ON THE GROWTH RATE OF CONTRACTIBLE CLOSED
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ABSTRACT. We prove exponential growth rate of contractible closed geodesics for
an arbitrary bumpy metric on manifolds of the form X;# X2 where the fundamental
group of X; has a subgroup of finite index at least 3 and X5 is simply connected
and not a homotopy sphere.

1. INTRODUCTION

Let M be a closed manifold and g a smooth Riemannian metric on M. Given t > 0,
define N,(t) to be the number of geometrically distinct closed geodesics of g with
length < t. Similarly, let N, g(t) be the number of geometrically distinct contractible
closed geodesics of g with length < t.

If g is a bumpy metric, i.e., all the closed geodesics of g are non-degenerate, then
N,(t) is finite for each ¢t and we can ask the following basic question: what is the
behaviour of N,(t) as ¢ tends to infinity? Similarly if ¢ is a 0-bumpy metric, i.e., all
the contractible closed geodesics of g are non-degenerate, then N, g(t) is finite for each
t and we can also wonder about its growth.

Let A(M) be the space of piecewise differentiable closed curves ¢ : R/Z — M,
endowed with the compact-open topology.

Proposition A. Let M be a closed manifold and let X C M be a simply connected
submanifold, possibly with boundary. Consider the inclusion map ¢ : X — M and
let R; be the rank of the map induced in the loop space homology for some field of
coefficients k,, p prime or zero. Then, for any 0-bumpy metric g on M there exist
constants a = a(g) > 0 and = B(g) > 0 such that

Ng(t) >« mox R;

for all t sufficiently large.

This proposition is a generalization of a theorem of M. Gromov [11], later improved
by W. Ballmann and W. Ziller [6], who proved the proposition when M is simply
connected and X = M (we remark that in Gromov’s theorem it is essential to assume
that M is simply connected). In fact, the methods in [22] show that the proposition
is still true if we replace X by an arbitrary finite simply connected CW-complex K
and ¢ by any continuous map f: K — M.
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The result has the following interesting consequence:

Theorem B. Let M be a closed manifold of dimension n > 3. Suppose that M can
be decomposed as X1#Xs, where w1(X1) has a subgroup of finite index > 3 and X is
simply connected. Then, for any 0-bumpy metric g on M, Ng(t) grows exponentially
with t unless Xo is a homotopy sphere.

The novelty in Theorem B lies in the fact that M is allowed to have any fundamental
group as long as it has subgroups of finite index > 3. Results of this kind, when M
is simply connected were obtained by P. Lambrechts in [18] and in fact, we will rely
quite heavily on his Hochschild homology computations.

We note that there are finitely presented infinite groups without proper subgroups
of finite index. An example is given by the Higman 4-group, see [23]. We do not
know if Theorem B is still true for such groups.

A celebrated theorem of D. Gromoll and W. Meyer [10] asserts that any Riemannian
metric on a closed simply connected manifold M has infinitely many geometrically
distinct closed geodesics if the Betti numbers of A(M) are unbounded for some field of
coefficients. Their methods combined with our proof of Theorem B yield the existence
of infinitely many geometrically distinct contractible closed geodesics for any metric
on a manifold as in Theorem B. We do not know if the theorem is still true if we drop
the bumpy condition and we just assume NV, g(t) finite for all t.

There are several papers establishing lower bounds for the growth of N, (¢) in the
presence of fundamental group [4, 5, 7, 8, 15]. These bounds are not exponential (e.g.
t/logt) and do not give information about contractible closed geodesics, but they do
hold for any Riemannian metric.

The present note is a spin-off of our investigations on the topological entropy h,,(g)
of the geodesic flow [20, 21]. Except in the case of surfaces, there is basically no rela-
tionship between positivity of hy,(¢) and exponential growth for N,(¢). M. Herman
gave in [14] an example of a minimal real analytic diffeomorphism on a closed 4-
manifold with positive topological entropy. However, if the geodesic flow of g has a
horseshoe, then the number of hyperbolic closed geodesics of g grows exponentially.
It has been conjectured that generically in the C* topology, 2 < k < oo, the geodesic
flow of g has a horseshoe, but this has only been proved for surfaces [9, 17].
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2. A BRIEF REVIEW OF MORSE THEORY OF THE LOOP SPACE

Let A = A(M) be the space of piecewise differentiable closed curves ¢ : St =
R/Z — M, endowed with the compact-open topology, i.e. the topology induced by
the metric p(c, ) = maxyes1 d(c(t), d(t)). The energy functional £ : A — R is defined
by E(c) = %f(]l(c'(t),c'(t)} dt. The critical points of E are the closed geodesics and
the point curves. If £(c) denotes the length of ¢, then the Cauchy-Schwarz inequality
implies that £(c)? < 2 E(c) with equality if and only if ¢ is parametrized proportional
to arc length.
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There is a natural action of S! on A. Given s € S* and ¢ € A, we can define sc by
sc(t) == c(t 4+ s). If ¢ does not reduce to a point, then the isotropy group of ¢ is a
finite subgroup of S' isomorphic to Z; for some & > 1. In this case, k is called the
multiplicity of ¢ and we can write ¢ = d*, where d*(t) = d(kt). The curve c is called
the k-th iterate of d.

