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2 Vector bundles.

Definition. Let B be a smooth manifold. A manifold E together with a smooth submer-
sion1 π : E → B, onto B, is called a vector bundle of rank k over B if the following
holds:

(i) there is a k-dimensional vector space V , called typical fibre of E, such that for any
point p ∈ B the fibre Ep = π−1(p) of π over p is a vector space isomorphic to V ;

(ii) any point p ∈ B has a neighbourhood U , such that there is a diffeomorphism

π−1(U)
ΦU−−−→ U × V

π

y ypr1

U U

and the diagram commutes, which means that every fibre Ep is mapped to {p} × V .

ΦU is called a local trivialization of E over U and U is a trivializing neighbour-
hood for E.

(iii) ΦU |Ep : Ep → V is an isomorphism of vector spaces.

Some more terminology: B is called the base and E the total space of this vector bundle.

π : E → B is said to be a real or complex vector bundle corresponding to the typical fibre
being a real or complex vector space. Of course, the linear isomorphisms etc. are understood
to be over the respective field R or C. In what follows vector bundles are taken to be real
vector bundles unless stated otherwise.

Definition. Any smooth map s : B → E such that π ◦ s = idB is called a section of E.
If s is only defined over a neighbourhood in B it is called a local section.

Examples. 0. A trivial, or product, bundle E = B × V with π the first projection.
Sections of this bundle are just the smooth maps C∞(B;V ).

1. The tangent bundle TM of a smooth manifold M has already been discussed in
Chapter 1. It is a real vector bundle of rank n = dimM which in general is not trivial.2

The sections of TM are the vector fields. In a similar way, the cotangent bundle T ∗M and,

1A smooth map is called a submersion if its differential is surjective at each point.
2Theorems 1.9 and 1.26 in Chapter 1 imply that TS2n cannot be trivial.
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more generally, the bundle of differential p-forms ΛpT ∗M are real vector bundles of rank(
n
p

)
with sections being the differential 1-forms, respectively p-forms. Exercise: verify that

the vector bundles ΛpT ∗M (1 ≤ p ≤ dimM) will be trivial if TM is so.
2. ‘Tautological vector bundles’ may be defined over projective spaces RP n, CP n (and,

more generally, over the Grassmannians). Let B = CP n say. Then let E be the disjoint
union of complex lines through the origin in Cn+1, with π assigning to a point in p ∈ E
the line ` containing that point, so π(p) = ` ∈ CP n. We shall take a closer look at one
example (Hopf bundle) below and show that the tautological construction indeed gives a
well-defined (and non-trivial) complex vector bundle of rank 1 over CP 1.

Structure group of a vector bundle.

It follows from the definition of a vector bundle E that one can define over the intersection
of two trivializing neighbourhoods Uβ, Uα a composite map

Φβ ◦ Φ−1
α (b, v) = (b, ψβα(b)v),

(b, v) ∈ (Uβ ∩ Uα) × Rk. For every fixed b the above composition is a linear isomorphism
of Rk depending smoothly on b. The maps ψβα : Uβ ∩ Uα → GL(k,R). are called the
transition functions of E.

It is not difficult to see that transition functions ψαβ satisfy the following relations,
called ‘cocycle conditions’

ψαα = idRk ,
ψαβψβα = idRk ,
ψαβψβγψγα = idRk .

 (2.1)

The left-hand side is defined on the intersection Uα ∩ Uβ, for the second of the above
equalities, and on Uα ∩ Uβ ∩ Uγ for the third. (Sometimes the name ‘cocycle condition’
refers to just the last of the equalities (2.1); the first two may be viewed as notation.)

Now it may happen that a vector bundle π : E → B is endowed with a system of trivi-
alizing neighbourhoods Uα covering the base and such that all the corresponding transition
functions ψβα take values in a subgroup G ⊆ GL(k,R), ψβα(b) ∈ G for all b ∈ Uβ ∩ Uα, for
all α, β, where k is the rank of E. Then this latter system {(Uα,Φα)} of local trivializations
over Uα’s is said to define a G-structure on vector bundle E.

Examples. 0. If G consists of just one element (the identity) then E has to be a trivial
bundle E = B × Rk.

1. Let G = GL+(k,R) be the subgroup of matrices with positive determinant. If the
typical fibre Rk is considered as an oriented vector space then the transition functions ψβα
preserve the orientation. The vector bundle E is then said to be orientable.

