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Abstract. We explore the relationship between contact forms
on S3 defined by Finsler metrics on S2 and the theory developed
by H. Hofer, K. Wysocki and E. Zehnder in [9, 10]. We show
that a Finsler metric on S2 with curvature K ≥ 1 and with all
geodesic loops of length > π is dynamically convex and hence it
has either two or infinitely many closed geodesics. We also explain
how to explicitly construct J-holomorphic embeddings of cylinders
asymptotic to Reeb orbits of contact structures arising from Finsler
metrics on S2 with K = 1 thus complementing the results obtained
in [8].

1. Introduction

A contact form λ on a closed, connected, oriented manifold of odd
dimension is said to be dynamically convex if the Conley-Zehnder index
of any contractible periodic orbit of the Reeb vector field is at least
three. This notion generalises the case of convex hypersurfaces in R4

on which the contact form is simply the restriction of the standard
one-form λ0 from the ambient space. When the hypersurface is S3, the
Reeb flow induces a fibration by orbits of constant period, namely the
Hopf fibration. If the hypersurface is an ellipsoid Ep,q defined by the
equation p|z|2 + q|w|2 = 1 (z, w denoting coordinates of C2), then an
interesting dichotomy arises between the dynamics of the Reeb flow for
p
q

rational or irrational. In the rational case there are still infinitely

many periodic orbits, though not all are of the same minimal period,
while in the irrational case there are just two periodic orbits. This
dichotomy extends to any strictly convex hypersurface in R4, since it
was shown by Hofer, Wysocki and Zehnder [9] that the Reeb vector
field X of any contact form satisfying the dynamic convexity condition
on the three–sphere has either two or infinitely many periodic orbits.
A central role in their theory is played by the existence of finite–energy
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J–holomorphic embeddings of the cylinder in the “symplectisation”
of a contact manifold, from which a periodic orbit is realised as the
asymptotic limit of an end of the embedded cylinder.

For the standard example associated with the Hopf fibration on S3

there is a direct correspondence between the asymptotic limit of finite–
energy J–holomorphic embeddings in the symplectisation S3 × R and
germs of plane algebroid curves centred at the origin of a sufficiently
small ball in C2, via their “link” with the boundary–sphere. It may then
be asked whether a more general correspondence can be established be-
tween plane algebroid curve–germs and J–holomorphic embeddings in
the symplectisation of other contact forms λ on S3. It should be noted
that a similar question has been studied extensively in the context
of pseudoholomorphic curves in a symplectic manifold (cf., e.g., [17])
though the question there is local rather than asymptotic in nature. In
[8] it was shown that near periodic orbits of “elliptic type” (cf. locally
recurrent orbits, [8]) such that the partial almost complex endomor-
phism j, compatible with the contact structure, is Reeb–invariant (i.e.,
the Lie derivative LXj = 0), finite–energy J–holomorphic embeddings
ψ of the cylinder may be represented holomorphically in a suitable
tubular coordinate neighbourhood of the orbit. After transformation
of the cylinder to a punctured disc D \ {0} via the choice of a com-
plex coordinate z, the periodic component of ψ naturally subdivides
D into “quasi–sectors”, the number of these being determined by the
topological degree of ψ restricted to the circle |z| = c, as c approaches
zero (i.e., as the axial coordinate of the cylinder approaches infinity),
and being referred to as the “charge” of the mapping. In the direc-
tion spanned by a disc ∆, transversal to the orbit, ψ is represented by
holomorphic functions defined on each of the quasi–sectors of D, which
are hinged together along common edges by the return map α, induced
on ∆ by the Reeb flow. With respect to (λ, j) satisfying the above
criteria and for a given charge n, each finite–energy J– holomorphic
embedding of the cylinder in S3 ×R therefore gives rise to a collection
of n holomorphic functions, whose continuity at adjacent boundaries
of their domains is mediated by α (cf. [8, Theorem 1]).

For any contact structure (λ, j) such that LXj = 0 and α is the
identity (e.g., the standard λ0 restricted to S3) it is possible to move
explicitly back and forth between finite–energy J–holomorphic embed-
dings of the cylinder in the tubular neighbourhood of a periodic orbit
and algebraic curve–germs at the origin in C2 of the form (zn, F (z)). A
similarly explicit correspondence was obtained in [8] for contact struc-
tures on S3 diffeomorphically equivalent to the restriction of λ0 to a
rational ellipsoid (on which α is a non–trivial rational rotation near
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each of the two exceptional orbits). Implicit in these examples is the
fact that the contact form has rotational symmetry along the axis of
a suitable tubular coordinate neighbourhood of the orbit, thus allow-
ing the map ψ conversely to be determined (up to local diffeomorphic
equivalence) by the charge n and holomorphic functions Fk, predefined
on formal sectors Qk, such that Fk+1 = α◦Fk at the common boundary
of adjacent sectors, 0 ≤ k ≤ n − 1 (cf. Theorem A below). As we
note in the present article, this crucial symmetry property is also held
(up to local gauge correction) by any contact form for which α is an
irrational rotation (as in the case of the irrational ellipsoids), so that a
ψ of charge n is again determined by the holomorphic data Fk:

Theorem A. Suppose, for the ensemble (M,λ, j) that LXj = 0 and the
return map α induced locally by the Reeb flow near a locally recurrent
orbit P corresponds to an irrational rotation. For positive integer n let
Qk denote the formal sectors of a disc D ⊂ C defined by

2π
k

n
< arg(z) < 2π

k + 1

n
, 0 ≤ k ≤ n− 1,

with holomorphic functions w = Fk(z) defined on Qk such that

Fk |Qk∩Qk+1
= α ◦ Fk+1 |Qk∩Qk+1

, lim
z→0

Fk(z) = 0

for each k. Modulo a local gauge correction of the form

λ̂ = λ− df,

for some smooth function f , defined in a tubular neighbourhood of P
such that Xλ(f) = 0, these holomorphic data determine a finite–energy
J–holomorphic curve of charge n, asymptotic to P .

But to how large a class of contact structures on S3 do these corre-
spondences apply? More broadly, to how large a class of structures do
the dynamic convexity results of Hofer, Wysocki and Zehnder apply?
An important class of examples of triples (M,λ, j) is given by the con-
tact form and almost complex endomorphism j naturally induced on
the three-manifold corresponding to the unit tangent bundle of a Rie-
mann surface Σ by the geodesic flow of a metric g on Σ (cf., e.g., [13]).
If the additional Lie symmetry condition LXj = 0 is assumed then g
must have Gaussian curvature K ≡ 1 and up to isometry we just have
Σ = S2. But the class of required structures is much broader if, in-
stead of a Riemannian metric, one considers a Finsler structure on the
two-sphere, i.e., a hypersurface M ⊂ TS2 and a surjective submersion
π : M → S2 such that for all p ∈ S2 the fibre π−1(p) is a smooth, closed
strictly convex curve enclosing the origin in TpS2 (cf. section two).
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The associated structure equations derived from a canonical framing
of T ∗M depend on three functions I, J,K over M . When the Finsler
structure corresponds specifically to a Riemannian metric, it follows
that I ≡ 0 and K corresponds to the pullback of Gaussian curvature
from Σ. The induced almost complex endomorphism j on a Finsler
contact manifold (M,λ) satisfies LXj = 0 precisely when K ≡ 1 for
any I, J (cf. Lemma 3.1).

