

A Brief summary of the theory

Gabriel P. Paternain

IB Complex Analysis, Lent 2018

UNIVERSITY OF
CAMBRIDGE

We started assuming knowledge about power series (radius of convergence) from Analysis I and uniform convergence from Analysis II.

Def of holomorphic function \iff Cauchy-Riemann eqns

$$f = u + iv, \quad u_x = v_y, \quad u_y = -v_x.$$

Power series can be differentiated ∞ many times.

New concept: integration along curves.

$$\int_{\gamma} f(z) dz = \int_a^b f(\gamma(t)) \gamma'(t) dt.$$

Cauchy Thm for Δ s: $f : U \rightarrow \mathbb{C}$ holomorphic, $T \subset U$

$$\int_{\partial T} f(z) dz = 0.$$

(Subdivision argument.)

Plus

Antiderivative Thm: $f : U \rightarrow \mathbb{C}$ continuous with

$$\int_{\partial T} f(z) dz = 0$$

for all $T \subset U$ star-domain, then there is F s.t. $F' = f$.

Gives via the the FTC

Convex Cauchy: $f : U \rightarrow \mathbb{C}$ hol in star-domain U , then

$$\int_{\gamma} f(z) dz = 0 \quad \text{for all closed } \gamma.$$

Convex Cauchy applied to $\frac{f(z)-f(w)}{z-w}$ in $D(a, r)$ gave CIF (addendum):

$$f(w) = \frac{1}{2\pi i} \int_{|z-a|=\rho} \frac{f(z)}{z-w} dz, \quad \rho < r, \quad w \in D(a, \rho).$$

\implies

Liouville, Maximum modulus principle, Mean value property, FTA.

\implies Using $\frac{1}{z-w} = \sum \frac{(w-a)^n}{(z-a)^{n+1}}$ we got

Taylor expansion

f is ∞ differentiable

Morera (converse Cauchy)

uniform limit of holomorphic functions is holomorphic

Riemann zeta function: $\zeta(s)$

Principle of isolated zeros \implies Analytic continuation

Topological ideas: Index and homotopy

$$I(\gamma, w) := \frac{\theta(b) - \theta(a)}{2\pi} \in \mathbb{Z},$$

where we write $\gamma(t) = w + r(t)e^{i\theta(t)}$, with θ continuous (γ closed and $w \notin \text{image}(\gamma)$).

Alternative way of writing the index:

$$I(\gamma, w) = \frac{1}{2\pi} \int_{\gamma} \frac{dz}{z - w}.$$

Constant on connected components of $\mathbb{C} \setminus \text{image}(\gamma)$.

Notion of homotopy: continuous deformations of curves.

A theme: "form local to global". This gave Homotopy form of Cauchy thm: $f : U \rightarrow \mathbb{C}$ holomorphic with ϕ and ψ homotopic, then

$$\int_{\phi} f(z) dz = \int_{\psi} f(z) dz.$$

Applying this to $\frac{f(z) - f(w)}{z - w}$ and two concentric circles bounding an annulus we got

The Laurent Series: $f(z) = \sum_{-\infty}^{\infty} c_n(z - a)^n$

\implies

Isolated singularities: removable, poles and essential

$$c_{-1} = \text{Res}_{z=a} f.$$

$f : U \setminus \{z_1, \dots, z_k\} \rightarrow \mathbb{C}$ holomorphic, U simply connected.

Residue theorem:

$$\int_{\gamma} f(z) dz = 2\pi i \sum_j I(\gamma, z_j) \text{Res}_{z=z_j} f.$$

\implies

Computing definite integrals via residues (Jordan's lemma etc)

\implies

Looking at $\frac{f'}{f}$ and $I(f \circ \gamma, 0) = N - P$ we got

Argument principle, local degree, open mapping thm, Rouché.