : A.

Proof. By induction on the structure of . O
As mentioned above, our system enjoys closure under substitution.

Theorem 2 Substitution. If I'Fa: A and A,z : A+ b: B then I, A\ bla/x]: B
Proof. By induction on the derivation A,z : AFb: B. O

As one would expect there is an exact equivalence between the natural deduction
and sequent calculus formulations (indeed the substitution property is essential for
this). The details of this equivalence are given in [2].

4 Cut Elimination

In this section we consider cut elimination for the sequent calculus formulation of
MELL, extended or decorated with terms. Suppose that a derivation in the term
assignment system of Fig. 2 contains a cut:
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Fig. 4. Term Assignment System for Linear Natural Deduction

— D — Dy
I'kFe:A Az:A-f:B
Cut
I''At fle/z]: B

If I' - e: Ais the direct result of a rule Dy and A,z : A+ f: B the result of a rule
D5, we say that the cut is a (D, D2)-cut. A step in the process of eliminating cuts
in the derivation tree will replace the subtree with root I A & f[e/z]: B with a tree
with root of the form I’ A - ¢t : B. The terms in the remainder of the tree may be
affected as a result.

Thus to ensure that the cut elimination process extends to derivations in the
term assignment system, we must insist on an equality f[e/z] = ¢, which we can
read from left to right as a term reduction. In fact we must insist on arbitrary
substitution instances of the equality, as the formulae in I" and A may be subject to
cuts in the derivation tree below the cut in question. In this section we are mainly
concerned to describe the equalities/reductions which result from the considerations



just described. Note, however, that we cannot be entirely blithe about the process
of eliminating cuts at the level of the propositional logic. As we shall see, not every
apparent possibility for eliminating cuts should be realized in practice.

As things stand there are 11 rules of the sequent calculus aside from Cut (and
Exchange) and hence 121 a priori possibilities for (D1, Ds)-cuts. Fortunately most
of these possibilities are not computationally meaningful in the sense that they have
no effect on the terms. We say that a cut is insignificant if the equality fle/z] = ¢
we derive from it as above is actually an identity (up to a-equivalence) on terms (so
in executing the cut the term at the root of the tree does not change).

Note that any cut involving an axiom rule

——— Identity
r:AkFxz: A

is insignificant; and the cut just disappears (hence instead of 121 we must now
account for 100 cases). These 100 cases of cuts we will consider as follows: 40 cases
of cuts the form (R, D) as we have 4 right rules and 10 others; 24 cases of cuts of
the form (L, R) as we have 6 left-rules and 4 right ones and finally 36 cases of cuts
of the form (L, L). Let us counsider these three groups in turn.

Firstly we observe that there is a large class of insignificant cuts of the form
(R, D) where R is a right rule: (®), (Ir), (—or), Promotion. Indeed all such cuts

are insignificant with the following exceptions:

— Principal cuts. These are the cuts of the form (%), (®2)), ((Iz), (I£)), ((—or),
(—or)), (Promotion, Dereliction), (Promotion, Weakening), (Promotion, Con-
traction) where the cut formula is introduced on the right and left of the two
rules.

— Cases of the form (R, Promotion) where R is a right rule. Here we note that cuts
of the form ((®%)), Promotion), ((Ir)), Promotion) and ((—og), Promotion)

cannot occur; so the ouly possibility is (Promotion, Promotion).

Next any cut of the form (L, R) where L is one of the left rules (®,), (I), (—or)
Weakening, Contraction, Dereliction and R is one of the simple right rules (®%),
(Ir), (—ow) is insignificant (18 cases). Also cuts of the form ((—o), Promotion) and
(Dereliction, Promotion) are insignificant (2 cases). There remain four further cases
of cuts of the form (L, Promotion) where L is a left rule.

Lastly we have to consider the 36 cuts of the form (L;, L), where the L; are both
left rules. Again we derive some benefit from our rules for (—o) and Dereliction: cuts
of the form ((—o,), L) and (Dereliction, L) are insignificant. There are 24 remaining
cuts of interest.

We now summarize the cuts of which we need to take some note. They are:

— Principal cuts. There are six of these.

— Secondary cuts. The single (strange) form of cut (Promotion, Promotion) and
the four remaining cuts of form (L, Promotion) where L is a left rule other than
(—or) or (Dereliction).