A famous class of contact structures due to A. Katok [11] arises from
convex hypersurfaces M ⊂ TS2 on which K ≡ 1 and the return map
α associated with the Reeb flow near either of its two distinguished
periodic orbits is a rotation. The Finsler structures connected with
these examples incorporate what are known as Randers metrics, coming
from special perturbations of the norm derived from a Riemannian
metric. When a Finsler structure on Σ with K ≡ 1 admits a non-trivial
Killing field, one may perturb to a family of non-Randers examples with
the same properties, as is shown in section 3.2, following independent
observations of P. Foulon and W. Ziller [18]. All the hypersurfaces
in question are doubly covered by S3, such that the contact forms
lift to tight contact structures on the three-sphere. In sections three
and four a precise description of this lifting reveals that the Katok
examples correspond exactly to those induced by the restriction of λ0

to Ep,q ⊂ C2. It is then worth noting that the non-Randers structures of
section 3.2 lie genuinely beyond the standard class of examples coming
from convex hypersurfaces of R4. Returning to the broader notion
of dynamic convexity for contact structures on S3, it is asked in the
final section of this article whether a corresponding criterion can be
found in terms of Finsler structures on S2. Theorem B provides this
criterion for a given Finsler structure, via a lower bound on the length
` of its shortest geodesic loop (we shall say that the Finsler metric
is dynamically convex if its associated contact form is dynamically
convex):

Theorem B. Let F be a Finsler metric on S2 such that K ≥ δ > 0. If
` > π/

√
δ, then F is dynamically convex.

In particular, by the results in [9] any such Finsler metric has either
two or infinitely many closed geodesics. We note that recently, V.
Bangert and Y. Long [1] have shown that any Finsler metric on S2 has
two closed geodesics. The class of Finsler metrics covered by Theorem
B is fairly large and includes for instance strictly 1/4-pinched reversible
Finsler metrics (cf. comments at the end of Secion 6).
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2. J-holomorphic cylinders near locally recurrent
orbits of a contact three-manifold

Let M denote a closed, oriented three-manifold with contact form λ
and associated plane-field ξ ⊂ TM corresponding to ker(λ). Let Xλ

denote the Reeb vector field associated with this structure on M , to-
gether with an almost complex structure J acting on ξ such that the
symmetric tensor defined by dλ(∗, J∗) |ξ is positive definite. Consider
a periodic orbit of the Reeb flow, denoted P , and a tubular neigh-
bourhood TP ⊂ M . If ∆ represents a disc centred at the origin in
R2, let ∆̃ ⊂M be an embedded image such that the origin is mapped
to the unique element p0 of P ∩ ∆̃, with ∆̃ itself corresponding to a
transverse slice of TP . The Reeb flow will be assumed moreover to be
Lyapunov–stable near P in the sense that for all p ∈ ∆̃′, where ∆′ ⊆ ∆
is a sufficiently small disc centred at the origin, there exists a unique
solution γp : [0,∞) →M to the equation

dγp

dt
= Xλ(γp(t)) , γp(0) = p ,

which depends smoothly on both t and p, and remains inside TP for all
t ≥ 0. Given p ∈ ∆̃′, we will define (i) τ(p) to be the smallest t > 0
such that γp(t) ∈ ∆̃ , (ii) Γp := γp((0, τ(p)]) and for each connected

open neighbourhood of the origin, Ω ⊆ ∆̃ ,

(iii) Γ(Ω) := ∪p∈ΩΓp .

We may now consider a recursively defined system of neighbourhoods
{Ωk}, such that Ω0 := ∆̃′, while Ωk denotes the origin–component of
Γ(Ωk−1) ∩ Ωk−1. The set Ω∞ := ∩∞k=0Ωk was seen in [8] proposition 1
to be conformally equivalent to a disc whenever it corresponds to an
open subset of ∆̃′. As in [8], the Reeb flow will be said to be “locally
recurrent” near a periodic orbit P if it is Lyapunov–stable within a
tubular neighbourhood TP and for any sufficiently small embedded disc
∆̃, corresponding to a transversal slice through TP at some point p0,
the limit set Ω∞ ⊆ ∆̃′ ⊆ ∆̃ is open. An orbit P itself may also be
referred to as “locally recurrent” in this context. In passing we note
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that if the orbit is elliptic of twist type, then by Moser’s twist map
theorem it will be locally recurrent. Moreover, the local recurrence
implies that the characteristic multipliers are unimodular.

Under the assumption that the Reeb flow is locally recurrent near
P , we now select Ω∞ × {ϑ0} as coordinate disc within the initial Mar-
tinet tube (in which λ = f · (dϑ + xdy), where ϑ denotes the periodic
coordinate and f denotes a function such that f(0, 0, ϑ) ≡ τ0 and
∇f(0, 0, ϑ) ≡ 0, though these facts are not used here). Without loss of
generality, let ϑ0 be zero and consider the cylinder Ω∞× [0, 2π], which
maps to the tube via the obvious identification mod(2π). The cylinder
has P as its axis, x = y = 0, and the Reeb vector field in Martinet
coordinates already looks like 1

τ0
∂
∂ϑ

when restricted to P . There is no
consequent loss of generality if we “normalise” λ by the constant mul-
tiple 1

τ0
, so that the minimal period is effectively 1. In particular this

will ensure that the notion of “charge” for a J-holomorphic mapping ψ
of the punctured disc, as introduced below, is consistent with the stan-
dard definition corresponding to the limit of the integral of ψ∗λ over
the circle |z| = c as c approaches zero (and is specifically an integer).
By analogy with the standard construction of Darboux coordinates,
the next step is to define

C := {(p, t) | p = (x, y) ∈ Ω∞ , 0 ≤ t ≤ τ(p) } ,
and a homeomorphism

h : C → Ω∞ × [0, 2π] , h |Ω∞×{0}= 1 ,

(i.e., h restricted to the transverse disc is the identity when t = 0)
which is smooth for all 0 < t < τ(p), coming from solutions of the
ordinary differential equation

dγp

dt
= Xλ(γp(t)) .

