
DIFFERENTIAL GEOMETRY, PART III, EXAMPLES 3.

G.P. Paternain Michaelmas 2006

Comments on and/or corrections to the questions on this sheet are always welcome, and may be
e-mailed to me at g.p.paternain@dpmms.cam.ac.uk. Most of the examples in this sheet are taken
from Alexei Kovalev’s example sheets. The questions are not equally difficult. Those marked with
∗ are not always harder, but are less central to the lectured material and may be regarded as a
supplement for the enthusiasts.

1. Let (M, g) be a Riemannian manifold. Recall that in lectures we defined geodesics as those curves
in M which are projections of the orbits of the Hamiltonian flow of H(x, p) = 1

2 |p|
2
x with respect to

the canonical symplectic form of T ∗M . Show that geodesics can also be characterized as curves in
M whose velocity vector is parallel with respect to the Levi-Civita connection of g.

2.Suppose that r = r(u,v) is a regular parameterization of a surface S in the affine space R3. There
is a standard choice of a ‘moving frame’ (a basis of the tangent space TrR3) ru, rv, n at every point
r of S, where n = ru × rv/|ru × rv| is a unit normal vector to S. (Here the subscripts u and v at
r are used to denote the respective partial derivatives.) Then there is a unique way to write the
second derivatives of r as

ruu = Γ1
11ru + Γ2

11rv + Ln

ruv = Γ1
12ru + Γ2

12rv + Mn

rvv = Γ1
22ru + Γ2

22rv + Nn,

for some functions Γi
jk, L, M, N on S. By deducing the expressions for Γi

jk in terms of the first
fundamental form of S, or otherwise, show that Γi

jk are the Christoffel symbols for the Levi–Civita
connection of the metric induced on S by restriction from the ambient R3.

3. (i) Prove that any connection ∇ on M uniquely determines a covariant derivative on the cotangent
bundle T ∗M (still to be denoted by ∇), such that ∇X : Ω1(M) → Ω1(M) satisfies Xα(Y ) =
〈∇Xα, Y 〉 + 〈α,∇XY 〉. Here α ∈ Ω1(M), and X, Y are vector fields on M . In particular, prove
that if α = αjdxj in local coordinates and Γi

jk are the coefficients of ∇ on the tangent bundle then

(∇Xα)j =
(∂αj

∂xk
− Γi

jkαi

)
Xk.

Show further that if ∇ is the Levi–Civita of some metric (gij) on M then the induced connection
is an orthogonal connection for the dual metric (gij) on T ∗M . (It is natural to call this induced
connection the Levi–Civita on T ∗M).

(ii)∗ Recall from linear algebra that the space of all bilinear forms on a vector space V is naturally
isomorphic to the space of linear maps End(V, V ∗), from V to its dual space V ∗. Using this result
and given a connection ∇ on M , write out Leibnitz formula for the induced connection (still denoted
by ∇) on the bundle of bilinear forms over M . Give the expression for the latter induced connection
∇ in local coordinates and show that if ∇ is the Levi–Civita of a Riemannian metric g on M then
∇g = 0. (A Riemannian metric is covariant-constant, or ‘parallel’, with respect to its Levi–Civita
connection.)

4. (Holonomy transformations) Let π : E → M be a vector bundle over a manifold M and A a
connection on E. Show that for each smooth path γ(t) (0 ≤ t ≤ 1) in M and a vector v0 in the
fibre Eγ(0) there exists unique path γE(t) in E, such that π ◦ γE = γ, the velocity vector γ̇E(t) is
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horizontal for each t, and γE(0) = v0. The vector v1 = γE(1) is sometimes called parallel transport
of v0 over γ (with respect to A). Show that the assignment of v1 of v0 defines a linear map from
Eγ(0) to Eγ(1).

Now suppose the E = TM endowed with the Levi–Civita connection of a Riemannian metric
on M . Show that the parallel transport over a closed loop γ based at x ∈ M defines an orthogonal
linear transformation of TxM .