— Commutative cuts. The twenty-four remaining cuts of the form (L1, L) just de-
scribed. These correspond almost? case by case to the commutative conversions
for natural deduction (considered in [3]) and are not considered further here.

4.1 Principal Cuts

We do not dwell on the cases of principal cuts involving tensor, the constant I and
linear implication as they are standard. We shall consider in detail the principal cuts
involving the Promotion rule.

e (Promotion, Dereliction)-cut. The derivation

'+ B B,AFC
Promotion —— Dereliction
'I'+'B 'B,AFC
Cut
AR C
is reduced to
'+ B B,AFC
Cut
IIAFC

This reduction yields the following term reduction

(f[derelict(q) /p])[promote y; for z; in e/q] = fle/p]

e (Promotion, Weakening)-cut. The derivation

I'+B AFC
Promotion — Weakening
'I'+'B B, AFC
Cut
INAERC
is reduced to
AERC
— Weakening*
INAERC

where Weakening* corresponds to many applications of the Weakening rule.
This gives the term reduction

discard (promote e; for x; in f) in g = discard e; in g
e (Promotion, Contraction)-cut. The derivation
'+ B 'B,!B,AFC
Promotion ——— Contraction
I'+-B 'B,AFC
INARC

Cut

is reduced to

3 The exceptions are the cases where (—o,) is the (second) rule above the cut. In these
cases we obtain slightly stronger rules.



I'+B

Promotion
'+ B 'I'+'B 'B,!B,AFC
Promotion Cut
\I' -'B \I'B,AFC c
ut
\r\rAx-C
——— Contraction*
\NAFC

or to the symmetric one where we cut against the other !B first. This gives the term
reduction

copy (promote e; for z; in f)asy,y'ing =
copy €; as z;, z; in g[promote z; for z; in f/y, promote z; for z; in f /']
As would be expected these principal cuts correspond to the -reductions which can

be derived from the natural deduction system outlined in Section 3 (and detailed
in [3]).

let f@gbex®yinh = h[f/z,9/y
let * be x inh =h
hl(Az: A.f)g/y] = h[flg/=]/y]

(f[derelict(q) /p]) [promote y; for z: in e/q] = fle/7]
discard (promote e; for z; in f)ing = discarde; in g
copy (promote e; for z; in f)asy,y'ing = copye;as z;,z,in

g[promote z; for z; in f ]y,
promote z; for z; in f/y']

Fig. 5. Principal reduction rules

4.2 Secondary Cuts

We now consider the cases where the Promotion rule is on the right of a cut rule. The
first case is the ‘strange’ case of cutting Promotion against Promotion, then we have
the four cases (®¢), (I¢), Weakening and Contraction against the rule Promotion.
Here we discuss only the ‘strange’ case of



e (Promotion, Promotion)-cut. The derivation

I'+B
\I'-'B

Promotion

IB,IAFC
IB,1AFIC

Promotion

Cut

IIAFIC
reduces to

I'+B
I'+-!B

Promotion

IB,IAF C

Cut

ITIAF C

—— Promotion
IIVIAFIC

Note that it is always possible to permute the cut upwards, as all the formulae in
the antecedent are modal. This gives the term reduction

promote (promote z for x in f) for y in g = promote w for z in (g[promote z for z in f/y])

We present all the term equalities given by the secondary cuts in Fig. 6. Observe
that the last four equations are particular instances of the naturality equations
described in Section 2, while the first encapsulates the naturality of the Kleisli oper-
ation of Promotion. One is tempted to suggest that perhaps the reason why the rule
Promotion gives us reductions with some sort of computational meaning is because
this rule is not clearly either a left or a right rule. It introduces the connective on
the right (so it is mainly a right rule), but it imposes conditions on the context on
the left. Indeed there does not appear to be any analogous reductions in natural
deduction.

promote (promote z for x in f) for y in g = promote w for z in
g[promote z for z in f/y]

promote (discard z in f) forying
promote (copy z asy, zin f) forying
promote (let z be z®y in f) forwin g

promote (let z be * in f) forwin g

discard z in (promote f for y in g)
= copy x as y, z in (promote f for y in g)
= let z be x®y in (promote f for w in g)

= let z be * in (promote f for w in g)

