

DIFFERENTIAL GEOMETRY, PART III, EXAMPLES 3.

G.P. Paternain Michaelmas 2006

Comments on and/or corrections to the questions on this sheet are always welcome, and may be e-mailed to me at g.p.paternain@dpmmms.cam.ac.uk. Most of the examples in this sheet are taken from Alexei Kovalev's example sheets. The questions are not equally difficult. Those marked with * are not always harder, but are less central to the lectured material and may be regarded as a supplement for the enthusiasts.

1. Let (M, g) be a Riemannian manifold. Recall that in lectures we defined geodesics as those curves in M which are projections of the orbits of the Hamiltonian flow of $H(x, p) = \frac{1}{2}|p|_x^2$ with respect to the canonical symplectic form of T^*M . Show that geodesics can also be characterized as curves in M whose velocity vector is parallel with respect to the Levi-Civita connection of g .

2. Suppose that $\mathbf{r} = \mathbf{r}(\mathbf{u}, \mathbf{v})$ is a regular parameterization of a surface S in the affine space \mathbb{R}^3 . There is a standard choice of a 'moving frame' (a basis of the tangent space $T_{\mathbf{r}}\mathbb{R}^3$) $\mathbf{r}_u, \mathbf{r}_v, \mathbf{n}$ at every point \mathbf{r} of S , where $\mathbf{n} = \mathbf{r}_u \times \mathbf{r}_v / |\mathbf{r}_u \times \mathbf{r}_v|$ is a unit normal vector to S . (Here the subscripts u and v at \mathbf{r} are used to denote the respective partial derivatives.) Then there is a unique way to write the second derivatives of \mathbf{r} as

$$\begin{aligned}\mathbf{r}_{uu} &= \Gamma_{11}^1 \mathbf{r}_u + \Gamma_{11}^2 \mathbf{r}_v + L \mathbf{n} \\ \mathbf{r}_{uv} &= \Gamma_{12}^1 \mathbf{r}_u + \Gamma_{12}^2 \mathbf{r}_v + M \mathbf{n} \\ \mathbf{r}_{vv} &= \Gamma_{22}^1 \mathbf{r}_u + \Gamma_{22}^2 \mathbf{r}_v + N \mathbf{n},\end{aligned}$$

for some functions Γ_{jk}^i, L, M, N on S . By deducing the expressions for Γ_{jk}^i in terms of the first fundamental form of S , or otherwise, show that Γ_{jk}^i are the Christoffel symbols for the Levi-Civita connection of the metric induced on S by restriction from the ambient \mathbb{R}^3 .

3. (i) Prove that any connection ∇ on M uniquely determines a covariant derivative on the *cotangent bundle* T^*M (still to be denoted by ∇), such that $\nabla_X : \Omega^1(M) \rightarrow \Omega^1(M)$ satisfies $X\alpha(Y) = \langle \nabla_X \alpha, Y \rangle + \langle \alpha, \nabla_X Y \rangle$. Here $\alpha \in \Omega^1(M)$, and X, Y are vector fields on M . In particular, prove that if $\alpha = \alpha_j dx^j$ in local coordinates and Γ_{jk}^i are the coefficients of ∇ on the tangent bundle then $(\nabla_X \alpha)_j = \left(\frac{\partial \alpha_j}{\partial x^k} - \Gamma_{jk}^i \alpha_i \right) X^k$.

Show further that if ∇ is the Levi-Civita of some metric (g_{ij}) on M then the induced connection is an orthogonal connection for the dual metric (g^{ij}) on T^*M . (It is natural to call this induced connection the Levi-Civita on T^*M).

(ii)* Recall from linear algebra that the space of all bilinear forms on a vector space V is naturally isomorphic to the space of linear maps $\text{End}(V, V^*)$, from V to its dual space V^* . Using this result and given a connection ∇ on M , write out Leibnitz formula for the induced connection (still denoted by ∇) on the bundle of bilinear forms over M . Give the expression for the latter induced connection ∇ in local coordinates and show that if ∇ is the Levi-Civita of a Riemannian metric g on M then $\nabla g = 0$. (A Riemannian metric is covariant-constant, or 'parallel', with respect to its Levi-Civita connection.)

4. (Holonomy transformations) Let $\pi : E \rightarrow M$ be a vector bundle over a manifold M and A a connection on E . Show that for each smooth path $\gamma(t)$ ($0 \leq t \leq 1$) in M and a vector v_0 in the fibre $E_{\gamma(0)}$ there exists unique path $\gamma^E(t)$ in E , such that $\pi \circ \gamma^E = \gamma$, the velocity vector $\dot{\gamma}^E(t)$ is

horizontal for each t , and $\gamma^E(0) = v_0$. The vector $v_1 = \gamma^E(1)$ is sometimes called parallel transport of v_0 over γ (with respect to A). Show that the assignment of v_1 of v_0 defines a linear map from $E_{\gamma(0)}$ to $E_{\gamma(1)}$.