5. Let (M, g) be a Riemannian manifold and R(X, Y ) ∈ Γ(EndTM) the endomorphism defined
using the Riemann curvature of g and vector fields X, Y . Show that the Levi–Civita covariant
derivative of R(X, Y ) is an endomorphism (DZR)(X, Y ) given by (DZR)(X, Y ) = [DZ , R(X, Y )]−
R(DZX, Y )−R(X, DZY ). Deduce from this a special version of the second Bianchi identity for the
Levi–Civita connection

(∗) (DXR)(Y, Z) + (DY R)(Z,X) + (DZR)(X, Y ) = 0,

[Hint: use the identities R(X, Y )Z = [DX , DY ]Z − D[X,Y ]Z and DXY − DY X = [X, Y ] from the
Lectures and exploit the cyclic symmetry of the expression (∗).]
6. For this question, note that at each point x the Riemann curvature (Rijkl) of (M, g) defines
a symmetric bilinear form on Λ2(TxM). Show that if dim M = 3 then the Riemann curvature is
determined at each point of M by the Ricci curvature Ric(g).
[Hint: note that the map that takes R(g) to Ric(g) is a linear map, at each point of M . A special
feature of the dimension 3 is that the spaces of 1-forms and 2-forms on R3 have the same dimension.]

7. (i) Show that the Hodge star on Λ2(R4)∗ determines an orthogonal decomposition Λ2(R4)∗ =
Λ+ ⊕ Λ− into the ±1 eigenspaces and dim Λ+ = dim Λ− = 3. Deduce that on every oriented 4-
dimensional Riemannian manifold M there is a decomposition of 2-forms Ω2(M) = Ω+ ⊕ Ω−, so
that α ∧ α = ±|α|2gωM , for every α ∈ Ω±, where ωM is the volume form. (2-forms in the subspaces
Ω± are called, respectively, the self- and anti-self-dual forms on M .)
(ii) Now assume that M is a compact 4-dimensional oriented Riemannian manifold. Show that the
expression

∫
M

α ∧ β, for α, β ∈ Ω2(M), induces a well-defined symmetric bilinear form on the de
Rham cohomology H2

dR(M). Let (b+(M), b−(M)) denote the signature of this bilinear form. Show
that b±(M) = dimH±, where H± denotes the space of harmonic (anti-)self-dual forms on M .

8. Calculate explicitly the expression of the Laplacian for functions:

(a) on the hyperbolic plane H = {(x, y) ∈ R2 : y > 0}, where the metric is g(x, y) =
dx2 + dy2

y2
;

(b) on the sphere Sn, in the local coordinates given by stereographic projections. (The metric on
Sn is the ‘round’ metric induced by standard embedding in the Euclidean Rn+1.)

9. Express the Laplacian on the Euclidean Rn+1 \ {0} in terms of the Laplacian on the unit sphere
Sn (you might like to use a result of Question 13 of Example Sheet 2).
Deduce a formula for the Laplacian for spherically-symmetric functions f(r), where r denotes the
polar radius on Rn.

10. Show that the partial diferential equation ∆f = φ for a function f ∈ C∞(M) on a compact
oriented Riemannian manifold (M, g), with a given φ ∈ C∞(M), has a solution if and only if∫

M
φ ωg = 0. (Here ωg denotes the volume form.) Is a solution unique?

11. (i) Let g0 be an Einstein metric Ric(g0) = λ g0. Let gt := u(t)g0. Find u so that gt evolves along
the Ricci flow ∂gt

∂t = −2 Ric(gt) and u(0) = 1. Show that the solution for λ > 0 (called shrinking
solution) only exists for finite time.

(ii) Let gt be a solution of the Ricci flow and let ωt be the Riemannian volume form of gt. Show
that ∂ωt

∂t = −st ωt, where st is the scalar curvature of gt.