It follows that on the interior of C, the standard contact form λ0 and
λ′ := h∗λ have the same Reeb vector field, corresponding to ∂

∂t
. We

now consider the Cauchy–Riemann system

π((h−1ψ)η) + Jπ((h−1ψ)ζ) = 0 (∗) ,
λ′((h−1ψ)ζ) = −aη, λ′((h−1ψ)η) = aζ (†) ,

satisfied by some finite–energy J–holomorphic map ψ : D \ {0} →M ;
a : D \ {0} → R, embedding a punctured neighbourhood D \ {0} ⊂ C
into the Martinet tubular neighbourhood of P (×R). Here π denotes
the projection onto ker(λ′) along the Reeb vector field. For a sufficiently
“thin” neighbourhood of P , the standard projection (v1, v2, v3) 7→
(v1, v2) determines a linear isomorphism µ between ξ′ := ker(λ′) and
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R2. Hence we define a 2×2 matrix–valued function j(x, y) = µ◦J ◦µ−1,
such that with x := (x, y) equation (*) can be written in the form

xη(z) + jxζ(z) = 0 .

Let α denote the diffeomorphism of Ω∞ × {0} defined by the return
map α(p) := γp(τ(p)), hence α(0) = 0. As seen in [8], if LXλ

J = 0,
then in a neighbourhood of 0 ∈ ∆, the smooth automorphism α is
equivalent to a rotation, via a diffeomorphism ϕ : ∆′′ → U ⊆ Ω∞
such that ϕ−1

∗ ◦ j ◦ ϕ∗ = j0 (the standard multiplication by i) . More
specifically, let Ω′

∞ denote the simply connected domain inside U which
is invariant under the Reeb flow. The diffeomorphism α̂ := ϕ−1 ◦α ◦ϕ
then acts on ϕ−1(Ω′

∞) ⊆ ∆′′ as an automorphism such that α̂(0) = 0
under the assumption of local recurrence. The additional assumption
LXλ

J = 0 implies that α∗j = j, hence in particular α̂j0 = j0α̂, i.e.,
α̂ is a conformal automorphism. Modulo a conformal transformation
identifying ϕ−1(Ω′

∞) with a disc, α̂ is then equivalent to a rotation.
Now x̃ζ := ϕ−1

∗ (xζ) and x̃η := ϕ−1
∗ (xη) implies

x̃η(η, ζ) + j0 · x̃ζ(η, ζ) = 0 (†∗).
As described in [8], each “branch” of

Ψ := (h ◦ (ϕ× 1))−1ψ

is defined smoothly in the interior and continuously up to the bound-
aries of a quasi–sector Qk in D \ {0}, with discontinuities arising at
points z0 lying on the smooth arcs, corresponding to ϑ−1(0), that bound
adjacent sectors (in the usual way “±” will be used to denote opposite
sides of the boundary). Discontinuities of the transverse projection of
Ψ are therefore described by the relations

lim
z→z±0

x̃(z) := x̃±(z0) ⇒ α̂(x̃−(z0)) = x̃+(z0) .

Hence on each Qk ⊂ D \ {0} , (†∗) defines a holomorphic function
w = Fk(z) which partially describes a branch of Ψ, such that

Fk |Qk∩Qk+1
= α̂ ◦ Fk+1 |Qk∩Qk+1

, 0 ≤ k ≤ n− 1 ,

where n denotes the charge (or asymptotic degree) of ψ in relation to
the periodic orbit P .

Returning now to the particular form of the equations (†) in C note
that any λ′ with ∂

∂t
as its Reeb vector field must take the general form

λ′ = dt+ f1(x)dx+ f2(x)dy .

Such a local presentation of the contact form allows decoupling of (†)
into an inhomogeneous Cauchy–Riemann equation. This property is
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preserved under the diffeomorphism ϕ if it is assumed that LXλ
J = 0,

hence in particular the matrix j above is independent of t. In this case,
letting < and = signify real and imaginary parts, and u = t + ia, (†)
becomes

∂

∂z̄
[u |Qk

] = −{f1(Fk(z))
∂<(Fk)

∂z̄
+ f2(Fk(z))

∂=(Fk)

∂z̄
}

= −1

2
[(f1 + if2) ◦ Fk(z)] · F ′

k(z) ,

keeping in mind that this equation is defined smoothly only on the
interior of each quasi–sector Qk. Define ω := 1

2
(f1 + if2)(w, w̄)dw̄, so

that
λ′ = dt+ 2<(ω) , and

1

2
[(f1 + if2) ◦ Fk(z)] · F ′

k(z)dz̄ = F ∗
kω .

Now LXλ
λ = 0 implies α̂∗<(ω) = <(ω). In particular, f := (f1, f2)

implies <(ω) = (f , ∗) with respect to the standard inner product on
R2, and hence α̂t

∗f = f . Similarly =(ω) = (j0f , ∗), while LXλ
J = 0

implies α̂t
∗j0 = j0α̂

t
∗, so that

α̂∗=(ω) = (α̂t
∗j0f , ∗) = (j0f , ∗) = =(ω) .

It follows that α̂∗ω = ω, and hence

F ∗
kω |Qk∩Qk+1

= F ∗
k (α̂∗ω) |Qk∩Qk+1

= (α̂ ◦ Fk)
∗ω |Qk∩Qk+1

= F ∗
k+1ω |Qk∩Qk+1

.

There now exists a continuous function G(z, z̄) on D such that

G(z, z̄)dz̄ |Qk
:= F ∗

kω , 0 ≤ k ≤ n− 1 ,

which is moreover continuously differentiable (cf. [8]), and hence

Ĝ(z, z̄) :=

∫
D

G(µ, µ̄)

µ− z
dµ ∧ dµ̄

is a twice-continuously differentiable function on D. Moreover, the
inhomogeneous equation satisfied by u now has the form

∂

∂z̄
[u |Qk

] = −G, 0 ≤ k ≤ n− 1 ,

and with a little additional argument we have

Theorem 2.1 ([8]). Let (ψ, a) : D \{0} →M ×R be a J–holomorphic
curve of finite energy and charge n at z = 0, asymptotic to a locally
recurrent periodic orbit P, near which LXλ

J = 0. Consider any tubular
neighbourhood of P in M , diffeomorphic to ∆×S1 such that {0}×S1 ≈
P. There exists a diffeomorphic change of coordinates in ∆ × [0, 2π)
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such that on each quasi–sector Qk ⊂ D \ {0} the map (ψ, a) can be
expressed in the form

(Fk(z), Hk(z)−
1

2πi
Ĝ(z, z̄)) , 0 ≤ k ≤ n− 1,

where Fk , Hk are holomorphic on Qk and continuous on Qk, such that

Fk |Qk∩Qk+1
= α̂ ◦ Fk+1 |Qk∩Qk+1

,

while each Hk corresponds to an analytic branch of 1
2πi

log(ρ) , ord0(ρ) =

n. Moreover, the function Ĝ belongs to C2(D) and is bounded by K|z|.
Finally, if α = 1, then each Fk is the restriction of a single function F
holomorphic on D, F (0) = 0.