A basic example arises from a system of coordinate charts giving an orientation of a
manifold M . The transition functions of TM are just the Jacobians and so M is orientable
precisely when its tangent bundle is so.

2. A more interesting situation occurs when G = O(k), the subgroup of all the non-
singular linear maps in GL(k,R) which preserve the Euclidean inner product on Rk. It
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follows that the existence of an O(k) structure on a rank k vector bundle E is equivalent
to a well-defined positive-definite inner product on the fibres Ep. This inner product
is expressed in any trivialization over U ⊆ B as a symmetric positive-definite matrix
depending smoothly on a point in U .

Conversely, one can define a vector bundle with inner product by modifying the defi-
nition on page 20: replace every occurrence of ‘vector space’ by ‘inner product space’ and
(linear) ‘isomorphism’ by (linear) ‘isometry’. This will force all the transition functions to
take value in O(k) (why?).

A variation on the theme: an orientable vector bundle with an inner product is the
same as vector bundle with an SO(k)-structure.

3. Another variant of the above: one can play the same game with rank k complex
vector bundles and consider the U(k)-structures (U(k) ⊂ GL(k,C)). Equivalently, consider
complex vector bundles with Hermitian inner product ‘varying smoothly with the fibre’.
Furthermore, complex vector bundles themselves may be regarded as rank 2k real vector
bundles with a GL(k,C)-structure (the latter is usually called a complex structure on a
vector bundle).

In the examples 2 and 3, if a trivialization Φ is ‘compatible’ with the given O(k)- or
SO(k)-structure (respectively U(k)-structure) {(Uα,Φα)} in the sense that the transition
functions Φα ◦ Φ−1 take values in the orthogonal group (respectively, unitary group) then
Φ is called an orthogonal trivialization (resp. unitary trivialization).

Principal bundles.

Let G be a Lie group. A smooth free right action of G on a manifold P is a smooth
map P × G → P , (p, h) 7→ ph, such that (1) for any p ∈ P , ph = p if and only if h is the
identity element of G; and (2) (ph1)h2 = p(h1h2) for any p ∈ P , any h1, h2 ∈ G. (It follows
that for each h ∈ G, P × {h} → P is a diffeomorphism.)

Definition . A (smooth) principal G-bundle P over B is a smooth submersion
π : P → B onto a manifold B, together with a smooth right free action P ×G→ P , such
that the set of orbits of G in P is identified with B (as a set), P/G = B, and also for any
b ∈ B there exists a neighbourhood U ⊆ B of b and a diffeomorphism ΦU : π−1(U)→ U×G
such that pr1 ◦ΦU = π|π−1(U), i.e. the following diagram is commutative

π−1(U)
ΦU−−−→ U ×G

π

y ypr1

U U

(2.2)

and ΦU commutes with the action of G, i.e. for each h ∈ G, ΦU(ph) = (b, gh), where
(b, g) = ΦU(p), π(p) = b ∈ U .

A local section of the principal bundle P is a smooth map s : U → P defined on a
neighbourhood U ⊂ B and such that π ◦ s = idU .
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For a pair of overlapping trivializing neighbourhoods Uα, Uβ one has

Φβ ◦ Φ−1
α (b, g) = (b, ψβα(b, g)),

where for each b ∈ Uα ∩Uβ, the ψβα(b, ·) is a map G→ G. Then, for each b in the domain
of ψβα, we must have ψβα(b, g)h = ψβα(b, gh) for all g, h ∈ G, in view of (2.2). It follows (by
taking g to be the unit element 1G) that the map ψβα(b, ·) is just the multiplication on the
left by ψβα(b, 1G) ∈ G. It is sensible to slightly simplify the notation and write g 7→ ψβα(b)g
for this left multiplication. We find that, just like vector bundles, the principal G-bundles
have transition functions ψβα : Uα ∩ Uβ → G between local trivializations. In particular,
ψβα for a principal bundle satisfy the same cocycle conditions (2.1).

A principal G-bundle over B may be obtained from a system of ψβα, corresponding
to an open cover of B and satisfying (2.1), — via the following ‘Steenrod construction’.
For each trivializing neighbourhood Uα ⊂ B for E consider Uα×G. Define an equivalence
relation between elements (b, h) ∈ Uα×G, (b′, h′) ∈ Uβ×G, so that (b, h) ∼ (b′, h′) precisely
if b′ = b and h′ = ψβα(b)h. Now let

P = tα
(
Uα ×G

)
/ ∼ (2.3)

the disjoint union of all Uα ×G’s glued together according to the equivalence relation.