Fig. 6. Secondary reduction rules




5 The Categorical Model

Much work has been done on providing such (categorical) models of Intuitionistic
Linear Logic. Here we shall just mention the work of Seely [16] and de Paiva [4].
With a view to understanding what is involved here, let us consider the traditional
analysis of the proof theory of some basic intuitionistic logic via the notion of a carte-
sian closed category. (Lambek and Scott [12] is a good source for this material.) In
that case, the basic normalization process gives rise to S-equality on the terms of the
typed A-calculus. The (-equality rule is valid in any cartesian closed category, but
the attractive categorical assumption of being cartesian closed amounts to requir-
ing Brn-equality, that is, to a further ‘extensionality’ assumption. Thus one way to
understand what we do is that we make a minimal number of attractive simplifying
assumptions about the basic categorical set up introduced in Section 2 which at least
entail the (desired) equalities between proofs. In this section we simply discuss the
categorical assumptions we make and give the resulting equations.

5.1 Categorical interpretation of the multiplicatives

We start by considering the connective ®. The categorical significance of the $-rule
for ® is that any map of the form I"e A @« B — (C factors canonically through the

map Ae B ®, A®B which results from the instance of the (®%) rule
AFA B+ B
A BF A%B

(®r)

The simplifying ‘extensionality’ assumption is then that this factorization is unique.
This can be expressed by saying that (generalized) composition with Ae B —» A®B
induces a natural isomorphism between maps

I'e(A®B) = C
I'eAeB —(C

In other words that the operation of composing with A ¢ B — A®B provides an
inverse to the (®,)-operation taking maps I"'e Ae B — C to maps I' e (A®B) — C.
Thus we may as well assume that the logical ® coincides with . We get two equations
expressing this isomorphism. One of these equations is, of course, the [J-rule for
tensor:

let u®v be z®y in f = flu/z,v/y] (5)
The other can be regarded as an n-equality:
let u be z®y in flz®y/z] = flu/z] (6)

The case of I is like that for ®. Thus (generalized) composition with () — I
induces a natural isomorphism between maps

I'el = C
I'e{) > C



We identify () and I, and use I both as a logical operator and to interpret the
empty sequence on the left hand side of a sequent. As before we get two equations
expressing the natural isomorphism. One is the §-rule and the other can again be
regarded as an 7-equality:

let *x be x inf=f (7
let ube % in f[x/z] = flu/z] (8)

The B-rule for —o has a slightly more complicated interpretation, it means that
any map f: A®QB — C factors as

1®cur(f) app
ARB ————————— 5 A®(A—C) ——— C

where app: AQ(A—C) — C is the map that results from an instance of the (—op)

rule
AFA crC

A A—CFC

Again the natural simplifying assumption is that the factorization is unique, which
means that there exists a natural isomorphism between maps

(—oc)

AB — C

A—3 B—oC

Thus —o provides us with a closed structure on our category corresponding to the
tensor ®. Again we have two equations to express our natural isomorphism. One is
the S-rule and the other is the (linear form of the) traditional n-rule:

(Az.f)e = fle/x] (9)
Ae.fx = f (10)

5.2 Categorical interpretation of Dereliction and Promotion

Now we consider the meaning of the 3-rule for ! involving Dereliction. The categorical
import of this rule is that any map !I" — A factors in a canonical way as a composite
€A
rm——A— A

where A =% A is the canonical map obtained by Dereliction from the identity as
described in Section 2. Given any proof I' - B there is obviously a canonical two-
step process that transforms it into a proof !I" F!B by applying the Dereliction rule
(several times) followed by Promotion.

I'-B
'+ B
I'-'B

Dereliction*

Promotion




tr B interprets the original proof, we write the resulting arrow as !I" L.
As a preliminary simplification, we assume that this definition gives the extension of
! to a multicategorical functor. This amounts to the assumption that ! is a monoidal
functor [5]; that is, the functor ! comes equipped with a natural transformation

map:!ARIB S1(A® B)

(natural in A and B) and a morphism mj:I —!I making a standard collection of
diagrams commute. Note that the g-rule for Dereliction certainly implies that for
any f:I' — A, the equation !f;e4 = ep; f holds. Either composite gives the effect
of Dereliction on f. This shows that e:! — 1 will be a multicategorical natural
transformation and so a monoidal natural transformation.