Conversely, given an ensemble (M,λ, J), LXλ
J = 0, with locally re-

current periodic orbit P corresponding to the asymptotic limit of some
J–holomorphically embedded cylinder of finite energy, we may ask for
the essential holomorphic data which determine such J-holomorphic
curves in general near P . Our main result in this direction is the fol-
lowing:

Theorem A. Suppose, for the ensemble (M,λ, J) above, that the re-
turn map α induced locally by the Reeb flow near a recurrent orbit P
corresponds to an irrational rotation. For positive integer n let Qk

denote the formal sectors of a disc D ⊂ C defined by

2π
k

n
< arg(z) < 2π

k + 1

n
0 ≤ k ≤ n− 1 ,

with holomorphic functions w = Fk(z) defined on Qk such that

Fk |Qk∩Qk+1
= α̂ ◦ Fk+1 |Qk∩Qk+1

, lim
z→0

Fk(z) = 0

for each k. Modulo a local gauge correction of the form

λ̂ = λ− df ,

for a smooth function f , defined in a tubular neighbourhood of P such
that Xλ(f) = 0, these holomorphic data determine a finite–energy J–
holomorphic curve of charge n, asymptotic to P.

Proof. Returning to the general form of λ with respect to the coordinate
tube C above, we have

λ′ = dt+ f1(x)dx+ f2(x)dy = dt+ 2<(ω) .

Recalling that α̂∗<(ω) = <(ω), we note that the case of α an irrational
rotation (hence in particular the orbit of any point w under α is dense
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in a circle of radius |w|) implies <(ω) must have rotational symmetry.
Therefore we can write

<(ω) = η(ρ)dν + ζ(ρ)dρ = η(|w|)(xdy − ydx) + df ,

where w = x+ iy , ρ = |w| , ν = arg(w) , and

f(ρ) =

∫ ρ

0

ζ(r)dr .

Letting η̂(ρ2) = η(ρ), and after making the gauge correction λ̂ =:
λ− df =: dt+ <(ω̂), we have

ω̂ = η̂(ww̄) · iwdw̄ ,

and hence

Φ(|w|2) =:

∫ |w|2

0

η̂(r)dr

implies ω̂ = i∂̄Φ(|w|2). It should be noted at once that dλ̂ = dλ , Xλ(f) =
0 together imply that Xλ remains the Reeb vector field of the contact
form λ̂. Recall that

Fk |Qk∩Qk+1
= α̂ ◦ Fk+1 |Qk∩Qk+1

, lim
z→0

Fk(z) = 0

indicates that there exists a single smooth function |F | on D, corre-
sponding to Fk on each Qk, hence we may define

G(z, z̄) =: i∂̄Φ(|F |2) , and Ĝ(z, z̄) =: 2πi · iΦ(|F |2) = −2πΦ(|F |2) .
Under the assumption that P is already the asymptotic limit of some
finite–energy mapping of the punctured disc (or cylinder), we recall
moreover from the discussion of [8], that the return time τ(p) for each
p ∈ Ω′

∞ is constant (i.e., normalised to value 1). Note that the ro-

tational symmetry of the contact form ultimately implies that Ĝ is a
real–valued function, compatible with the formal specification of simple
sectors Qk as domains of the holomorphic functions Fk, and moreover
that the t–component of a J–holomorphic mapping derived from these
data can be defined by t = 1

2π
arg(zn). Now from [8], Theorem 1, we

may write

u = t+ ia =
1

2πi
(log(zn) + 2πΦ(|F |2)) ,

from which it follows that the associated a–component must be

a(z) =
−1

2π
log(|z|n)− Φ(|F |2) .

One or two remarks should be made concerning the almost complex
structure with respect to which the mapping Ψ, determined sector-wise
by the Fk(z) and the corresponding analytic branches of 1

2πi
(log(zn) +
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2πΦ(|F |2)), may be said to represent a J–holomorphic mapping of
charge n of the cylinder into TP × R, for a tubular neighbourhood
TP . It is straightforward to see that there is an isomorphism between
the contact planes of both λ and λ̂ at any given point which we will
denote by β : ξ → ξ̂ , i.e., β(v) = v − λ̂(v)X , where X denotes the

common Reeb vector field of λ and λ̂. The almost complex structure
Ĵ := β◦J ◦β−1 is then automatically induced on ξ̂ = ker(λ̂). Moreover,

given v′ ∈ ker(λ̂), we have

dλ̂(v′, Ĵ · v′) = dλ̂(β(v), Ĵ · β(v)) = dλ̂(β(v), β(J · v))

= dλ̂(v − λ̂(v)X, J · v − λ̂(J · v)X) = dλ(v, J · v) .

Hence the quadratic form dλ̂(∗, Ĵ∗) |ξ̂ is also positive definite.
It remains now to check that the pseudoholomorphic curve Ψ, defined

with respect to λ̂ , Ĵ in TP ×R is of finite energy. Following [9], let F
denote the space of smooth functions h : R → [0, 1] such that h′ ≥ 0,

and define “extensions” λ̂h of the contact form from TP to TP ×R such
that λ̂h(p, a) := h(a) · λ̂(p). The “energy” of Ψ is then defined as

E(Ψ) := sup
F

∫
D\{0}

Ψ∗dλ̂h .

Clearly, ∫
D\{0}

Ψ∗dλ̂h =

∫
|z|=1

Ψ∗λ̂h − lim
ε→0

∫
|z|=ε

Ψ∗λ̂h

=

∫
|z|=1

h(a)Ψ∗λ̂− lim
ε→0

∫
|z|=ε

h(a)Ψ∗λ̂ .

Now
Ψ∗λ̂ = −η(|F |)dν(F ) +

n

2π
d arg(z) ,

where the formula

ν = arg(w) = tan−1

(
−i
w − w̄

w + w̄

)
implies

dν(F ) = 2<(
dν

dw
· F ′(z)dz) = <(

−iF ′

F
dz) .

