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This paper contains a sketch of some proof-theoretical results concerning
constructive mathematics and indications how results may be used both
to understand results in pure mathematics and (more optimistically) as
a guide in discovering physically significant results. The proof-theoretic
results are concerned with notions of (local) confinuity in parameters.
Interest in such questions goes back at least as far as Hadamard’s principle:
in order that differential equations be physically meaningful, they should
bave solutions uniquely determined by the initial and boundary conditions
. and should be stable (small changes in the data produce only small changes
in solutions). Of course, as has been popularized by Catastrophe Theory,
there are many instabilities in the real world; so no crude interpretation of
Hadamard’s principle is plausible (or useful).

The claims that underly this paper are -

(i) that for all practical purposes questions about continuity in para~
meters are questions about the constructivity of arguments, and

(11) that constructivity may operate as a useful heuristic principle in the
application of mathematics.

As regards (i), what we give are results deriving continuity from con-
structivity, and simple examples of this connection. It is inevitably difficult
to show that “natural” continuity results will always be obtainable by con-
structive arguments, though results from HYLAND (1977) can be used to
give some plausibility to this. In Section 3, I suggest a test case for claim (i).
As regards (ii), the hope is to make use of experience of what are good
constructive definitions, in particular in the context of topos theory. Clearly
considerable work will be needed to realize this hope.

‘The idea that there is some connection between constructivity and
continuity is an old one (Brouwer’s Theorem that all functions from reals
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to reals are continuous). But until recently, there was no presentation of
useful formal results. HYLAND (1977) contained model-theoretic results
giving connections both ways between constructivity and continuity,
Independently, BeesoN (1977) produced general proof-theoretic results
connecting constructivity with his notion of stability. This paper merges
Beeson’s work with the fundamental distinction between systems with
and without choice principles alluded to in HyLAND (1977). No attempt
is made here to be comprehensive; the sole aim is to give the flavour of
the area.

1. Formal systems

The proof-theoretic results with which we shall be concerned go through
particularly smoothly for a basic system of intuitionistic type theory (with
extensionality), or equivalently (see for example FOURMAN, 1977) in the
centext of topos theory (for which see JOHNSTONE, 1977). However, the
reader may well prefer something more down to earth, so we consider
a system with just two levels of higher types. Specifically our system is
based on intuwitionistic predicate logic, and has

(a) types closed under pairing, with basic type N for the natural numbers,
and with two levels of power types (so e.g. P(N) and P(NxP(N)));

(b) term forming operations of application, pairing and unpairing among
the types;

(c) axioms, full second order “Peano” axiomatization for N, extension-
ality and full comprehension. _

(For ease of expression of ordinary mathematics, comprehension may be
taken to include the introduction of definable subtypes; indeed, one would
naturally make many conservative extensions of this system, allowing for
example the direct formation of function spaces 4 — B and power
types P(A), restricting 4 to be of level 0 or 1.) In this system we will have
definable types R for the Dedekind reals (as in FOURMAN and HYLAND,
forthcoming, or JOHNSTONE, 1977), R — R for functions from reals to
reals, Cts(R, R) for continuous such functions and so on. If we needed
higher levels of types, we could add them.

For the purpose of formalizing mathematical practice, the basic system
may be augmented in two distinct ways.

(1) We may add an axiom stating the compactness of Cantor space 2
(i.e. the intuitionist’s Fan Theorem). From this axiom we readily obtain




APPLICATICNS OF CONSTRUCTIVITY 147

the compactness of the unit interval, the uniform continuity, and hence
integrability of continuous functions from the unit interval to R, and also
general ways of transforming local into global properties. It is important
that we do not use the Cauchy reals in this system: they are not complete
with respect to the usual uniformity. Monotonic bar induction could be
added (though not to much effect), but axioms of (dependent or countable)
choice are excluded. Let S denote this system, the system without choice
principles. o

(2) We may add to S the axiom DC of dependent choice. Then (see
FourMAN and HyYLAND, forthcoming) the Cauchy and Dedekind reals
may be identified. Approximation arguments involving choice become
available and a theory of Lebesgue integration developed more or less
along traditional lines (see Bisnop and CHENG, 1972). Let S* denote this
system, the system with choice principles.

The systems S and S* are subsystems of systems formalizing classical
mathematics. They are based on no philosophical analysis, and are simply
designed to stay as close as possible to usual mathematical practice. But
it seems worth commenting on the relation between S, S* and other con-
structive approaches.

(A) Forget his remarks hinting at an intensional interpretation, and
Bishop’s mathematics (see BisgoP, 1967, or BRIDGES, 1979) can be for-
malized straightforwardly in S*. So clearly there are connections with
extensional systems designed for this (e.g. that of FRIEDMAN, 1977).
Our set-theoretical apparatus has been restricted for simplicity.