If ¢ is a closed geodesic, then the entire orbit of ¢ under the Sl-action is a set of
critical points of E. A closed geodesic ¢ is said to be non-degenerate if the orbit of ¢ is
a non-degenerate critical submanifold of A. Equivalently, ¢ is non-degenerate if and
only if there is no periodic Jacobi field along ¢ orthogonal to ¢. In more dynamical
terms, ¢ is non-degenerate if and only if the linearized Poincaré map of the orbit of
the geodesic flow corresponding to ¢ does not have 1 as an eigenvalue.

A metric is said to be bumpy (resp. 0-bumpy) if all closed (resp. contractible)
geodesics are non-degenerate. The bumpy metric theorem asserts that the set of C”
bumpy metrics is a residual subset of the set of all C" metrics endowed with the C”
topology for all 2 < r < co. The bumpy metric theorem is traditionally attributed to
R. Abraham [1], but see also Anosov [2] and Klingenberg and Takens [16]. Obviously
bumpy implies 0-bumpy.

3. PROOF OF PROPOSITION A

We will need the following version of a result due to M. Gromov [11] for manifolds
with non-empty boundary, see also [12, p. 102], [13, 3, 19]. In all these references
the manifold is assumed to have empty boundary. In the case of the pointed loop
space Q(X) we have written down a proof of the theorem for compact manifolds with
non-empty boundary in [21]. For completeness we will show in the appendix that the
details work as well for the free loop space A(X).

Theorem 3.1. Given a metric g on a simply connected compact manifold X (possibly
with boundary), there exists a constant C' = C(g) > 0 such that any element in
H;(A(X),k,) can be represented by a cycle whose image lies in A (X).

Let us prove now Proposition A. Let Ay C A denote the subspace of contractible
closed loops. If all the contractible closed geodesics are non-degenerate, then given
a > 0, there exist only finitely many such closed geodesics ¢y, ..., ¢, with energy
precisely a. There also exists an € > 0 such that there is no contractible closed
geodesic ¢ with E(c) # a but a —e < E(c) < a+ ¢. It follows from Morse theory
that AJ*® is homotopy equivalent to A3~° with cells ¢;, ¢; attached, where dime; =
dime; — 1 = index of ¢;. It follows from this that (A§, M) is homotopy equivalent to
a relative CW-complex, where the number of k-cells attached to M is equal to the
number of critical circles S! ¢ of F with index of ¢ equal to k or k—1 and 0 < E(c) < a.
Observe that the iterates of a closed geodesic may give rise to different critical circles
of E of index k or k — 1.

Let b;(t) := dim H; (AL, M). It follows from the above that the number of prime
and iterate contractible closed geodesics of index ¢ or ¢ — 1 and length <t is > b;(t).

We will need the following lemma proved in [6] that gives control of the contribution
of a closed geodesic ¢ and its iterates to b;(t). The lemma is not properly stated as
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such in [6], but the statement can be found at the end of the proof of their main
theorem.

Lemma 3.2. There exists a constant ng = ng(g) such that at most ng iterates of a
contractible closed geodesic of length <t can have index i ori— 1 ift/2 <i <t.

From the lemma it follows that NJ(t) > max;/s<i<¢ bi(t)/no. Since N (t) > N (t/2)
we obtain Ny (t) > max;i<; bs(t) /no.
Proposition A is now a consequence of the following lemma:

Lemma 3.3. There ezists a constant C' = C(g) > 0 such that b;(t) > R; forn+1 <
1 < C't.

Proof. First note that H;(A}) = H;(A§, M) for i > n+ 1, so we only need to prove
that b;(Af) > R; for i < C't.

Now take an element e € H;(A(X)). By Theorem 3.1 (we consider X C M with
the induced metric) there exists C' > 0 (depending on g) such that whenever C't > i,
there exists a cycle n € A*(X) such that 7 represents e. Since ¢ preserves energy, ton

is a cycle in A} and the lemma follows.
O

4. PROOF OF THEOREM B

Proof. Let X; be a finite covering of X; of degree k > 3. Consider the covering N
of M = X1#X, given by the connected sum of X; with k copies of X5. Since the
exponential growth rate of closed geodesics is invariant under finite coverings, we only
need to work with N. We now want to find a submanifold of N to play the role of
X in Proposition A. If D is an n-dimensional disc then X := D#3X, appears as a
submanifold of N.