(Here we have adopted a harmless abuse of notation, in the sense that

the ratios
F ′k
Fk

define a single continuous function on D \ {0} when α is

a rotation). Note, inside any |z| = ε sufficiently small, that z = 0 is
the unique zero of the smooth function |F (z)|, and hence∣∣∣∣∫

|z|=ε

Ψ∗λ̂− n

∣∣∣∣ ≤ ∫
|z|=ε

|η(|F |)||F ′|
|F |

· ε · d arg(z) .
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In particular, for any holomorphic function H the identity

|H ′| = 2

∣∣∣∣∂|H|∂z

∣∣∣∣
implies ∣∣∣∣F ′

k

Fk

∣∣∣∣ = 2

∣∣∣∂|F |
∂z

∣∣∣
|F |

,

and hence |F ′|
|F | = O( 1

|z|). Moreover, the latter integral above approaches

zero as ε goes to zero, if it is recalled that η(ρ) is a smooth function
such that η(0) = 0 . Now |z| → 0 implies a→ +∞, and thus

E(Ψ) = sup
F

(∫
|z|=1

h(−Φ(|F (z)|2)) ·Ψ∗λ̂− n · h(+∞)

)
,

which is clearly finite.
�

In the next section we will consider a class of examples of contact
structures to which the above theorem may be applied, but it should
first be estalished that holomorphic data of the sort specified are in
plentiful supply. For arbitrary n, consider f(z) holomorphic on D ⊂ C,
such that ord0(f) > n, and an arbitrary irrational rotation of the form
α = e2πic , 0 < c < 1. Let D be divided into formal sectors as in
theorem 1, with

F0(z) := z−ncf(z) , Fk+1(z) = α · Fk(z) , 0 ≤ k ≤ n− 1,

noting that Fn(z) = F0(z). For convenience we may define z−nc =
e−ncLog(z), where Log(z) denotes an analytic branch of the complex
logarithm defined on C minus the positive real axis.

3. Examples

3.1. Canonical coframing. Let Σ be a closed oriented connected
surface. A smooth Finsler structure on Σ is a smooth hypersurface
M ⊂ TΣ for which the canonical projection π : M → Σ is a surjec-
tive submersion having the property that for each x ∈ Σ, the π-fibre
π−1(x) = M ∩ TxΣ is a smooth, closed, strictly convex curve enclosing
the origin 0x ∈ TxΣ.

Given such a structure it is possible to define a canonical coframing
(ω1, ω2, ω3) on M that satisfies the following structural equations (see

12



[2, Chapter 4]):

dω1 = −ω2 ∧ ω3,(1)

dω2 = −ω3 ∧ (ω1 − Iω2),(2)

dω3 = −(Kω1 − Jω3) ∧ ω2.(3)

where I, K and J are smooth functions on M . The function I is called
the main scalar of the structure and it vanishes if and only if M is the
unit circle bundle of a Riemannian metric. When I = 0, i.e. when the
Finsler structure is Riemannian, K is the π-pullback of the Gaussian
curvature. The function J vanishes if the surface is what is called
Landsberg.

Let X1, X2 and X3 be the vector fields on M that are dual to the
coframing (ω1, ω2, ω3). The form ω1 is the canonical contact form of M
whose Reeb vector field is the geodesic vector field X1.

As a consequence of (1–3) the framing (X1, X2, X3) satisfies the com-
mutation relations:

(4) [X3, X1] = X2, [X2, X3] = X1 + IX2 + JX3, [X1, X2] = KX3.

Note that the coframing also defines a natural almost complex struc-
ture J on ξ = kerω1. Indeed, we may set:

J(xX2 + yX3) = yX2 − xX3.

If we let η = xX2 + yX3 ∈ kerω1 then using (1) we see that:

dω1(η, Jη) = x2 + y2

and thus J is compatible with the contact structure.

Lemma 3.1. LX1J = 0 if and only if K = 1.

Proof. Let φt be the flow of X1. Note that LX1J = 0 if and only if
dφt is an isometry of the inner product in kerω1, given by dω1(∗, J∗).
(Recall that φt preserves dω1.)

Let η = xX2 + yX3 ∈ kerω1 and write:

dφt(η) = x(t)X2 + y(t)X3.

Thus the flow φt is an isometry of the inner product dω1(∗, J∗) if and
only if

d

dt
(x(t)2 + y(t)2) = 0,

equivalently if and only if

(5) xẋ+ yẏ = 0.

Write
η = x(t)dφ−t(X2) + y(t)dφ−t(X3)

13



and differentiate with respect to t to obtain

0 = ẋX2 + x[X1, X2] + ẏX3 + y[X1, X3].

Using the structure equations (4) and regrouping we have:

0 = (ẋ− y)X2 + (ẏ + xK)X3,

hence

ẋ = y,

ẏ +Kx = 0.

If we insert these equations in (5) we see that φt is an isometry if and
only if

xy(1−K) = 0

and thus LX1J = 0 if and only if K = 1. �

Remark 3.1. Note that the proof above shows that in general, if we
let η ∈ kerω1 and write

dφt(η) = x(t)X2 + y(t)X3

then

ẋ = y,

ẏ +Kx = 0.

We will use this fact later on.

We now recall some global consequences of K = 1 as explained by R.
Bryant in [6]. The first thing to observe is that the structure equations
imply:

φ∗tω1 = ω1,(6)

φ∗tω2 = cos t ω2 + sin t ω3,(7)

φ∗tω3 = − sin t ω2 + cos t ω3.(8)

Suppose that Σ is geodesically complete and connected. Then it
can be shown that Σ is diffeomorphic to S2 and there exists a unique
orientation reversing isometry A : Σ → Σ such that dA|M = φπ (we
call A a quasi-antipodal map). Moreover for any point p ∈ Σ every
unit speed geodesic leaving p passes through A(p) at distance π and Σ
has diameter π. According to [6, Proposition 4] we have the following
dichotomy:

(1) A2 is the identity on Σ in which case all geodesics are closed
with the same minimal period 2π;

14



(2) A2 has exactly two fixed points, say σ and A(σ). Moreover there
exists a positive definite inner product on TσΣ that is preserved
by d(A2)(σ) : TσΣ → TσΣ and there is an angle θ ∈ (0, 2π)
such that d(A2)(σ) is counterclockwise rotation by θ in this
inner product.

Here we will be mostly interested in case (2). We note that this case
has two possible subcases. Suppose that θ/2π is rational and write
θ = 2πp/q where 0 < p ≤ q with p and q coprime. Then A2q is the
identity and thus φ2πq = identity, that is, every orbit of φ is closed with
period 2πq, although some orbits may have smaller minimal period.

When θ/2π is irrational, then the iterates of A2 are dense in a circle
of isometries of the Finsler surface Σ. This circle of isometries fixes σ
and A(σ) and Σ is rotationally symmetric about σ. Hence the geodesic
flow of Σ is completely integrable with a “Clairaut” first integral. The
surface is also symmetric with respect to A about a circle (the equator)
E. The unit tangent vectors to E determine two closed orbits γ±. The
equator divides Σ into two disks Dσ and DA(σ) which contain σ and
A(σ) respectively. (A maps Dσ to DA(σ) and fixes E setwise.)