Now suppose the $E = TM$ endowed with the Levi–Civita connection of a Riemannian metric on M . Show that the parallel transport over a closed loop γ based at $x \in M$ defines an orthogonal linear transformation of $T_x M$.

5. Let (M, g) be a Riemannian manifold and $R(X, Y) \in \Gamma(\text{End } TM)$ the endomorphism defined using the Riemann curvature of g and vector fields X, Y . Show that the Levi–Civita covariant derivative of $R(X, Y)$ is an endomorphism $(D_Z R)(X, Y)$ given by $(D_Z R)(X, Y) = [D_Z, R(X, Y)] - R(D_Z X, Y) - R(X, D_Z Y)$. Deduce from this a special version of the second Bianchi identity for the Levi–Civita connection

$$(*) \quad (D_X R)(Y, Z) + (D_Y R)(Z, X) + (D_Z R)(X, Y) = 0,$$

[Hint: use the identities $R(X, Y)Z = [D_X, D_Y]Z - D_{[X, Y]}Z$ and $D_X Y - D_Y X = [X, Y]$ from the Lectures and exploit the cyclic symmetry of the expression $(*)$.]

6. For this question, note that at each point x the Riemann curvature (R_{ijkl}) of (M, g) defines a symmetric bilinear form on $\Lambda^2(T_x M)$. Show that if $\dim M = 3$ then the Riemann curvature is determined at each point of M by the Ricci curvature $\text{Ric}(g)$.

[Hint: note that the map that takes $R(g)$ to $\text{Ric}(g)$ is a linear map, at each point of M . A special feature of the dimension 3 is that the spaces of 1-forms and 2-forms on \mathbb{R}^3 have the same dimension.]

7. (i) Show that the Hodge star on $\Lambda^2(\mathbb{R}^4)^*$ determines an orthogonal decomposition $\Lambda^2(\mathbb{R}^4)^* = \Lambda^+ \oplus \Lambda^-$ into the ± 1 eigenspaces and $\dim \Lambda^+ = \dim \Lambda^- = 3$. Deduce that on every oriented 4-dimensional Riemannian manifold M there is a decomposition of 2-forms $\Omega^2(M) = \Omega^+ \oplus \Omega^-$, so that $\alpha \wedge \alpha = \pm |\alpha|_g^2 \omega_M$, for every $\alpha \in \Omega^\pm$, where ω_M is the volume form. (2-forms in the subspaces Ω^\pm are called, respectively, the self- and anti-self-dual forms on M .)

(ii) Now assume that M is a *compact* 4-dimensional oriented Riemannian manifold. Show that the expression $\int_M \alpha \wedge \beta$, for $\alpha, \beta \in \Omega^2(M)$, induces a well-defined symmetric bilinear form on the de Rham cohomology $H_{\text{dR}}^2(M)$. Let $(b^+(M), b^-(M))$ denote the signature of this bilinear form. Show that $b^\pm(M) = \dim \mathcal{H}^\pm$, where \mathcal{H}^\pm denotes the space of harmonic (anti-)self-dual forms on M .

8. Calculate explicitly the expression of the Laplacian for functions:

(a) on the hyperbolic plane $H = \{(x, y) \in \mathbb{R}^2 : y > 0\}$, where the metric is $g(x, y) = \frac{dx^2 + dy^2}{y^2}$;

(b) on the sphere S^n , in the local coordinates given by stereographic projections. (The metric on S^n is the ‘round’ metric induced by standard embedding in the Euclidean \mathbb{R}^{n+1} .)

9. Express the Laplacian on the Euclidean $\mathbb{R}^{n+1} \setminus \{0\}$ in terms of the Laplacian on the unit sphere S^n (you might like to use a result of Question 13 of Example Sheet 2).

Deduce a formula for the Laplacian for spherically-symmetric functions $f(r)$, where r denotes the polar radius on \mathbb{R}^n .

10. Show that the partial differential equation $\Delta f = \phi$ for a function $f \in C^\infty(M)$ on a compact oriented Riemannian manifold (M, g) , with a given $\phi \in C^\infty(M)$, has a solution if and only if $\int_M \phi \omega_g = 0$. (Here ω_g denotes the volume form.) Is a solution unique?

11. (i) Let g_0 be an Einstein metric $\text{Ric}(g_0) = \lambda g_0$. Let $g_t := u(t)g_0$. Find u so that g_t evolves along the Ricci flow $\frac{\partial g_t}{\partial t} = -2\text{Ric}(g_t)$ and $u(0) = 1$. Show that the solution for $\lambda > 0$ (called shrinking solution) only exists for finite time.

(ii) Let g_t be a solution of the Ricci flow and let ω_t be the Riemannian volume form of g_t . Show that $\frac{\partial \omega_t}{\partial t} = -s_t \omega_t$, where s_t is the scalar curvature of g_t .