We need one further piece of structure. We apply the Promotion rule to the
axiom !A F 1A to obtain the derivation

IAFIA
TAFIA

In other words, from an identity arrow !A —!4 we can get a canonical arrow
d4:1A 1A, With the equations to hand we know rather little about §. One can
easily check that the composite

Promotion

A €14
A—M4A— 14

is the identity on !A, and that is one of the triangle identities for a comonad, but
that is about it. However it is compelling to add to our preliminary assumption that
!'is a monoidal functor, the assumption that ¢ (as well as €) is a monoidal natural
transformation and that (!, ¢, ) forms a comonad on our category. Note that given
a monoidal comonad (!, €, ), the Promotion rule can be interpreted as follows: given
amap f:!C) ®...®!C,, — A we obtain the ‘promoted’ map as the composite

0 !
10, @ .. @I O @ N, S0 ® ... ®IC) 1A

We can formulate the conditions that (!,&,4) be a monoidal comonad directly in
terms of the basic operations given by MELL. In addition to the 8-equality (equation
(11) below) we obtain:

derelict(promote ¢; for z; in f) = fle;/x] (11)
promote z for z in (derelict(z)) = 2 (12)

promote (promote z; for z; in f),w; fory,y;ing =
promote z;, w; for z;, y; in (g[promote z; for z; in f/y]). (13)

Equation (12) can be thought of as an n-rule, as it provides a kind of uniqueness of
the factorization mentioned above; equation (13) expresses an appropriate form of
naturality of the operation of Promotion and it arises from a secondary cut elimina-
tion.



5.3 Categorical interpretation of Weakening and Contraction

We finally consider the categorical significance of the S-rules involving Weakening
and Contraction. To do so let us first introduce a further canonical pair of maps.
Using Weakening (and the right rule for I) we have a deduction

FI
——— Weakening
A1
which gives a canonical map !4 “% I (where e is used to remind the reader that this
map corresponds to ‘erasing’ the assumption). From the rules (® ) and Contraction
btai
e optam IAFIA  1AFIA
JATAHIARIA

TAHIA®IA

®Rr)

Contraction

which gives a canonical map !4 LA 1AR1A (again d is used to hint at ‘duplication’
of assumptions).

It follows from the (- and n-rules for ® and I as well as from the naturality
assumptions on Contraction and Weakening described in Section 2 that any map

I'slA 1B arising from the use of the rule of Weakening is the composite

1®ey
I'elA ——— Il — B

Similarly the effect of the rule of Contraction is that any map A 2B arising
from the use of Contraction is the composite

A1
Aol — " lAelART — B

The (-equalities for Contraction and Weakening namely,

discard (promote ¢; for x; in t) in u = discard e; in u (14)

copy (promote e; for z; int) asy, zinu =
copy €; as x}, ¥} in u[promote z} for x; in t/y, promote z for x; in t/z] (15)

say that maps obtained using the rule Promotion preserve the structure (on objects
of the form !A4) given by e and d. It follows at once that the canonical morphisms
(e and d) are natural transformations. One might also expect that e and d give
structure on the coalgebras, or (what amounts to the same thing) that they are
themselves maps of coalgebras. This leads to the equations

promote e, e; for x, x; in discard z in t = discard e in promote e; for x; in t (16)
promote e, e; for z, z; in copy zas x,y int =

copyeasz’,y' inpromote x',y', e; forx,y,z; int  (17)

We believe that there is some computational sense to this interplay between
Promotion on the one hand, and Weakening and Contraction on the other. Further-
more our intuitions about the processes of discarding and copying suggest strongly



that the natural transformations e and d give rise to the structure of a (commuta-
tive) comonoid on the free !-coalgebras. (As a consequence all coalgebras have (and
all maps of coalgebras preserve) the structure of a (commutative) comonoid.)

5.4 The categorical model of Intuitionistic Linear Logic

Much of the categorical analysis that we have just given is quite familiar, though the
corresponding equational calculus seems new (if only because our syntax is new).
We note however that (following Seely [16]) it has become standard to analyze the
categorical meaning of Weakening and Contraction in terms of the relationship be-
tween the additives and the multiplicatives. Our analysis dispenses with additives
and hence gives a more general account of the force of the exponentials. Even in the
presence of the additives our formulation is not equivalent to Seely’s and it certainly
covers cases of interest not covered by his. To sum up the analysis in this section we
give the following definition.