Theorem 2.4. P defined by (2.3) is a principal G-bundle.

Remark . The ψβα’s can be taken from some vector bundle E over B, then P will be
‘constructed from E’. The construction can be reversed, so as to start from a principal
G-bundle P over a base manifold B and obtain the vector bundle E over B. Then E will
be automatically given a G-structure.

In either case the data of transition functions is the same for the principal G-bundle P
and the vector bundle P . The difference is in the action of the structure group G on the
typical fibre. G acts on itself by left translations in the case of the principal bundle and G
acts as a subgroup of GL(k,R) on Rk in the case of vector bundle E. 3 The vector bundle
E is then said to be associated to P via the action of G on Rk.

Example: Hopf bundle.

Hopf bundle may be defined as the ‘tautological’ (see page 21) rank 1 complex vector
bundle over CP 1. The total space E of Hopf bundle, as a set, is the disjoint union of all
(complex) lines passing through the origin in C2. Recall that every such line is the fibre
over the corresponding point in CP 1. We shall verify that the Hopf bundle is well-defined
by working its transition functions, so that we can appeal to Theorem 2.4.

For a covering system of trivializing neighbourhoods in CP 1, we can choose the coor-
dinate patches of the smooth structure of CP 1, defined in Chapter 1. Thus

CP 1 = U1 ∪ U2, Ui = {z1 : z2 ∈ CP 1, zi 6= 0}, i = 1, 2,

3G need not be explicitly a subgroup of GL(k,R), it suffices to have a representation of G on Rk.
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with the local complex coordinate z = z2/z1 on U1, and ζ = z1/z2 on U2, and ζ = 1/z when
z 6= 0. We shall denote points in the total space E as (wz1, wz2), with |z1|2 + |z2|2 6= 0,
w ∈ C, so as to present each point as a vector with coordinate w relative to a basis (z1, z2)
of a fibre. (This clarification is needed in the case when (wz1, wz2) = (0, 0) ∈ C2.) An
‘obvious’ local trivialization over Ui may be given, say over U1, by (w,wz) ∈ π1(U1) →
(1 : z, w) ∈ U1 × C, —but in fact this is not a very good choice. Instead we define

Φ1 : (w,wz) ∈ π−1(U1) → (1 : z, w
√

1 + |z|2) ∈ U1 × C,

Φ2 : (wζ,w) ∈ π−1(U2) → (ζ : 1, w
√

1 + |ζ|2) ∈ U2 × C.

Calculating the inverse, we find

Φ−1
1 (1 : z, w) =

(
w√

1 + |z|2
,

wz√
1 + |z|2

)
and so

Φ2 ◦ Φ−1
1 (1 : z, w) = Φ2

(
w√

1 + |z|2
,

wz√
1 + |z|2

)
= Φ2

(
|ζ|w

ζ
√
|ζ|2 + 1

ζ,
|ζ|w

ζ
√
|ζ|2 + 1

)
=
(
ζ : 1,

|ζ|
ζ
w
)

=
(
1 : z,

z

|z|
w
)

giving the transition function τ2,1(1 : z) = (z/|z|), for 1 : z ∈ U1 ∩ U2 (i.e. z 6= 0). The
τ2,1 takes values in the unitary group U(1) = S1 = {z ∈ C : |z| = 1}, a subgroup of
GL(1,C) = C \ {0} (it is for this reason the square root factor was useful in the local
trivialization). Theorem 2.4 now ensures that Hopf bundle E is a well-defined vector
bundle, moreover a vector bundle with a U(1)-structure. Hence there is a invariantly
defined notion of length of any vector in any fibre of E. The length of (wz1, wz2) may
be calculated in the local trivializations Φ1 or Φ2 by taking the modulus of the second
component of Φi (in C). For each i = 1, 2, this coincides with the familiar Euclidean
length

√
|wz1|2 + |wz2|2 of (wz1, wz2) in C2.