Let S be the subset of M given by those pairs (x, v) where x ∈ E and
v points inside the region Dσ. The set S (diffeomorphic to E × (0, π))
is a section of the geodesic flow with return map φ2π|S = d(A2)|S. We
see that there are no other closed orbits besides γ±.

If π ◦ γ+ is the closed geodesic which travels around E counterclock-
wise (as seen from σ) then we find the lengths of π ◦ γ± to be:

`+ := `(π ◦ γ+) = 2π − d(p,A2(p)),

`− := `(π ◦ γ−) = 2π + d(A2(p), p),

where p is any point in E. Since θ/2π is irrational we see that `±/2π
are irrational and in view of (7) and (8) we conclude that γ± are elliptic
orbits of φ. It is also clear that they are locally recurrent.

3.2. Examples with only two closed geodesics. Summarizing the
discussion above, Theorem A can be applied to a Finsler metric on S2

with K = 1 and θ/2π irrational. Examples of such metrics are given
by the well known Katok examples [11] analyzed by W. Ziller in [18].
The fact that these metrics have K = 1 is proved by Z. Shen [16] (see
also [14, Section 5] for a discussion of these examples).

However these are not the only examples and a Katok type construc-
tion also gives a larger class as we now explain.

Suppose F is a Finsler metric on S2 with K = 1 and A2 = Id (i.e. all
the geodesics are closed and with the same minimal period). Suppose
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in addition that F admits a nontrivial Killing field V . We may suppose
without loss of generality that the flow ft of V is such that f2π = Id.

Define a 1-parameter family of Finsler metrics Gε (ε small) by giving
its co-metric G∗

ε in T ∗S2 as follows:

(9) G∗
ε(x, p) = F ∗(x, p) + εp(V (x)).

An unpublished result of P. Foulon asserts that Gε also has K = 1 (this
can be checked along the lines of the calculations in [18]). The Katok
examples arise when F is the standard Riemannian metric with K = 1
in S2.

We now note that Bryant [4, 5] has produced several families of
Finsler metrics with K = 1 and A2 = Id. Among them there are sub-
families with rotational symmetry which are not of Randers type. For
example Theorem 10 in [4] gives a 1-parameter family of rotationally
invariant projectively flat Finsler metrics with K = 1.

To complete our construction we note that Ziller in [18] observed
that for a Finsler metric defined by (9) with ε irrational, the only
closed geodesics of Gε are those invariant under ft. Hence there will
be only two closed geodesics for ε irrational.

We remark that the results in [3] show that the Katok examples are
the only examples (up to isometry, of course) of Randers metrics with

K = 1. A Randers metric is a Finsler metric of the form
√
gx(v, v) +

θx(v), where g is a Riemannian metric and θ is a 1-form.

4. Lifting Finsler metrics to contact structures on S3

Let F be a Finsler metric on S2. The Lagrangian 1
2
F 2 gives rise to

a Legendre transform `F : TS2 \ {0} → T ∗S2 \ {0} and if we let λ be
the Liouville 1-form on T ∗S2, it is well known that `∗Fλ restricted to
the unit sphere bundle M of F is precisely the contact form ω1 from
the previous section.

On T ∗S2 we also have a Finsler co-metric F ∗ such that F = F ∗ ◦ `F
and a corresponding unit co-sphere bundle M∗. We consider on S2

the canonical metric with curvature 1. It has an associated Legendre
tranform `0 : TS2 → T ∗S2. In what follows | · | denotes the norm of the
canonical metric in both TS2 and T ∗S2.

Observe that there exists a unique smooth function g : T ∗S2 \{0} →
R+ such that F ∗(x, p) = g(x, p)|p|. (g is homogeneous of degree zero
in p.)

Let r : M∗
0 →M∗ be given by

r(x, p) = (x, p/g(x, p)).
16



We identify S3 with SU(2) and S2 with the matrices in SU(2) of the
form

x =

(
it z
−z̄ −it

)
,

where t ∈ R, z ∈ C and t2 + |z|2 = 1. If A ∈ SU(2) = S3 and x ∈ S2 is
as above then A−1xA ∈ S2. This also gives a natural embedding of S2

in R3. Below we will often write (t, z) to indicate a point in S2 instead
of the corresponding matrix in SU(2).

Consider the matrices:

j =

(
0 1
−1 0

)
∈ S2, k =

(
0 i
i 0

)
∈ S2.

Now let G : S3 →M0 be the following map:

G(A) = (A−1jA,A−1kA).

It is easy to see that the unit vectors A−1jA, A−1kA in R3 are orthog-
onal. Let A ∈ SU(2) be written as:

A =

(
w1 w2

−w̄2 w̄1

)
where (w1, w2) ∈ C2 and |w1|2 + |w2|2 = 1. The map G may also be
written as

(10) G(A) = [(2=(w1w2), w̄
2
1 + w2

2), (−2<(w1w2), i(w̄
2
1 − w2

2))].

If λ0 is the canonical contact form on S3, that is λ0(x) = 〈ix, ∗〉, and
ω0

1 is the contact form of M0, then it is not hard to check that (and it
is explicitly done in [7, Proposition 1.1]):

(11) G∗ω0
1 = 2λ0.

We now claim (compare with [7, Proposition 1.1]):

Lemma 4.1. Let f := 1/g ◦ `0 : TS2 \ {0} → R+. Then

G∗`∗0r
∗ (λ|M∗) = 2(f ◦G)λ0 .

Proof. Let τ : T ∗S2 → S2 be the canonical projection and note that

r∗λ(x,p)(ξ) = p/g(dτ(dr(ξ))) =
1

g
λ(x,p)(ξ)

and that
`∗0(λ/g) = ω1

0/(g ◦ `0).
Combining these two equalities with (11) the lemma follows.

�
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The lemma is saying that the geodesic flow of a Finsler metric on S2

is (up to a double covering) smoothly conjugate to the Reeb flow of a
(tight) contact form on S3 of the form hλ0 where h = 2(f ◦G) and f is
related to the Finsler metric as described in the lemma. Conversely, if
we have a contact form hλ0 with h(−A) = h(A), then h will give rise
to functions f and g as above. In general, for an arbitrary h invariant
under the antipodal map, the hypersurface M∗ of T ∗S2 determined by
g does not need to be fibrewise strictly convex, but it will be clearly
starshaped. Note that in the proof of the lemma we did not really need
M∗ to come from a Finsler metric. If M∗ is just starshaped, then λ|M∗

is also a contact form.
Summarizing, the lemma gives an explicit 1-1 correspondence be-

tween starshaped hypersurfaces of T ∗S2 and smooth positive functions
h on S3 with h(A) = h(−A). If in addition M∗ is fibrewise strictly
convex we obtain a Finsler metric.