Definition 3. A categorical model for MELL* consists of:

1. a symmetric monoidal closed (multi)category (modelling tensor and linear im-
plication);
2. together with a comonad (!, e,d) with the following properties:
(a) the functor part ‘I’ of the comonad is a monoidal functor and € and ¢ are
monoidal natural transformations,
(b) every (free) !-coalgebra carries naturally the structure of a commutative
comonoid® in such a way that coalgebra maps are comonoid maps.

We have indicated in the text above what are the equations in our term assign-
ment system corresponding to this notion of categorical model. We display all these
equations in Fig. 7.

The connection between these equations and the notion of a categorical model
can be made precise along the following lines. First assume that we have a signature
given by a collection of ground types and of typed function symbols. From this data,
types and terms in context are defined inductively by the clauses of Fig. 2 giving
rise to what we call a term logic for MELL.

Next assume that C is a categorical model for MELL. Then in particular C has
the structure outlined in Sect. 2. Here () and e are identified with the I and ® of
C. The required operations for I, ®, and —o are given by standard operations in a
symmetric monoidal closed category. As explained in Sect. 5.2 the map :!4 — A
used to interpret the Dereliction rule can be identified with the counit 4:!4 —
A, while the operation of Promotion involves the comultiplication § and the map
which gives the monoidal structure of the functor !. Finally as explained in Sect. 5.3
the operations for Weakening and Contraction are given in terms of the comonoid
structure on the (free) coalgebras.

* Note that in our formulation it is not necessary to consider the additives to model the
exponential.

5 This means not only that each !-coalgebra (A,h: A —!A) comes equipped with mor-
phisms e: A — I and d: A - A®A but also that e and d are coalgebra maps.



let * be x ine

let u be * in f[*/z]

let e®t be z®y in u

let u be z®y in fla®y/z]
(Az: At)e

x: Atz

derelict(promote e; for x; in t)

promote z for z in derelict(x)

promote (promote z; for z; in f),w; for y,

discard (promote e; for z; in t) inu
promote e, e; for x, x; in discard z in t

copy (promote ¢; for z; int) asy, zinu

= flu/z]

= ule/=,t/y]

yj in g = promote z;, w; for z},y; in
(g[promote z} for z; in f/y])

= discard e; in u

= discard e in promote ¢; for x; in t
— ! "

= copy €; as o}, z; in

u[promote z; for z; in t/y,
promote z} for z; in t/z]

promote e, e; for z, z; in copy zas xz,y int = copy eas z’, ' in

copy e as x,y indiscard z in t
copyeasz,yindiscard yint
copyeasz,yint

copy eas ,w incopywasy,zint

fllet z be x ine/w)
fllet z be z®y in e/w]
fldiscard z in e /w]

flcopy zas z, y in e/w)

promote .y’ e; forx,y, z; int
= tle/y)
= tle/x]
=copyeasy,zint

= copyeasw,zincopy wasx,yint

=let z be * in fle/w]
= let z be z®y in fle/w]

= discard z in fle/w]

copy z as x,y in fle/w]

Fig. 7. Categorical equalities




Given the structure outlined in Sect. 2, for any interpretation of a signature
XY in C there is a standard inductive definition of the interpretation of types and
of terms in context of the term logic given by X in C. The steps in this inductive
definition® were considered in Sect. 2 and for the convenience of the reader we present
an indication of these steps in Fig. 8.

A— A
I — A AeA— B
Cut
'eA—> B
- A
Ir)
" (Ic
TEYRS (=1
'eAeB = (C ) I — A A— B
— (& ®
e (A®B) — C Tensaon R
I— A AeB —C I'eA— B
(—oc) ——— (—or)
I'e(A—oB)e A—C I' - A—oB
I' - B Ie!Ae!A— B
—— Weakening —— Contraction
Te!A - B I'e!lA -+ B
I'eA— B ' —» A
——— Dereliction —— Promotion
I'e!A— B =14
Fig. 8. (Outline of the) interpretation of Term Logic

The interpretation is sound and complete in the following sense.

Theorem 4.

1. (Soundness) For any signature and interpretation of the corresponding system
in a categorical model for Intuitionistic Linear Logic (all the equational conse-
quences of) the equations in Fig. 7 hold in the sense that the interpretation of
either term gives the same map in the category.