We can now use τ2,1 to construct the principal S1-bundle (i.e. U(1)-bundle) P → CP 1

associated to Hopf vector bundle E, cf. Theorem 2.4. If U(1) is identified with a unit
circle S1 ⊂ C , any fibre of P may be considered as the unit circle in the respective
fibre of E. Thus P is identified as the space of all vectors in E of length 1, so P =
{(w1, w2) ∈ C2 | w1w̄1+w2w̄2 =1} is the 3-dimensional sphere and the bundle projection is

π : (w1, w2) ∈ S3 → w1 : w2 ∈ S2, π−1(p) ∼= S1,

where we used the diffeomorphism S2 ∼= CP 1 for the target space. (Examples 1, Q3(ii).)
This principal S1-bundle S3 over S2 is also called Hopf bundle. It is certainly not trivial,
as S3 is not diffeomorphic to S2 × S1. (The latter claim is not difficult to verify, e.g.
by showing that the de Rham cohomology H1(S3) is trivial, whereas H1(S2 × S1) is not.
Cf. Examples 2 Q5.)
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Pulling back vector bundles and principal bundles

Let P be a principal bundle over a base manifold B and E an associated vector bundle
over B. Consider a smooth map f : M → B.

The pull-back of a vector (respectively, principal) bundle is a bundle f ∗E (f ∗P )
over M such that there is a commutative diagram (vertical arrows are the bundle projec-
tions)

f ∗E
F−−−→ Ey y

M
f−−−→ B,

(2.5)

such that the restriction of F to each fibre (f ∗E)p over p ∈ M is an isomorphism onto a
fibre Ef(p).

A very basic special case of the above is when f maps M to a point in B; then the pull-
back f ∗E (and f ∗P ) is necessarily a trivial bundle (exercise: write out a trivialization map
f ∗E → M × (typical fibre)). As a slight generalization of this example consider the case
when M = B×X, for some manifold X with f : B×X → B the first projection. Then f ∗E
(resp. f ∗P ) may be thought of as bundles ‘trivial in the X direction’, e.g. f ∗E ∼= E ×X,
with the projection (e, x) ∈ E ×X → (π(e), x) ∈ B ×X.

The construction may be extended to a general vector bundle, by working in local
trivialization. Then one has to ensure that the pull-back must be well-defined independent
of the choice of local trivialization. To this end, let {ψβα} be a system of transition
functions for E. Define

f ∗ψβα = ψβα ◦ f

and f ∗ψβα is a system of functions on M satisfying the cocycle condition (2.1). Therefore,
by Theorem 2.4 and a remark following this theorem, the f ∗ψβα are transition functions
for a well-defined vector bundle and principal bundle over M . Steenrod construction shows
that these are indeed the pull-back bundles f ∗E and f ∗P as required by (2.5).
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2.1 Bundle morphisms and automorphisms.

Let (E,B, π) and (E ′, B′, π′) be two vector bundles, and f : B → B′ a smooth map.

Definition. A smooth map F : E → E ′ is a vector bundle morphism covering f if
for any p ∈ B F restricts to a linear map between the fibres F : Ep → E ′f(p) for any p ∈ B,
so that

E
F−−−→ E ′

π

y π′

y
B

f−−−→ B′

is a commutative diagram, π′ ◦ F = f ◦ π.

More explicitly, suppose that the local trivializations Φ : π−1(U) → U × V , Φ′ :
π′−1(U ′)→ U ′×V ′ are such that f(U) ⊆ U ′. Then the restriction FU = Φ′ ◦F |π−1(U) ◦Φ−1

is expressed as
FU : (b, v) 7→ (f(b), h(b)v), (2.6)

for some smooth h : U → L(V, V ′) family of linear maps between vector spaces V ,V ′

depending on a point in the base manifold. In particular, it is easily checked that a
composition of bundle morphisms E → E ′, E ′ → E ′′ is a bundle morphism E → E ′′.

Examples. 1. If ϕ : M → N is a smooth map between manifolds M ,N then its differential
dϕ : TM → TN is a morphism of tangent bundles.

2. Recall the pull-back of a given vector bundle (E,B, π) via a smooth map f : M → B.
For every local trivialization E|U of E, the corresponding local trivialization of the pull-
back bundle is given by f ∗E|f−1(U) → (f−1(U))×V , where V is the typical fibre of E (hence
also of f ∗E). Thus the pull-back construction gives a well-defined map F : f ∗E → E which
restricts to a linear isomorphism between any pair of fibres (f ∗E)p and Ef(p), p ∈M . (This
isomorphism becomes just the identity map of the typical fibre V in the indicated local
trivializations.) It follows that F is a bundle morphism covering the given map f : M → B.