5. Ellipsoids and the Katok examples

In contact geometry there is a well studied class of examples given
by the ellipsoids

Ep,q := {(w1, w2) ∈ C2 : p|w1|2 + q|w2|2 = 1},

where p and q are positive real numbers. The restriction of λ0 to Ep,q

determines a Reeb flow whose dynamics is very simple: the flow is just
φt(w1, w2) = (w1e

ipt, w2e
iqt). There are two periodic orbits correspond-

ing to w1 = 0 and w2 = 0. These are the only periodic orbits if p/q is
irrational, whereas Ep,q is foliated by periodic orbits if p/q is rational
(but not all will have the same minimal period).

On the other hand, in Finsler geometry there are the well known
Katok examples, which in particular provide examples of Finsler met-
rics with only two closed geodesics. The Finsler co-metric of the Katok
examples in geodesic polar coordinates (r, φ) ∈ (0, π)× [0, 2π] is

(12) F ∗
ε (r, φ, pr, pφ) =

√
p2

r +
1

sin2 r
p2

φ + ε pφ,

where ε ∈ (−1, 1). We will show in this section that the ellipsoids
and the Katok examples are related precisely by the correspondence
described in the previous section.

Let h : S3 → R+ be the function

(13) h(w1, w2) =
1

p|w1|2 + q|w2|2
.
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Also let ϕ : S3 → Ep,q be given by ϕ(w1, w2) =
√
h(w1, w2) (w1, w2). It

is easy to check that

ϕ∗λ0 = hλ0

and hence we can think of the Reeb flow of the ellipsoids as being
defined on S3 with contact form hλ0 where h is given by (13). Clearly
h(A) = h(−A). To find f we write G(A) = (x, v) ∈M0 where x = (t, z)
and v = (b, η). The expressions for t, z, b, η are given by (10). Using
them we derive

w̄2
1 =

z − iη

2
,

w2
2 =

z + iη

2
.

Using that (w1, w2) ∈ S3 we obtain

f(x, v) =
1

(p− q)|z − iη|+ 2q
.

We now introduce geodesic polar coordinates (r, φ) on S2 such that

t = cos r,

z = sin r eiφ.

Thus (b, η) = (ṫ, ż). In these coordinates the Legendre transform `0 is
simply:

pr = ṙ, pφ = φ̇ sin2 r.

We can now compute g = 1/(f ◦ `−1
0 ) in (r, φ, pr, pφ) -coordinates:

g(r, φ, pr, pφ) = 2q + (p− q)

√
ṙ2 cos2 r + sin2 r (1 + φ̇)2

= 2q + (p− q)

√
p2

r cos2 r + sin2 r + 2pφ +
p2

φ

sin2 r
.

This is the expression of g on M∗
0 , that is, when in addition

p2
r +

p2
φ

sin2 r
= 1.

Thus if we simplify it further we obtain

g(r, φ, pr, pφ) = 2q + (p− q)(1 + pφ) = p+ q + (p− q) pφ.

But in view of (12) the value of F ∗
ε on M∗

0 is just 1 + εpφ. Note that
by homogeneity a Finsler metric is completely determined by its value
on M∗

0 . Hence if we choose p and q such that p+ q = 1, the ellipsoids
induce, under the correspondence described in the previous section,
exactly the Katok examples with ε = p− q.
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Remark 5.1. In [9, Theorem 1.1] the authors show that a strictly
convex hypersurface S ⊂ R4 carries either 2 or infinitely many periodic
orbits. The ellipsoids, of course, provide examples of this dichotomy
and the authors point out that it is not true that the first alternative
holds only for the irrational ellipsoids. They also remark in [9, Page
200] that M. Herman constructed examples of hypersurfaces S which
are C∞-close to the ellipsoid, admit only two periodic orbits but have a
transitive flow on S. Apparently these examples of Herman are unpub-
lished, but we remark here that it is easy to construct such examples
using the results above combined with Katok’s main result in [11]. In-
deed, Katok shows in [11] that given any r, one can approximate Fε

in the Cr topology by a Finsler metric F with ergodic geodesic flow
and only two closed geodesics. We have shown above that under the
lifting procedure described in Lemma 4.1, Fε lifts to an ellipsoid, and
hence F will give rise to a smooth hypersurface S which is Cr-close to
an ellipsoid and such that the flow on S has only two closed orbits and
is transitive.

Note that the examples described in Subsection 3.2 give rise to a
new 1-parameter family of hypersurfaces in R4 exhibiting the same
dynamics and dichotomy as the ellipsoids.

Finally we note that if under the lifting described in Lemma 4.1 a
Finsler metric gives rise to a strictly convex hypersurface, then it will
carry either 2 or infinitely many closed geodesics. Recently, V. Bangert
and Y. Long [1] have shown that any Finsler metric on S2 has two closed
geodesics. In the next section we will describe geometric conditions on
the Finsler metric that ensure dynamical convexity so the main results
in [9] can be applied.

6. Dynamically convex Finsler metrics

We first recall the definition of dynamically convex contact form λ
on a closed, connected and oriented manifold M with π2(M) = 0.

The Reeb vector field X is transversal to the contact structure ξ =
kerλ so that naturally we have a splitting TxM = RX(x) ⊕ ξx. Let
φt be the flow of X. Clearly dφt(x) : ξx → ξφt(x) is symplectic with
respect to dλ. A contractible periodic solution x with period T has an
integer-valued index µ(x, T ) which we briefly recall (cf. [9]).

Let D ⊂ C be the closed unit disk. Choose a smooth map σ :
D →M such that σ(e2πit/T ) = x(t). Choose a symplectic trivialization
ψ : σ∗ξ → D × R2 of the symplectic bundle σ∗ξ with symplectic form
σ∗dλ. Here R2 is endowed with the standard symplectic form. We can
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use this trivialization to define a symplectic arc

Φ : [0, T ] → Sp(1)

by setting

Φ(t) = ψ(e2πit/T ) ◦ dφt(x(0)) ◦ ψ−1(1).

Any such symplectic arc has a Conley-Zehnder index µ(Φ), whose def-
inition we recall below, and we define

µ(x, T ) = µ(Φ).

It can be checked that µ(x, T ) is well defined and does not depend on
the choices made.

There are several possible ways to define µ(Φ). We shall present the
definition that is most appropriate to our purposes. Our reference for
what follows is [9, Section 3].

