DIFFERENTIAL GEOMETRY, PART III, EXAMPLES 3.

G.P. Paternain Michaelmas 2006

Comments on and/or corrections to the questions on this sheet are always welcome, and may be
e-mailed to me at g.p.paternain@dpmms.cam.ac.uk. Most of the examples in this sheet are taken
from Alexei Kovalev’s example sheets. The questions are not equally difficult. Those marked with
* are not always harder, but are less central to the lectured material and may be regarded as a
supplement for the enthusiasts.

1. Let (M, g) be a Riemannian manifold. Recall that in lectures we defined geodesics as those curves
in M which are projections of the orbits of the Hamiltonian flow of H(z,p) = %|p\g with respect to
the canonical symplectic form of T*M. Show that geodesics can also be characterized as curves in
M whose velocity vector is parallel with respect to the Levi-Civita connection of g.

2.Suppose that r = r(u, v) is a regular parameterization of a surface S in the affine space R3. There
is a standard choice of a ‘moving frame’ (a basis of the tangent space T.R?) r,, r,, n at every point
r of S, where n =r, X r,/|r, X r,| is a unit normal vector to S. (Here the subscripts u and v at
r are used to denote the respective partial derivatives.) Then there is a unique way to write the
second derivatives of r as
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Ty, =17ry + 170y, +Ln
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Typ = Loy + T'15r, + Mn
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Tyy = '5ory + 1551, + Nn,

for some functions F;k, L,M,N on S. By deducing the expressions for F;k in terms of the first
fundamental form of .S, or otherwise, show that F;- .. are the Christoffel symbols for the Levi-Civita
connection of the metric induced on S by restriction from the ambient R3.

3. (i) Prove that any connection V on M uniquely determines a covariant derivative on the cotangent
bundle T*M (still to be denoted by V), such that Vx : QY(M) — QY(M) satisfies Xa(Y) =
(Vxa,Y) + (a,VxY). Here a € Q}(M), and X,Y are vector fields on M. In particular, prove
that if a = ajdxj in local coordinates and I‘?- . are the coefficients of V on the tangent bundle then
Doy i k '

(Vxa); = (aixzjC - jkai)X .

Show further that if V is the Levi-Civita of some metric (g;;) on M then the induced connection
is an orthogonal connection for the dual metric (¢%/) on T*M. (It is natural to call this induced
connection the Levi-Civita on T*M).

(ii)* Recall from linear algebra that the space of all bilinear forms on a vector space V' is naturally
isomorphic to the space of linear maps End(V,V*), from V to its dual space V*. Using this result
and given a connection V on M, write out Leibnitz formula for the induced connection (still denoted
by V) on the bundle of bilinear forms over M. Give the expression for the latter induced connection
V in local coordinates and show that if V is the Levi-Civita of a Riemannian metric g on M then
Vg = 0. (A Riemannian metric is covariant-constant, or ‘parallel’, with respect to its Levi-Civita
connection.)

4. (Holonomy transformations) Let 7 : E — M be a vector bundle over a manifold M and A a

connection on E. Show that for each smooth path v(¢) (0 < ¢ < 1) in M and a vector vy in the

fibre E, ) there exists unique path 7vE(t) in E, such that m o vF = 5, the velocity vector ¥ (t) is
1
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horizontal for each t, and 4 (0) = vg. The vector v; = v¥(1) is sometimes called parallel transport
of vy over 7 (with respect to A). Show that the assignment of v; of vy defines a linear map from
Ey0) to Eyq)-

Now suppose the F = TM endowed with the Levi—Civita connection of a Riemannian metric
on M. Show that the parallel transport over a closed loop v based at © € M defines an orthogonal
linear transformation of T, M.

5. Let (M,g) be a Riemannian manifold and R(X,Y) € T'(EndTM) the endomorphism defined
using the Riemann curvature of g and vector fields X,Y. Show that the Levi-Civita covariant
derivative of R(X,Y) is an endomorphism (DzR)(X,Y) given by (DzR)(X,Y) = [Dz,R(X,Y)] —
R(DzX,Y)—R(X,DzY). Deduce from this a special version of the second Bianchi identity for the
Levi-Civita connection

(%) (DxR)(Y, Z) + (Dy R)(Z, X) + (DzR)(X,Y) =0,

[Hint: use the identities R(X,Y)Z = [Dx, Dy|Z — Dixy}Z and DxY — Dy X = [X,Y] from the
Lectures and exploit the cyclic symmetry of the expression (x).]

6. For this question, note that at each point z the Riemann curvature (R;;x;) of (M, g) defines
a symmetric bilinear form on A?(T,M). Show that if dim M = 3 then the Riemann curvature is
determined at each point of M by the Ricci curvature Ric(g).

[Hint: note that the map that takes R(g) to Ric(g) is a linear map, at each point of M. A special
feature of the dimension 3 is that the spaces of 1-forms and 2-forms on R? have the same dimension.|

7. (i) Show that the Hodge star on A?(R*)* determines an orthogonal decomposition A?(R*)* =
AT ® A~ into the +1 eigenspaces and dim A+t = dim A~ = 3. Deduce that on every oriented 4-
dimensional Riemannian manifold M there is a decomposition of 2-forms Q?(M) = QT @ Q~, so
that a A a = :I:|a|3wM, for every o € QF, where wyy is the volume form. (2-forms in the subspaces
QOF are called, respectively, the self- and anti-self-dual forms on M.)
(ii) Now assume that M is a compact 4-dimensional oriented Riemannian manifold. Show that the
expression | v N B, for o, B € Q?(M), induces a well-defined symmetric bilinear form on the de
Rham cohomology H3g (M). Let (b*(M),b~(M)) denote the signature of this bilinear form. Show
that b* (M) = dim H*, where H* denotes the space of harmonic (anti-)self-dual forms on M.
8. Calculate explicitly the expression of the Laplacian for functions:
dx? + dy? _

y:
(b) on the sphere S™, in the local coordinates given by stereographic projections. (The metric on
S™ is the ‘round’ metric induced by standard embedding in the Euclidean R"*1.)

(a) on the hyperbolic plane H = {(x,y) € R? : y > 0}, where the metric is g(z,y) =

9. Express the Laplacian on the Euclidean R™*!\ {0} in terms of the Laplacian on the unit sphere
S™ (you might like to use a result of Question 13 of Example Sheet 2).

Deduce a formula for the Laplacian for spherically-symmetric functions f(r), where r denotes the
polar radius on R”.

10. Show that the partial diferential equation Af = ¢ for a function f € C*°(M) on a compact
oriented Riemannian manifold (M, g), with a given ¢ € C*°(M), has a solution if and only if
f v @ wg =0. (Here wy denotes the volume form.) Is a solution unique?

11. (i) Let go be an Einstein metric Ric(gg) = A go. Let g¢ := u(t)go. Find u so that g; evolves along
the Ricci flow % = —2Ric(g¢) and u(0) = 1. Show that the solution for A > 0 (called shrinking
solution) only exists for finite time.

(ii) Let g; be a solution of the Ricci flow and let w; be the Riemannian volume form of g;. Show

that aa‘? = —s; wy, where s; is the scalar curvature of g;.




