THE LONGITUDINAL KAM-COCYCLE OF A MAGNETIC FLOW
GABRIEL P. PATERNAIN

ABSTRACT. Let M be a closed oriented surface of negative Gaussian curvature and
let €2 be a non-exact 2-form. Let A be a small positive real number. We show that
the longitudinal KAM-cocycle of the magnetic flow given by A {2 is a coboundary if
and only if the Gaussian curvature is constant and {2 is a constant multiple of the
area form.

1. INTRODUCTION

Let M be a closed oriented surface with negative Gaussian curvature. It is a
classical fact that the geodesic flow ¢ of M is a contact Anosov flow (cf. [8, 11]).
Being contact means that there exists a contact form « on the unit sphere bundle
SM such that the vector field X on SM that generates ¢ is determined by the
equations a(X) = 1 and ixda = 0. The Anosov property means that T'(SM) splits
as T(SM) = E° @ E* @ E° in such a way that there are constants C' > 0 and
0 < p <1 < nsuch that E° is spanned by X and for all ¢ > 0 we have

ldp—ileal| < Cn* and [ldéile]| < C o

The subbundles are then invariant and Holder continuous and have smooth integral
manifolds, the stable and unstable manifolds, which define a continuous foliation with
smooth leaves. The Anosov property immediately implies that E* and E® must be
contained in the kernel of the contact form « and thus Kera = E* @& E° and E* @ E*
is a C'°° subbundle.

Suppose now that A is a small positive number. Geodesics are smooth curves in
M with zero geodesic curvature. Consider instead smooth curves in M with constant
geodesic curvature A\. We will call such curves magnetic geodesics. Through each point
x € M, there is a unique magnetic geodesic with velocity v € T, M, |v| = 1. Thus
magnetic geodesics define also a flow ¢* on SM that we will call the magnetic flow
of M. For X small, ¢* will still be Anosov, although in general it will not be contact
anymore. The flow ¢ is nevertheless still a Hamiltonian flow. A straightforward
calculation shows that ¢* is the Hamiltonian flow of the Hamiltonian H(x,v) = §|v|2
with respect to the symplectic form on T'M given by

—do + A7,

where €2, is the area form of M and 7 : TM — M is the canonical projection. Hence,
for small values of X, ¢* is a volume preserving Anosov flow and in fact, it preserves
the volume form a A da.
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To any C* volume preserving Anosov flow ¢ on a closed 3-manifold N, P. Foulon
and B. Hasselblatt [5] associated its longitudinal KAM-cocycle. This is a cocycle that
measures the regularity of the subbundle E* @ E* and whose definition we now recall.
Consider local coordinates (cf. [8, 5]) adapted to the stable and unstable foliations
Yy, : (—€,6)> = N, p € N, and denote the coordinate variables (u,t,s). Consider the
transversals wp(( &) x {0} x (=¢,¢)) and Ay, ) := Vprp) ((—€,€) x {0} x
(—e,€)). Then A ») N @T(Ap) contains local strong unstable and stable manifolds
of goT( ), but the two transversals are not in general identical. Let fr(u,s) be the
time lengths of the orbit segments between A, () and ¢7(A,) and set

& fr
Ouds
Foulon and Hasselblatt show that x(p,7T") is an additive cocycle (i.e. k(p, T+ 5) =
k(pr(p), S)+r(p, T)) and that the cohomology class of « is independent of the adapted
coordinates. The main theorem in [5] asserts that £ @ E* is always Zygmund-regular
and that the following are equivalent:

1. E* & E? is “little Zygmund”;

2. the longitudinal KAM-cocycle is a coboundary;

3. B* & E7 is Lipschitz;

4 Ev@ E°is CF 1,

5. ¢ is a suspension or contact flow.

k(p,T) ==

(0,0).

(A continuous function f : U — R on an open set U C R is said to be Zygmund-
regular |f(x + h) + f(x — h) — 2f(x)] = O(h) for all x in U. The function is said to
be “little Zygmund” it |f(x + h) + f(x — h) — 2f(x)| = o(h).)

It is well known that for flows, a “choice of time” or equivalently, a choice of speed at
which orbits travel gets reflected on the regularity of the corresponding strong stable
and strong unstable distributions. The situation is different if we look at the weak
unstable and stable bundles E° @ E* and E° @ E*. S. Hurder and A. Katok proved
[7] that the weak bundles are always differentiable with Zygmund-regular derivative
and there is a cocycle obstruction to higher regularity given by the first nonlinear
term in the Moser normal form (this explains why Foulon and Hasselblatt used the
terminology “longitudinal KAM-cocycle”).