(B) If from the system of KLEENE and VESLEY (1965), one drops the
axiom of continuous choice (§ 7 of Chapter 1) which is at variance with
classical mathematics, one obtains a subsystem of S+bar induction. Most
of the development in KLeeNE and VESLEY (1965) depends only on the fan
theorem and numerical choices, and so can be formalized in S*.

(C) KLEENE and VESLEY (1965) is similar in spirit to our systems in that
there is no consideration of different kinds of sequences. There is naturally

a much greater difference between our systems and the theory of choice

sequences as exposed in KReiSEL and TROELSTRA (1970). The difference
can best be indicated by observing that the axiom of bar continuity may
be analyzed as an amalgum of principles of choice, continuity, effectivity
(using lawlike sequences) and bar induction (in that continuous functionals
are in the inductively defined set K of Kreiser, and TROELSTRA, 1970).
Of this all we have is the weaker Fan Theorem in S and weaker choice
principles in S*,
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(D) Without compactness, S* would be a system consistent with
Church’s Thesis, and would formalize effective analysis (where all objects
‘are effectively given), but we do not consider that here.

2. Continuous dependence and stability

The results given below extend to the general situation considered in
BegsoN (1977), namely dependence of values from a separable metric
space on parameters from a complete separable metric space, and to
other cases. But we restrict to the case of real values and parameters,

DEFINITION. Suppose Yx € R.3y e R. &(x, y). We say that locally y de-
pends continuously on x (i.e. can be chosen continuously) if and only if

¥x e R. 3 neighbourhood N, of x. 3/ e Cts(N,, R). ¥x' e N,. @(x', f(x)) .

We say (following BErsoN, 1977) that y is stable in x (i.e. can be chosen
stably) if and only if

¥xeR. 3ye R(P(x,»)
AVY neighbourhood N, of y. 3 neighbourhood N, of x.
¥x' € Ny. 3y € N,. &(x', ")) .

Remarks. 1. Clearly, if globally y depends continuously on x, it does so
locally, and if it does so locally, then y is stable in x. If y is uniquely deter-
mined by x, then the converse implications hold, but in general they do not
(see Examples (1) and (2) below).

2. A solution locally continuous in parameters clearly satisfies the con-
tinuity intentions behind Hadamard’s principle. It may be too strong, but
stability appears to be too weak (see Example (4), though this is not a good
physical example).

TreoreM. (i) (Havasai; HYLAND) If ¥xeR.3ye R. &(x,)) is provable
in S, then locally y is continuous in x.

(ii) (BeesoN) If YxeR. dye R. &(x,y) is provable in S*, (and if
vxeR. {y| ®(x, )} is closed is provable in S¥), then y is stable in x.

A proof of (i) for the basic system (i.e. S without compactness of 2"y is
in HavasHI (preprint). I hope to publish my independent (but later)
proof based on category-theoretic ideas. (ii) is in Beeson (1977); 1 doubt
whether the condition in brackets is really essential,
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3. Applications

To facilitate appreciation of the result above, 1 first give some

Examples from elementary mathematics.
(1) Distinction between global and local continuity. Consider the solution
of the cubic equation
x*-3x=a,

in reals for real parameter a. A diagram convinces one that there is no
globally continuous solution, but that there are locally continuous ones.
The equation can be proved to have a solution in § (split initially into
cases: a> —1/2 v a<1/2), so local continuity is a consequence of (i) of our
Theorem.

(2) Distinction between local continuity and stability. Consider the sol-
ution of z2 = ¢ in complex numbers for complex parameter ¢. There is no
continuous solution of this equation in any neighbourhood of O (look at
arg z—there is 2 homotopy obstruction)! Hence by part (i) of our Theorem,
we cannot show the existence of a solution in S. A fortiori, the fundamental
theorem of algebra is not provable in S. However, a constructive version
is provable in S* (as in BisHop and CHENG, 1972), so in accordance
with part (ii) of the Theorem, z can be chosen stably in c.

Warning: (1) and (2) should not be confused. (1) is frequently quoted
to show that arbitrary choice principles cannot be used constructively
with extensionality, and for this (2) would do just as well. But there is an
important difference. Analogous to (2) is the solution of Xt+ax+b=0
in reals for real parameters a and b. The solutions form the fold and a sol-
ution cannot be chosen continuously in any neighbourhood of a = b= 0.