Lemma 4.1. The inclusion map ¢ : X — N induces a map
1t HAA(X), k) = HL(A(N), k)
whose rank grows exponentially for some p.

Proof. There is a map p : M#3X, — 3X, obtained by collapsing the exterior and
the boundary of a disc D C M (which contains the 3 points where the connected
sums are taken) to a point. If j = po it is enough to prove that the rank of the map
induced by j in the free loop space homology grows exponentially.

Clearly, 7 is just the inclusion of D#3X5 in 3Xy = S"#3X,. In particular, the
computations done in [18] apply to this problem. If X5 is not a homotopy sphere,
there is a minimal degree in which its homology is non-trivial for some coefficient
field k,. In 3X, we have then three cohomology classes in this minimal degree which
are independent and whose cup product vanish. These cohomology classes imply the
existence of elements in the corresponding DGA’s which satisfy the hypothesis of [18,
Proposition 9]. Of course, j sends these cohomology classes to corresponding ones
in 3Xo — D. Then one looks at the map induced in Hochschild homology and the
exponential growth of the rank follows.

]
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Theorem B follows directly from the previous lemma and Proposition A.

5. APPENDIX: PROOF OF THEOREM 3.1 WHEN 0X IS NON-EMPTY

Proof. : We will only modify the proof in [21] to show that it works in the case of
the free loop space. Assume that the boundary of X is non-empty. We have a collar
of the boundary diffeomorphic to 0X x [0,2). Let Y be the manifold obtained by
deleting 0X x [0,1) from X. Of course, Y is diffeomorphic to X. Now find a finite
number of convex subsets of X which cover Y. Call them V,, 1 < a < ky. Let T be a
triangulation of Y. For a point p € Y, let F'(p) be the closed cell of lowest dimension
containing p and let O(p) be the union of all closed cells intersecting F'(p). Note that
O(p) is a compact subset of Y. Similarly, for any subset K C Y one can define F'(K)
as the union of F(p) for p € K and O(K) as the union of O(p) for p € K. There is
a positive number § (depending on the covering {V,,} and g) such that, after taking
some barycentric subdivisions, we can take T so that for every subset K of diameter
bounded by &, O(K) is contained in one of the V,’s.

Now we define the open subset Ay of A(UV,) as the set of all paths w in UV, with
w(0) = w(1) so that for all j between 1 and 2*,

O({w(j — 1/2),w(5/2")}) U wlj —1/2%,5/2"]
is contained in one of the V,’s. It is easy to see that A(Y) is contained in the union
of the A,’s.

Let By be the set of sequences py, ..., por of points in Y such that pg = por and for
each j between 1 and 28 O({p;_1,p;}) is contained in one of the V,,’s. Let A} C Ay, be
the set of paths in Ay for which all 2% points w(j/2%) are in Y. Then By is naturally
identified with a subset of A} (an element of By, uniquely determines a broken geodesic
which sends j/2* to p;) and it is actually a deformation retract of A} .

Given a cycle representing a homology class in A(X) it can be represented by
a cycle in A(Y') which is therefore contained in A} for some k. Therefore we can
retract it to By. But By is easily identified with a subset of Y2, Moreover, under
this identification if a point (pi, ..., por) € By, then the whole F(py) X ... X F(pyr) is
contained in By. This implies that T induces a cell decomposition in By. Hence the
1-homology class can be represented by a combination of cells of dimension 7. A cell
in By, is a product of cells in each coordinate. The dimension of such a cell is the sum
of the dimensions of the corresponding cells, of course. If the total dimension is i then
there can be at most ¢ cells of positive dimension. Since X is simply connected there
exists a smooth map f : X — X which is smoothly homotopic to the identity and
which sends the union of the images of all the geodesic segments joining vertices in
the triangulation to a point. The norm of the differential of f is bounded since X is
compact and f induces a map f : A(X) — A(X) which is homotopic to the identity.
Now paths belonging to an i-cell of B, are formed by pieces joining vertices of the
triangulation and at most 2i pieces in which one of the points is not a vertex. Under
the map f the former are sent to a point and the latter to a path of length bounded
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in terms of the norm of the differential of f and the diameter of the V,’s. Therefore,
there exists a constant C'(g) such that the image of the i-skeleton of By, is sent by f
to the subset of paths with energy bounded by C(g) i. The theorem follows.

(]
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