

DYNAMICAL SYSTEMS. EXAMPLES 3.

G.P. Paternain Michaelmas 2004

Comments on and/or corrections to the questions on this sheet are always welcome, and may be e-mailed to me at g.p.paternain@dpmmms.cam.ac.uk. Most of the examples in this sheet are taken from the text that I am following in lectures: *Introduction to dynamical systems*, by M. Brin & G. Stuck.

1. Let T be a measure-preserving transformation of a probability space (X, \mathcal{U}, μ) and let $f \in L^1(X, \mu)$ satisfy $f(T(x)) \leq f(x)$ for a.e. $x \in X$. Show that $f(T(x)) = f(x)$ for a.e. $x \in X$.
2. Let X be a compact metric space, μ a Borel probability measure and $T : X \rightarrow X$ a continuous transformation preserving μ . Suppose that for every pair of continuous functions f and g with zero integrals,

$$\lim_{n \rightarrow \infty} \int_X f(T^n(x)) g(x) d\mu = 0.$$

Prove that T is mixing.

3. Show that an isometry of a compact metric space is not mixing for any invariant Borel probability measure whose support is not a single point.
4. Describe \mathcal{M}_T and \mathcal{M}_T^e for the homeomorphism of the circle $T(x) = x + a \sin 2\pi x \bmod 1$, with $0 < a \leq 1/2\pi$.
5. Describe \mathcal{M}_T and \mathcal{M}_T^e for the homeomorphism of the torus $T(x, y) = (x, x + y) \bmod 1$.
6. Give an example of a map of the circle which is discontinuous at exactly one point and does not have Borel invariant probability measures.
7. Let X and Y be compact metric spaces and $T : X \rightarrow Y$ a continuous map. Show that T induces a natural map $\mathcal{M}(X) \rightarrow \mathcal{M}(Y)$ which is continuous in the weak* topology.
- 8*. Let σ be the two-sided 2-shift. Show that \mathcal{M}_σ^e is dense in \mathcal{M}_σ in the weak* topology.
9. A continuous map $T : X \rightarrow X$ of a compact metric space is said to be *uniquely ergodic* if there is only one invariant Borel probability measure μ . Show that if T is uniquely ergodic, then T is minimal if and only if $\mu(U) > 0$ for all non-empty open sets U .
10. Let G be a compact metrisable topological group. Show that a left translation is minimal if and only if it is uniquely ergodic. Show that R_α is uniquely ergodic if α is irrational.
11. Using the Birkhoff ergodic theorem show that for almost every $x \in [0, 1)$ (with respect to Lebesgue measure) the frequency of 1's in the binary expansion of x is $1/2$.
12. A subset $D \subset \mathbb{Z}$ has *positive upper density* if there are a_n and b_n in \mathbb{Z} such that $b_n - a_n \rightarrow \infty$ and for some $\delta > 0$,

$$\frac{\#(D \cap [a_n, b_n])}{b_n - a_n + 1} > \delta$$

for all $n \in \mathbb{N}$.

Let $D \subset \mathbb{Z}$ have positive upper density and let ω_D be the sequence in $\Sigma_2 = \{0, 1\}^{\mathbb{Z}}$ for which $(\omega_D)_n = 1$ if $n \in D$ and $(\omega_D)_n = 0$ if $n \notin D$. Let X_D be the closure of its orbit under the shift in Σ_2 .

Show that there exists a shift invariant Borel probability measure μ on X_D such that $\mu(\{\omega \in X_D : \omega_0 = 1\}) > 0$. (Hint: consider the Borel probability measure μ_n defined by

$$\int f \, d\mu_n = \frac{1}{b_n - a_n + 1} \sum_{i=a_n}^{b_n} f(\sigma^i(\omega_D))$$

for any continuous function $f \in C(X_D)$. Use compactness of $\mathcal{M}(X_D)$ in the weak* topology.)

13. (Furstenberg's proof of Szemerédi's theorem.) Furstenberg proved the following remarkable extension of the Poincaré recurrence theorem:

Furstenberg's multiple recurrence theorem. *Let T be an automorphism of a probability space (X, \mathcal{U}, μ) . Then for every $n \in \mathbb{N}$ and every $A \in \mathcal{U}$ with $\mu(A) > 0$, there is $k \in \mathbb{N}$ such that*

$$\mu(A \cap T^{-k}(A) \cap T^{-2k}(A) \cap \cdots \cap T^{-nk}(A)) > 0.$$

Combine this theorem with Problem 12 to give a proof of *Szemerédi's theorem*: every subset $D \subset \mathbb{Z}$ of positive upper density contains arbitrarily long arithmetic progressions.