The question we would like to address here is: when is the longitudinal KAM-
cocycle of the magnetic flow ¢* a coboundary?

Theorem A. Let K be the Gaussian curvature of M and suppose 2)* + K(z) < 0
for all z € M. Then the longitudinal KAM-cocycle of ¢*, X\ # 0, is a coboundary if
and only if K is constant.

We note that if A2 + K < 0, then ¢* is Anosov (as it can be easily seen from the
corresponding Jacobi equation) but there can be other larger values of A for which ¢*
is Anosov (cf. [2]). Most likely Theorem A is also true for any value of A for which
@ is Anosov, but our methods do not yield that much.

There are earlier versions of Theorem A in the literature. Suppose that we re-
place €, by an arbitrary two-form €2 and consider as above the Hamiltonian flow
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of %]v@ with respect to the symplectic form given by —da + A7*€). We proved in
[10] using Aubry-Mather theory (and in any dimensions) that if € is exact, then the
corresponding magnetic flow has a C' Anosov splitting only if A = 0, i.e. the flow
is geodesic. Unfortunately, these methods do not carry over to the non-exact case.
In an unpublished manuscript [1], J. Boland proved Theorem A under an additional
assumption on the metric. He showed that if there is a closed geodesic transverse to
which the Gaussian curvature is infinitesimally increasing, then the Anosov splitting
is not differentiable for small A, unless A = 0 (how small A had to be was unspeci-
fied). His methods were quite different from ours and were based on a probabilistic
approach using the Feynman-Kac formula.

Our proof will be based on establishing results for magnetic flows analogous to
Theorem 3.6 in [6]. With little extra effort they will yield a more general theorem as
we now explain.

Suppose €2 is an arbitrary non-exact 2-form and ¢* its associated magnetic flow.

Theorem B. Let M be a closed oriented surface of negative Gaussian curvature.
There exists \g > 0 such that the longitudinal KAM-cocycle of ¢* for 0 < |X\| < g
1s a coboundary if and only if K is constant and € is a constant multiple of the area
form.

Acknowledgements: 1 would like to thank Karl Friedrich Siburg for several useful
comments on the first draft of the manuscript.

2. GEOMETRY OF SM

Let M be a closed oriented surface, SM the unit sphere bundle and 7 : SM — M
the canonical projection. The latter is in fact a principal S!-fibration and we let V'
be the infinitesimal generator of the action of S*.

Given a unit vector v € T, M, we will denote by iv the unique unit vector orthogonal
to v such that {v, v} is an oriented basis of T, M. There are two basic 1-forms a and

£ on SM which are defined by the formulas:
Oé(gc,v)(f) = <d(w,v)7r(£)av>§

ﬁ(mﬂ)) (6) = <d(m,v)7r(§), 2’U>

The form « is precisely the contact form that we mentioned in the introduction.
A basic theorem in 2-dimensional Riemannian geometry asserts that there exists a
unique 1-form ¢ on SM (the connection form) such that

Yv) =1
da=vANp
df = -y N«
dp = —(Kom)aAf
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where K is the Gaussian curvature of M. In fact, the form ¢ is given by

Y (§) = <%(0),w>,

where Z : (—¢,€) — SM is any curve with Z(0) = (z,v) and Z(0) = £ and BZ s the
covariant derivative of Z along the curve 7o Z.

It is easy to check that a A § = 7*€),, hence
(1) Ay = -1 (K Q).

For later use it is convenient to introduce the vector field H uniquely defined by
the conditions G(H) = 1 and a(H) = (H) = 0. The vector fields X, H and V are
dual to «, # and .

3. PrRooOF oF THEOREMS A AND B

Let €2 be an arbitrary smooth 2-form. We write 2 = F'(),, where F': M — R is a
smooth function.
Since H%(M,R) = R, there exist a constant ¢ and a smooth 1-form 6 such that

QA =cKQ,+ db
and ¢ = 0 if and only if Q is exact. Using (1) we have
wy = —da+ AT Q =d(—a — Acp + A770).