2. (Completeness) For any signature there is a categorical model for Intuitionistic
Linear Logic and an interpretation of the system in it with the following property:

6 Note that strictly speaking the induction is on the derivation (in the sequent calculus)
of I' - e : A. Hence one has to show that the interpretation in C is independent of
the derivation. It is laborious to show this directly and the result also follows from a
consideration of the equivalent natural deduction formulation sketched in Sect. 3.



—IfI'Ft:A and I' F s: A are derivable in the system then t and s are in-
terpreted as the same map I' — A just when t = s: A is provable from the
equations in Fig. 7 (in typed equational logic).

We can make some comments on the proof of soundness and completeness. We
derived the equations of Fig. 7 from a consideration of the categorical model. So
the proof of soundenss amounts to filling in the details of that derivation. As all
too often the proof of completeness is given by a construction of a categorical term
model. One has to check that the equations given are sufficient to establish all the
properties of a categorical model as exhibited in Defn. 3.

Now we try to make clear the force of our definition in terms of a discussion
of (the background to) Girard’s translation of intuitionistic propositional logic into
linear logic. We start by recalling some folklore results about the Eilenberg-Moore
category of coalgebras.

Theorem 5.

1. If a symmetric monoidal category C is equipped with a monoidal comonad (!,¢,9),
then the tensor product of C induces a symmetric monoidal structure on the
category of coalgebras C,.

2. — If, furthermore, C is symmetric monoidal closed, then all free coalgebras are
‘exponentiable’ in C, (in the sense appropriate to the monoidal structure);
what is more any power of a free coalgebra is a free coalgebra. So the full
subcategory of finite tensor products of free coalgebras forms a symmetric
monoidal closed category containing the category of free coalgebras.

— If, in addition, the (Kleisli) category of free coalgebras is closed under the ten-
sor product in Cy, then the category of free coalgebras is symmetric monoidal
closed.

3. If on the other hand C is symmetric monoidal closed and C, has equalizers of
coreflexive pairs of arrows then C, is symmetric monoidal closed.

We make clear what is the force of our stipulation that every (free) !-coalgebra
carries naturally the structure of a commutative comonoid in such a way that coal-
gebra maps are comonoid maps.

Theorem 6.

1. If a symmetric monoidal category C is equipped with a comonad (!,€,0) satisfying
part 2(b) of Definition 1, then the tensor product induced on the category C, of
coalgebras is a categorical product.

2. If, furthermore, C is symmetric monoidal closed, then all free coalgebras are
exponentiable in C, (in the standard sense); and so the full subcategory of ex-
ponentiable objects forms a cartesian closed category (containing the category of
free coalgebras).

3. If, in addition, the (Kleisli) category of free coalgebras is closed under the product
in Cy, then the category of free coalgebras is cartesian closed. In particular this
follows when C has finite products (1,&) and we have the natural isomorphisms

=17
IA®!B = |(A&B)



4. If, on the other hand, C, has equalizers of coreflexive pairs of arrows then C is
cartesian closed.

This theorem, which in essence goes back to Fox [6], is the basis for the Girard
translation of intuitionistic logic into Intuitionistic Linear Logic. In the usual formu-
lation this translation is based on 3, that is on the natural isomorphisms introduced
by Seely [16], and so essentially takes place in the category of free coalgebras. (This
option is still available in cases where the relevent natural isomorphisms do not hold.)
However, the general theorem demonstrates that at the proof theoretic (computa-
tional) level a more subtle analysis (which involves the full category of coalgebras)

is possible.

6 Conclusions and Future Work

We have described a new term assignment system for a sequent calculus version of
MELL, based on a generic idea of a categorical model for MELL. This term as-
signment system, unlike its predecessors has an exact correspondence with a Linear
Natural Deduction system which satisfies the essential property of closure under
substitution (unlike all previous proposals). Using this term assignment system and
an analysis of the process of cut-elimination we produced some (-equalities. Further
analysis of the 8-equalities as well as the judicious addition of some extra ‘extension-
ality’ assumptions (similar to the usual ones in Categorical Proof Theory) provided
a precise notion of a categorical model, more general than the traditional one for
Intuitionistic Linear Logic. For this general notion of categorical model we have
soundness and completeness.

But we can identify a number of areas which need to be covered in the future.
Clearly we need to consider the additive connectives. We should also like to consider
quantifiers within this framework. Especially we should like to consider some of the
many variants of Intuitionistic Linear Logic that have been proposed [10, 9, §].
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