3. Important special case of bundle morphisms occurs when f is a diffeomorphism of B
onto B′. A morphism F : E → E ′ between two vector bundles over B covering f is called
an isomorphism of vector bundles if F restricts to a linear isomorphism Ep → Ef(p),
for every fibre of E.

An isomorphism from a vector bundle E to itself covering the identity map idB is
called a bundle automorphism of E. The set AutE of all the bundle automorphisms
of E forms a group (by composition of maps). If E = B × V is a trivial bundle then any
automorphism of E is defined by a smooth maps B → GL(V ), so AutE = C∞(B,GL(V )).

If a vector bundle E has a G-structure (G ⊆ GL(V )) then it is natural to consider the
group of G-bundle automorphisms of E, denoted AutGE and defined as follows. Recall
that a G-structure means that there is a system of local trivializations over neighbourhoods
covering the base B and with the transition functions of E taking values inG. Now a bundle
automorphism F ∈ AutE of E → B is determined in any local trivialization over open
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U ⊆ B by a smooth map h : U → GL(V ), as in (2.6). Call F a G-bundle automorphism
if for any of the local trivializations defining the G-structure this map h takes values in the
subgroup G. It follows that AutGE is a subgroup of AutE. (In the case of trivial bundles
the latter statement becomes C∞(B,G) ⊆ C∞(B,GL(V )).)

Remark . The group AutGE for the vector bundle E with G-structure has the same sig-
nificance as the group of all self-diffeomorphisms of M for a smooth manifold M or the
group of all linear isometries of an inner product vector space. I.e. AutGE is the ‘group
of natural symmetries of E’ and properties any objects one considers on the vector bundle
are geometrically meaningful if they are preserved by this symmetry group.

One more remark on bundle automorphisms. A map hα giving the local expression over
Uα ⊆ B for a bundle automorphism may be interchangeably viewed as a transformation
from one system of local trivializations to another. Any given local trivialization, say Φα

over Uα, is replaced by Φ′α. We have Φ′α(e) = hα(π(e))Φα(e), e ∈ E. Respectively, the
transition functions are replaced according to ψ′βα = hβψβαh

−1
α (point-wise group multi-

plication in the right-hand side). This is quite analogous to the setting of linear algebra
where one can either rotate some vector space with respect to a fixed basis or rotate the
basis of a fixed vector space—both operations being expressed as a non-singular matrix.

In Mathematical Physics (and now also in some areas of Differential Geometry) the
group of G-bundle automorphisms is also known as the group of gauge transformations4,
sometimes denoted G.

4...and informally the ‘group of gauge transformations’ is often abbreviated as the ‘gauge group’ of E,
although the ‘gauge group’ is really a different object! (It is the structure group G of vector bundle.) Alas,
there is a danger of confusion.
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2.2 Connections.

Sections of a vector bundle generalize vector-valued functions on open domains in Rn. Is
there a suitable version of derivative for sections, corresponding to the differential in multi-
variate calculus? In order to propose such a derivative, it is necessary at least to understand
which sections are to have zero derivative, corresponding to the constant functions on Rn.
(Note that a section which is expressed as a constant in one local trivialization need not
be constant in another.)

Vertical and horizontal subspaces.

Consider a vector bundle π : E → B with typical fibre Rm and dimB = n. Let U ⊆ B be
a coordinate neighbourhood in B and also a trivializing neighbourhood for E. Write xk,
k = 1, . . . , n for the coordinates on U and aj, j = 1, . . . ,m for the standard coordinates
on Rm. Then with the help of local trivialization the tangent space TpE for any point p,
such that π(p) ∈ U , has a basis { ∂

∂xk
, ∂
∂aj
}. The kernel of the differential (dπ)p : TpE → TbB,

b = π(p), is precisely the tangent space to the fibre Eb ⊂ E, spanned by { ∂
∂aj
}.

Definition. The vector space Ker (dπ)p is called the vertical subspace of TpE, denoted
TvpE. A subspace Sp of TpE is called a horizontal subspace if Sp ∩ TvpE = {0} and
Sp ⊕ TvpE = TpE.

Thus any horizontal subspace at p is isomorphic to the quotient TpE/TvpE and has
the dimension dim(TpE) − dim(TvpE) = dimB. Notice that, unlike the vertical tangent
space, a horizontal space can be chosen in many different ways (e.g. because there are
many choices of local trivialization near a given point in B).