The vector field X, that generates ¢* is given by Xy = X + AF'V since it satisfies
the equation dH = iy,wy. If we evaluate the primitive —a — Acyp + A7*0 of the
symplectic form wy on X, we obtain:

2) (—a = Aetp + AT0) (X)) (2,0) = —1 — N2F(z)c + A, (v).

Let us prove the easy part of Theorems A and B. Suppose M has constant curvature
and € is a constant multiple of the area form, i.e. F'is constant. Then we can choose
0 = 0 and thus —a— Ac ) is a primitive of wy which on the vector field X is a constant
equal to —1 — A\2Fec. It follows that ¢* is a contact flow for all values of A\ except
those for which —1 = A?*Fc (in which case the flow is in fact the horocycle flow). If
the flow is contact, then of course, its longitudinal KAM-cocyle is a coboundary.

Suppose now that the longitudinal KAM-cocyle is a coboundary. By the main
theorem of Foulon and Hasselblatt that we mentioned in the introduction, there is a
smooth ¢*-invariant 1-form 7 which is equal to 1 on X and whose kernel is E* @ E*.
By ergodicity, there exists a constant &£ such that

dr = kwy.
Hence
d(T + ka + Mkcp — kA7*0) = 0.

Since 7 : H*(M,R) — H'(SM,R) is an isomorphism, there exists a closed 1-form &
on M and a smooth function g : SM — R such that

T+ ka + Mkcp — kA0 = %6 + dg.
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Evaluating both sides on X, we obtain
(3) 1+ k+ XNF(x)ke — kX0, (v) = 6, (v) + dg(X)).

Since X and V preserve the volume form a A da, then so does X, = X + A FV and
thus ¢* preserves the normalized Liouville measure p of SM. If we integrate (3) with
respect to p we get

1+k+/\2kc/qu:O

since g is invariant under the flip v — —wv. It follows that k£ is a non-zero constant
and when () is the area form (Theorem A) we are left with the equation

(4) —kA Hx(v) - 5:}0(”) - dg(X)\> - XA(Q)

Theorem A will now be a consequence of the following result which we prove in the
next section.

Theorem 3.1. Let Q be the area form and suppose 2)\* + K(x) < 0 for all x € M.
If w is any smooth 1-form on M such that there is a smooth function g : SM — R
for which w,(v) = Xx(g), then w is exact.

If we now apply Theorem 3.1 to the form —kA O — § we conclude that # must be a
closed form. But if 0 is closed, €}, = cK (), and thus K is constant as desired. This
proves Theorem A.

Similarly, Theorem B will be a consequence of the following:

Theorem 3.2. Let M be a closed oriented surface of negative Gaussian curvature
and €2 and arbitrary 2-form. There exists \g > 0 with the following property. If
G : M — R is any smooth function and w is any smooth 1-form on M such that there
is a smooth function g : SM — R for which G(z) 4+ w,(v) = X\(g) for |\ < Ao, then
G s constant and w 1is exact.

If we apply Theorem 3.2 to (3) we conclude as above that K and F must be
constant. This proves Theorem B.
O

4. PROOF OF THEOREMS 3.1 AND 3.2

Theorems 3.1 and 3.2 will be consequences of more general theorems which are
the analogue of Theorem 3.6 in [6]. In this section we will try to follow as closely
as possible the notation in [6]. Recall the definition of the vector fields X, H and V'
form section 2.

Define

nti=(X—-iH)/2
and

n = (X+iH)/2.
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Let L?(SM) be the space of square integrable functions with respect to the Liouville
measure of SM. The next proposition summarizes the main properties of these
operators.

Proposition 4.1 ([6]). Let M be a closed oriented surface of negative Gaussian cur-
vature. We have:

1. L*(SM) decomposes into an orthogonal direct sum of subspaces > H,, n € Z,
such that on H,, —iV 1is n times the identity operator;

2. 0t extends to a densely defined operator from H, to H,,i for all n. Moreover,
its transpose is —n_;

3. let A:=min(—K/2). Then for all f € H, N domainn™ N domainn~ and n >0

I 11 = Anll fI1* + [l £
Theorem 4.2. Let M be a closed oriented surface and let N be a non-negative inte-

ger. Let X\ be a real number such that N> max{(N +1),2} + K(z) < 0 for allz € M.
Let f: SM — R be a smooth function of the form

F=Y fo fo€H,
\

i|I<N

Suppose the integral of f over every periodic orbit of ¢} is zero. Then there exists a
smooth function g : SM — R of the form

g= Zgn; gneHn

il <N—1
such that X\(g) = f. (If N =0 we interpret this as saying that g = 0.)