OPEN PROBLEM. One can express in a good constructive way (i.e. by
a coherent formula) a condition Sep(f) on the degree # polynomial f,
classically (and indeed in every Grothendieck topos) equivalent to the
existence of at least one simple root of f. The schema

Sep(f)—3z. f(z2) =0,

expresses the separable closure of the complex numbers. There is no known
proof of this in our basic system or in S. Since the simple root is certainly
locally continuous in the coefficients, this seems a good test case for the
claim that natural continuity results can always be obtained by consider-
ations of constructivity.
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(3) Using a simple extension of our main theorem, the difference be-
tween S and S can be detected in the proof in S* that every Dedekind real
is Cauchy! This gives for each element of R a sequence of rationals (clement
of N — @) converging to it. But there are no non-trivial continuous maps
from open sets in R to N— Q. Here N —  may have the product topology
with  given either the subspace topology induced from R, or the discrete
topology (so N — @ is isomorphic to Baire space). In either case, we will
have stability on the basis.of (ii) of the Theorem.

(4) Computational but non-physical significance of stability. Cantor’s
theorem on the uncountability of R formulated constructively states

'vfeN—&R. IxeR ¥n x # f(n),

where * is the intuitionistic apartness on R. x cannot be chosen (locally)
continuously in f (an amusing exercise), so Cantor’s theorem cannot be
proved in §. But it can easily be proved in S*, and indeed the stability l
of x is a triviality. It is hard (for me) to imagine stability of this kind being ;
physically significant, | :
Next still at the very simplest level, I give the obvious

Application to differential equations. If a differential equation

d
2 £ (%, 9)

dx }
is such that f satisfies a Lipschitz condition on y, then for any & and b, |
there is an interval I containing a and a {(continuous and) differentiable
function g: I— R with g(@) = b and satisfying the differential equation
throughout 1. '

The standard argument for this may readily be formalized in S. So by
a suitable generalization of our Theorem, 7 and g may be found con- i
tinuously in £, a Lipschitz constant X, @ and . The only non-global feature is |
the interval 7 depending on K, so fix XK and we have a quite general con-
tinuvity of the solution g in the initial condition and the function f deter-
mining the equation. (Naturally, continuity here is with respect to the top-
ology of continuous convergence or the compact open topology.)

Finally I give a brief discussion of

Applications to variational problems. This is a large area. There are many |
classical problems, for example Steiner’s problem and Plateau’s problem |
(Beeson has announced a paper devoted to the latter, BEESON, forthcoming).
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To get a feel for what goes on, consider the simple result in analysis which
provides the conceptual background for variational problems: a continuous
function on the unit interval has a maximum (as is provable in §) and
attains it (which is essentially non-constructive). By an extension of our
Theorem (i), the maximum depends continuously on the function. But

it is not possible to choose a point at which the maximum is attained stably

in the function (consider ¢®™sin(x) in [0, 4n] and vary the parameter
a throngh 0); so attainment of bounds is not provable in S*, (The problem
is connected with non-uniqueness, but it has a different effect here than it
did above.) Continuity of the extremal value, but instability of the position
of attainment, is a persistant feature of variational problems. Naturally,
one then turns to the physically significant question of continuity of relative
(strict) extrema, where there these exist. Such questions are difficult, and
answers vary from problem to problem. At this time, I cannot give a con-
structive account of all the examples that come to mind.

I conclude this paper by making some very tentative remarks about

Possible heuristic value in science. Attempts to model many physical

problems give rise to differential equations whose dynamics depends

sensitively on initial conditions: for example every trajectory in some
bounded region may be Liapunov unstable. The term chaos has been

applied to extreme situations of this sort, and they are the subject of much

research at this time. Some results are known concerning the topological
structure of attracting sets which occur in particular situations, and much
more is plausibly indicated on the basis of computer simulation. But the
detailed structure of the flow is too complicated for any useful description.
This is because of the sensitivity of the dynamics, or as [ wish to say, because
of the impossibility of a constructive treatment of the flow (in the large).

A recent paper by SHAW (preprint) gives a view of this situation based
on a sophisticated interpretation of Hadamard’s principle. His idea is that
for physical applications the detailed structure does not matter: for example,
exactly what the flow pattern is, is not of importance in turbulence, it is
changing all the time; but certain general features of it remain the same.
Again the exact shape of the record of one’s heartbeat on an oscilloscope
does not matter, though certain general features may be of considerable
significance. So what are important are characteristic propertics of a dy-
namical system which are continuously dependent on parameters; or which
we can handle constructively! One such for which Shaw gives an interesting
discussion is the rate of creation or loss of information in the fiow. There
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must be others. Certainly for particular dynamical systems, there would be
interest in regions where there were “approximately periodic orbits” of
“approximately the same period”, if this qualitative situation is stable. And
we could expect such qualitative properties to be established constructively.
Of course, a physicist does not need to be told by logicians what properties
of a system are of importance. But our physical intuition of stability is
fallible, so illustrations and applications mentioned in this paper may be
of some use. o
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