It is convenient to specify a choice of a horizontal subspace at every point of E as the
kernel of a system of differential 1-forms on E, using the following

Fact from linear algebra: if θ1, . . . , θm ∈ (Rn+m)∗ are linear functionals then one
will have dim(∩mi=1Ker θi) = n if and only if θ1, . . . , θm are linearly independent
in (Rn+m)∗.

Now let θ1
p, . . . , θ

m
p be linearly independent ‘covectors’ in T ∗pE, p ∈ π−1(U), and define

Sp := {v ∈ TpE| θip(v) = 0, i = 1, . . . ,m}.

We can write, using local coordinates on U ,

θip = f ikdx
k + gijda

j, i = 1, . . . ,m, f ik, g
i
j ∈ R. (2.7)

and any tangent vector in TpE as v = Bk( ∂
∂xk

)p + Ci( ∂
∂ai

)p, B
k, Ci ∈ R. The θjp cannot all

vanish on a vertical vector, i.e. on a vector having Bk = 0 for all k. That is,

if gijC
j = 0 for all i = 1, . . . ,m then Ci = 0 for all i = 1, . . . ,m.
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Therefore the m × m matrix g = (gij) must be invertible. Denote the inverse matrix by

c = g−1, c = (cil). Replace θi by θ̃i = cilθ
l = dai + eikdx

k, this does not change the space Sp.
The above arrangement can be made for every p ∈ π−1(U), with f ik(p) and gij(p)

in (2.7) becoming functions of p. Call a map p 7→ Sp a field of horizontal subspaces if
the functions f ik(p) and gij(p) are smooth. To summarize,

Proposition 2.8. Let S = Sp, p ∈ E, be an arbitrary smooth field of horizontal subspaces
in TE. Let xk, aj be local coordinates on π−1(U) arising, as above, from some local trivial-
ization of E over a coordinate neighbourhood U . Then Sp is expressed as Sp = ∩mj=1Ker θjp,
where

θj = daj + ejk(x, a)dxk, (2.9)

for some smooth functions ejk(x, a). These ejk(x, a) are uniquely determined by a local
trivialization.

Definition. A field of horizontal subspaces Sp ⊂ TpE is called a connection on E if in
every local trivialization it can be written as Sp = Ker (θ1

p, . . . , θ
m
p ) as in (2.9), such that

the functions eik(p) = eik(x, a) are linear in the fibre variables,

eik(x, a) = Γijk(x)aj. (2.10a)

and so

θip = dai + Γijk(x)ajdxk, (2.10b)

where Γijk : U ⊂ B → R are smooth functions called the coefficients of connection Sp
in a given local trivialization.

As we shall see below, the linearity condition in ai ensures that the horizontal sections
(which are to become the analogues of constant vector-functions) form a linear subspace of
the vector space of all sections of E. (A very reasonable thing to ask for.)

I will sometimes use an abbreviated notation

θip = dai + Aija
j, where Aij = Γijkdx

k,

So Proposition 2.8 identifies a connection with a system of matrices A = (Aij) of differential
1-forms, assigned to trivializing neighbourhoods U ⊂ B.

The transformation law for connections.

Now consider another coordinate patch U ′ ⊂ X, U ′ = {(xk′)} and a local trivialization
Φ′ : π−1(U ′)→ U ′ × Rm with xk

′
, ai
′

the coordinates on U ′ × Rm.

Notation: throughout this subsection, the apostrophe ′ will refer to the local trivialization
of E over U ′, whereas the same notation without ′ refers to similar objects in the local
trivialization of E over U . In particular, the transition (matrix-valued) functions from U
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to U ′ are written as ψi
′
i and from U ′ to U as ψii′ , thus the matrix (ψii′) is inverse to (ψi

′
i ).

Likewise, (∂xk/∂xk
′
) denotes the inverse matrix to (∂xk

′
/∂xk).

Recall that on U ′ ∩ U we have

xk
′
= xk

′
(x), ai

′
= ψi

′

i (x)ai. (2.11)

Then

dxk
′
=
∂xk

′

∂xk
dxk, dai

′
= dψi

′

i a
i + ψi

′

i da
i

=
∂ψi

′
i

∂xk
aidxk + ψi

′

i da
i,

so

θi
′
= dai

′
+ Γi

′

j′k′a
j′dxk

′
= dψi

′

i a
i + ψi

′

i da
i +

∂xk
′

∂xk
Γi
′

j′k′a
j′dxk,

and

ψii′θ
i′ = dai + (ψii′ ·

∂ψi
′
j

∂xk
+ ψii′ ·

∂xk
′

∂xk
· Γi′j′k′ · ψ

j′

j )ajdxk.