Proof. By the smooth version of the Livsic theorem [9], there exists a smooth function
g with X (g) = f. Write
9= Z 9ns

where g,, € H,. The equation X,(g) = f is equivalent to the system of equations
N g1 + 0 Gper +inAgn = fn n=0,£1,£2,....
Since f, =0 for n > N we get
(5) N Gn1 + 1 gny1 +indg, =0 n > N.
Using Proposition 4.1 item 3 and equation (5) we obtain:
177 g [I* = 1107 g [I” + Al + 1| g ||
= 17" gn—1 + inAgnl|* + A(n + 1) || gnsa1?
= (17" gn1[1* + 20ARe(n" gn1,ign) + 0N gnll* + A(n + 1) gnia|*.
For n > N + 1 we can also write:

1779l > 107 gnall® + 2(n — DARe( g2, ign_1) + (n — 1)2X?||gn_1|* + An| gn|/*



KAM-COCYCLE OF A MAGNETIC FLOW 7

Thus if we set
an = [0 gall® + 117 g |I”
the last two inequalities imply for n > N + 1:
Uni1 > Qp_1 + 2nARe(n T gn_1,19,) +2(n — DARe(n T gn_2,ign_1)
£ gall? + A+ 1) lgne |2+ (0 — 1222 gu | + Anllgal
Now we compute using equation (5) again:
Re(n" gn-1,1gn) = Re{gn—1, —1" (ign))
= Re(gn_1, —i(—i(n — DAgr_1 — 1" gn_2))
= —(n = DAgor[I* = Re(n" gn—2,igu—1)
for n > N 4+ 1. Hence
2nARe(n T gn_1,19,) + 2(n — 1)ARe(n T gn_2,ign_1)
= =2n(n — DA gn-1]* — 2ARe(n" gn—2,ign-1).
This yields for n > N + 1:
Uni1 > Ano1 — 2ARe(n g, 2, ign_1)
+ 102N gall* + A+ D[ gnsa|* = (n = 1) (n + 1)A|gna||* + Anllga]|*.
For n > N + 2 we can also write:
Ap > p_o — 20Re(nt g_s,i0n_2)
+ (0= 1)2X[|ga|* + Anllgall® = (n = 2)nA*||gn—2]|* + A(n — 1)l gn[|*.
Thus if we set
by, == a, + ap_1
the last two inequalities imply for n > N + 2:
buer Zba s+ 2(n — DN g all? — (1 — A gus
+(n = 1)(A =20 [[gn—1[* + (240 + N*n?)[|ga|l* + A(n + 1) g ||*-

This is the basic recursion inequality that we will use to prove the theorem. Let us
call

rn = = (n = 2)"N|gn-al” + (n = 1)(A = 2A%) [ gn-a||* + (240 + X*n?) [ .|

+An + 1)||gni|®
which is defined for n > N 4 2. We have:
(6) bn+1 Z bn—l + Tn-

Consider now an positive integer n of the form n = N +3 4 2k for k£ > 0 and let j be
another integer with k£ > j > 0. Using (6) we obtain:

(7) bpy1 > Onyogoj +1n + T+ -+ Tngso;
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Note that
Pt Tz = — (1 — 4202 g all? + (n = 3)(A = 2X2) [l gus]12 + 24(n — 2) g2

+2(n = (A = X)[[gn1[I” + (241 + Xn%)[|ga]|* + A(n + 1)|gnra >
If we now suppose that A — A% > 0, then a simple calculation gives:

Tp+Thoo 4+ +Tnjpape; > —(N+1+ 2j)2)\2’|gN+1+2jH2

+(N 42+ 25) (A = 2X%)[|gnr2+424]1 -

Using (7) we obtain:

b1 > H77+9N+2+2j|’2 + 2||77+9N+1+2j“2 + ||77+9N+2j||2

—(N + 1+ 25)"N[lgnas2]I* + (N + 2+ 27) (A — 2X%) | gn-sz424]/°,
which combined with Proposition 4.1 item 3 gives:

bny1 > 2(N +2425)(A — )‘2)H9N+2+2j||2

(8)  +(N+1+25)(2A4 — (N +1+25)2)[lgn+142;11> + AN + 25) |l gn+2; 1>

Analogously, if we take a positive integer n of the form n =N +3+2k+1 for k > 0
and let j be another integer with £ > j > 0 we obtain:

bus1 > 2(N + 3+ 25) (A — N?) | gna+2; ]

