

ANALYSIS I EXAMPLES 2

G.P. Paternain Lent 2011

Comments on and/or corrections to the questions on this sheet are always welcome, and may be e-mailed to me at g.p.paternain@dpmms.cam.ac.uk.

1. Define $f : \mathbb{R} \rightarrow \mathbb{R}$ by $f(x) = x$ if $x \in \mathbb{Q}$ and $f(x) = 1-x$ otherwise. Find $\{a : f \text{ is continuous at } a\}$.
2. Write down the definition of " $f(x) \rightarrow \infty$ as $x \rightarrow \infty$ ". Prove that $f(x) \rightarrow \infty$ as $x \rightarrow \infty$ if, and only if, $f(x_n) \rightarrow \infty$ for every sequence such that $x_n \rightarrow \infty$.
3. Suppose that $f(x) \rightarrow \ell$ as $x \rightarrow a$ and $g(y) \rightarrow k$ as $y \rightarrow \ell$. Must it be true that $g(f(x)) \rightarrow k$ as $x \rightarrow a$?
4. Let $f_n : [0, 1] \rightarrow [0, 1]$ be continuous, $n \in \mathbb{N}$. Let $h_n(x) = \max\{f_1(x), f_2(x), \dots, f_n(x)\}$. Show that h_n is continuous on $[0, 1]$ for each $n \in \mathbb{N}$. Must $h(x) = \sup\{f_n(x) : n \in \mathbb{N}\}$ be continuous?
5. The unit circle in \mathbb{C} is mapped to \mathbb{R} by a map $e^{i\theta} \mapsto f(\theta)$, where $f : [0, 2\pi] \rightarrow \mathbb{R}$ is continuous and $f(0) = f(2\pi)$. Show that there exist two diametrically opposite points that have the same image.
6. Let $f(x) = \sin^2 x + \sin^2(x + \cos^7 x)$. Assuming the familiar features of sin without justification, prove that there exists $k > 0$ such that $f(x) \geq k$ for all $x \in \mathbb{R}$.
7. Suppose that $f : [0, 1] \rightarrow \mathbb{R}$ is continuous, that $f(0) = f(1) = 0$, and that for every $x \in (0, 1)$ there exists $0 < \delta < \min\{x, 1-x\}$ with $f(x) = (f(x-\delta) + f(x+\delta))/2$. Show that $f(x) = 0$ for all x .
8. Let $f : [a, b] \rightarrow \mathbb{R}$ be bounded. Suppose that $f((x+y)/2) \leq (f(x) + f(y))/2$ for all $x, y \in [a, b]$. Prove that f is continuous on (a, b) . Must it be continuous at a and b too?
9. Prove that $2x^5 + 3x^4 + 2x + 16 = 0$ has no real solutions outside $[-2, -1]$ and exactly one inside.
10. Let $f : [a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable on (a, b) . Which of (1)–(4) must be true?
 - (1) If f is increasing then $f'(x) \geq 0$ for all $x \in (a, b)$.
 - (2) If $f'(x) \geq 0$ for all $x \in (a, b)$ then f is increasing.
 - (3) If f is strictly increasing then $f'(x) > 0$ for all $x \in (a, b)$.
 - (4) If $f'(x) > 0$ for all $x \in (a, b)$ then f is strictly increasing.

[*Increasing* means $f(x) \leq f(y)$ if $x < y$, and *strictly increasing* means $f(x) < f(y)$ if $x < y$.]

11. Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be differentiable for all x . Prove that if $f'(x) \rightarrow \ell$ as $x \rightarrow \infty$ then $f(x)/x \rightarrow \ell$. If $f(x)/x \rightarrow \ell$ as $x \rightarrow \infty$, must $f'(x)$ tend to a limit?
12. Let $f(x) = x + 2x^2 \sin(1/x)$ for $x \neq 0$ and $f(0) = 0$. Show that f is differentiable everywhere and that $f'(0) = 1$, but that there is no interval around 0 on which f is increasing.
13. Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be a function which has the intermediate value property: If $f(a) < c < f(b)$, then $f(x) = c$ for some x between a and b . Suppose also that for every rational r , the set S_r of all x with $f(x) = r$ is closed, that is, if x_n is any sequence in S_r with $x_n \rightarrow a$, then $a \in S_r$. Prove that f is continuous.