Let Φ : [0, T ] → Sp(1) be a smooth arc with Φ(0) = I and set
A(t) := −JΦ̇(t)Φ(t)−1. Then A(t) is a smooth path of symmetric
matrices and Φ solves the linear differential equation:

Φ̇ = JAΦ, Φ(0) = I

for t ∈ [0, T ]. Given τ ∈ R, suppose v (not identically zero) solves the
first order differential equation

(14) −Jv̇(t)− A(t)v(t) = τ v(t)

and satisfies the periodic boundary condition v(0) = v(T ). Then v is
an eigenvector with eigenvalue τ of the operator

LA(v) = −Jv̇ − A(t)v

defined on the space of T -periodic H1-maps into R2. Since v never
vanishes we may choose a smooth angle ϕ(t) such that

e2πiϕ(t) =
v(t)

|v(t)|
, t ∈ [0, T ].

Define the winding number ∆(τ, A) ∈ Z by

∆(τ, A) := ϕ(T )− ϕ(0).

One can see that ∆(τ, A) depends only on the eigenvalue τ and not on
the eigenfunction v. For every integer k ∈ Z there are precisely two
eigenvalues (counting multiplicities) τ1 and τ2 such that k = ∆(τ1, A) =
∆(τ2, A). Hence we may label the eigenvalues τ of LA by their winding
numbers. Indeed, set ∆(τk, A) = [k

2
] for k ∈ Z and τk ≤ τj for k ≤ j.

With this labeling we define the Conley-Zehnder index of Φ as

µ(Φ) := max{k : τk < 0}.
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A contact form λ onM is said to be dynamically convex if µ(x, T ) ≥ 3
for every contractible periodic solution of the Reeb vector field X. In
[9] it is shown that if a contact form λ on S3 comes from a strictly
convex hypersurface in R4, then it is dynamically convex.

Recall from the previous sections that a Finsler metric on S2 defines
a contact form on SO(3). We shall say that the Finsler metric is dy-
namically convex if its associated contact form is dynamically convex.

Given a Finsler metric on S2, let ` be the length of the shortest
non-trivial geodesic loop. Recall that a geodesic loop is just a geodesic
path with the same initial and final points (the velocity vectors may
not match).

Theorem B. Let F be a Finsler metric on S2 such that K ≥ δ > 0. If
` > π/

√
δ, then F is dynamically convex. In particular by the results

in [9] any such Finsler metric has either two or infinitely many closed
geodesics.

Proof. By a simple rescaling argument we may assume that K ≥ 1 and
that ` > π.

Consider a closed geodesic γ with length T . The vector fields X2

and X3 from Subsection 3.1 provide a trivialization of ξ without the
need of extending the bundle to D. Given η ∈ ξ, write η = aX2 + bX3.
Then

η 7→ (b, a)

gives a symplectic trivialization between (ξ, dω1) and R2 with the canon-
ical symplectic form. (Note that we need to swap a and b since dω1 =
−ω2∧ω3.) Recall from Remark 3.1 that if we write dφt(η) = xX2+yX3,
then ẋ = y and ẍ+Kx = 0. Thus, using the trivialization, we see that
Φ satisfies the linear differential equation:

Φ̇ = JAΦ

where

J =

(
0 −1
1 0

)
and A =

(
1 0
0 K

)
.

Take v an eigenvector of LA with eigenvalue τ and set w(t) := v(t)
|v(t)| .

Using (14) it is straightforward to check that w(t) satisfies

ẇ = J(A+ τI)w − w〈w, J(A+ τI)w〉.
But 2πϕ̇Jw = ẇ and thus 2πϕ̇ = 〈(A+ τI)w,w〉. Since K ≥ 1, we see
that 〈(A+ τI)w,w〉 ≥ 1 + τ for all t ∈ [0, T ] and hence

∆(τ, A) = ϕ(T )− ϕ(0) ≥ T

2π
(1 + τ).
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Since ∆(τ3, A) = 1 we deduce

(15)
T

2π
(1 + τ3) ≤ 1.

Let us combine this inequality with the lower bound on `. If γ is a
simple closed curve in S2, the orbit t 7→ x(t) = (γ(t), γ̇(t)) will not
be contractible in M . If γ is not a simple closed geodesic, then it
contains at least two loops and thus it must have length T ≥ 2` > 2π.
Inequality (15) shows that τ3 < 0 and by the definition of µ we see that
µ(x, T ) ≥ 3 as desired.

�

Remark 6.1. The proof of the theorem indicates that one cannot
expect to get dynamical convexity just assuming positive curvature.
In fact if γ is a closed geodesic with length T such that K = 1 along
it, then the proof of the theorem shows that

(16) 1 =
T

2π
(1 + τ3).

Now consider a convex surface of revolution whose equator has K = 1.
It is clear that one can make the length T of the equator as short as
desired at the expense of increasing the curvature elsewhere. But using
(16) we see that the Conley-Zehnder index of the equator iterated twice
(to get a contractible curve in the unit sphere bundle) is ≤ 2 if T is
small enough since τ3 ≥ 0 in this case. A concrete example of this is
given by the ellipsoid in R3:

x2 + y2

a2
+ z2 = 1.

The equator z = 0 has curvature K = 1 and length 2πa, so for a = 1/2
we get that the equator iterated twice has τ3 = 0 and µ = 1. Note that
in this case 1 ≤ K ≤ 16. This example shows that Theorem B is in
fact sharp.

Hence there are positively curved Riemannian metrics on S2 such
that under the lifting procedure described in Lemma 4.1 they do not
give rise to convex hypersurfaces in R4.

The results of Hofer, Wysocki and Zehnder in [9] treat a lot more
than just the dichotomy “two or infinitely many” closed orbits. Their
results state that the Reeb flow has a closed disk as a surface of section
whose boundary is an unknotted closed orbit P with µ = 3. Moreover,
any other closed orbit has to be linked with P .

If the Finsler metric is reversible, then one can obtain a lower bound
for ` from an upper bound on curvature. Indeed if 0 < K < a, then
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` > 2π/
√
a. For Riemannian metrics this is a classical result (cf. [12,

Theorem 3.4.8]) and for reversible Finsler metrics the proof is quite the
same (cf. [14, Theorem 4]).

Thus Theorem B implies:

Corollary 6.1. A strictly 1/4-pinched positively curved reversible Finsler
metric is dynamically convex.

The corollary seems new even for the case of Riemannian metrics.
Given a Finsler metric F , the reversibility r of F is (cf. [14]):

r := max
(x,v)∈M

{F (x,−v)} ≥ 1.

Clearly r = 1 iff F is reversible. In [14, Theorem 4] Rademacher gives a
lower bound for the length L of the shortest closed geodesic as follows.
If 0 < K ≤ 1, then

L ≥ π(1 + 1/r).

The same bound holds for ` [15] and hence we may also conclude

that a Finsler metric with
(
1− 1

1+r

)2 ≤ K < 1 is dynamically convex.
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