(9) +(NV+2+27)(2A4 = (N + 2+ 2))A) [ gnszs2)l” + AN + 1+ 25)llgn125]1*-

Suppose now that A—A? > 0 and 24— (N +1)A? > 0. Since g is a smooth function,
the functions g, must tend to zero in the Lo-topology as n tends to infinity. Thus
b, — 0, which can only occur if gy = gy+1 = gns2 = 0 in view of (8) for j = 0. If
we now use that gyi1 = gnio = 0 in (9) for j = 0, the fact that b, — 0 shows that
gn+s = 0. If we continue in this fashion using (8) and (9) for all values of j we get
that g, =0 for all n > N.

Analogously one can prove that g, = 0 for n < —N.

(]

Theorem 3.1 follows right away from Theorem 4.2: given a 1-form w on M, regarded
as a function w : TM — R, we can consider its restriction to SM which lies in
Hy ® H;. (If we write w = wy + w_1, then @w; = w_;.) Theorem 4.2 tell us that
there exists g € Hy such that w = X, (g). But if g € Hy, then it is the pull back of a
smooth function h: M — R and thus X, (g) = dh and w is exact as desired.

Similarly, Theorem 3.2 follows immediately from the following theorem. Its proof
is quite similar to that of Theorem 4.2, so we will only indicate the main steps.
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Theorem 4.3. Let M be a closed oriented surface of negative Gaussian curvature
and let Q2 be an arbitrary smooth 2-form. Let N be a non-negative integer. There
exists a positive number \g which depends on the metric, {2 and N such that for all
A € [0, \) the following property holds: let f: SM — R be a smooth function of the
form

F=Y fo fo€H,.

li|<N

Suppose the integral of f over every periodic orbit of ¢} is zero. Then there exists a
smooth function g : SM — R of the form

9= Y. 9 Gn€H,

il <N—1
such that X\(g) = f. (If N =0 we interpret this as saying that g = 0.)

Proof. We will suppose without loss of generality that the metric is normalized so
that K < —2.
Using

N gnt + 1 Gnet +inAF go =0, n> N,

the same proof of Theorem 4.2 shows that (with the same definition of b,) for n >
N + 2 we have:

bt 2bp1 = 2(n = DAF gpa|* = (n = 2)*[]AF gno|® + 02| F g, 1?
+ (n = DAl gn-1]? +2An]|ga]* + A(n + 1)||gnsa”
+2(n — 2) Re(gn—2, —in~ (A F)gn-1) + 2nRe(gn-1, —in" (A F)gy).

We now observe:
2(n — 2) Re(gn—2, —in" (A F)gn-1) + 2nRe(gn—1, —in" (A F)gn)

> —(n = 2)[lgn-2l* = 2(n = )lln~ (A F)gn-1l* = nllgall*.

Since M is compact there exists a positive constant ¢ such that for all n and g we
have

I~ (F)gull® < ¢ llgnll®,

IF gl < ¢ |lgnll®
and thus

bps1 =bp1 — (n— 22X F goo||* + 0| A F gul]> — (n — 2)||gn—all?
+ (n = 1)(A = 4cX?)||gn-1]> + 2A = Dnllgall” + A(n + 1)||gnra||*-
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By choosing )\ small enough we may suppose that A — 4cA? > 0. Our normalization
of the metric says that A > 1 and hence

bus1 2 bymy = (0 = 2N F guool* + 02X F go|* = (n = 2) | gn—2l® + nllgal|*.
This implies
b1 > bnya — (N + 1A F gnal? = (N + Dlgv .
Using the definition of b,, and Proposition 4.1 item 3 we obtain:
but1 2 AN + 2)[lgn2]” + [(24 = 1)(N + 1) = Ne(N + 1)*lgn]* + ANl gw]?
and if we now choose A small enough so that
(2A—1)(N+1) = Nc(N+1)>>0

then the same argument as in Theorem 4.2 shows that gy = gnyi1 = gni2 = 0. Now
it follows easily that g, = 0 for all n > N.
O

Remark 4.4. It is quite likely that one can prove (and perhaps improve) Theorems
4.2 and 4.3 by proving first a Pestov’s identity for magnetic flows and then proceeding
as in [3, 4].
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