But then ψii′θ
i′ = θi and we find, by comparing with (2.10b), that

Γijk = Γi
′

j′k′ψ
i
i′ψ

j′

j

∂xk
′

∂xk
+ ψii′

∂ψi
′
j

∂xk
(2.12a)

and, using Aij = Γijkdx
k,

Ai
′

j′ = ψi
′

i A
i
jψ

j
j′ + ψi

′

i dψ
i
j′ , (2.12b)

Writing AΦ and AΦ′ for the matrix-valued 1-forms expressing the connection A in the local
trivializations respectively Φ and Φ′ and abbreviating (2.11) to Φ′ = ψΦ for the transition
function ψ we obtain from the above that

AψΦ = ψAΦψ−1 + ψdψ−1 = ψAΦψ−1 − (dψ)ψ−1. (2.12c)

The above calculations prove.

Theorem 2.13. Any system of functions Γijk, i, j = 1, . . . ,m, k = 1, . . . , n attached to the
local trivializations and satisfying the transformation law (2.12) defines on E a connection
A, whose coefficients are Γijk.

Remark . Suppose that we fix a local trivialization Φ and a connection A on E and regard
ψ as a bundle automorphism of E, ψ ∈ AutE. With his shift of view, the formula (2.12c)
expresses the action of the group AutE on the space of connections on E. (Cf. the remark
on bundle automorphisms and linear algebra, page 27.)

Before considering the third view on connections we need a rigorous and systematic
way to consider ‘vectors and matrices of differential forms’.
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The endomorphism bundle EndE. Differential forms with values in vector
bundles.

Let (E,B, π) be a vector bundle with typical fibre V and transition functions ψβα. If G
is a linear map V → V , or endomorphism of V , G ∈ EndV , in a trivialization labelled
by α, then the same endomorphism in trivialization β will be given by ψβαGψαβ (recall
that ψαβ = ψ−1

βα).
This may be understood in the sense that the structure group of V acts linearly on

EndV . Exploiting, once again, the idea of Theorem 2.4 and the accompanying remarks
one can construct from E a new vector bundle EndE, with the same structure group as
for E and with a typical fibre EndV . This is called the endomorphism bundle of a
vector bundle E and denoted EndE.

One can further extend the above construction and define over B the vector bundle
whose fibres are linear maps TbB → Eb, b ∈ B or, more generally, the antisymmetric
multilinear maps TbB × . . . × TbB → Eb on r-tuples of tangent vectors. (So the typical
fibre of the corresponding bundle is the tensor product Λr(Rn)∗ ⊗ V i.e. the space of
antisymmetric multilinear maps (Rn)r → V .) The sections of these bundles are called
differential 1-forms (respectively r-forms) with values in E and denoted Ωr

B(E). In any
local trivialization, an element of Ωr

B(E) may be written as a vector whose entries are
differential r-forms. (The ‘usual’ differential forms correspond in this picture to the case
when V = R and E = B × R.)

In a similar manner, one introduces the differential r-forms Ωr
B(EndE) with values in

the vector bundle EndE. These forms are given in a local trivialization as m×m matrices
whose entries are the usual differential r-forms. The operations of products of two matrices,
or of a matrix and a vector, extend to Ωr

B(E) and Ωr
B(EndE), in the obvious way, using

wedge product between the entries.
Now from the examination of the transformation law (2.12) we find that although a

connection is expressed by a differential form in a local trivialization, a connection is not
in general a well-defined differential form. The difference between two connections
however is a well-defined ‘matrix of 1-forms’, more precisely an element in Ω1

B(EndE).
Thus the space of all connections on a given vector bundle E is naturally an affine space.

Recall that an affine space of points and has a vector space assigned to it and the operation
of ‘adding a vector to a point to obtain another point’ (with certain ‘usual’ properties).
The latter vector space and affine space may be identified, but not canonically—one needs
to choose where to map the zero vector. The vector space assigned to the affine space of
connections on E is Ω1

B(EndE).

A remark on principal bundles

In the case of a principal G-bundle π : P → B, with G ⊆ GL(m,R) a subgroup, the
definitions of vertical and horizontal subspaces TvqP and Sq of TqP , like for the vector
bundles above, still make sense with E now replaced by P . A connection on this principal
bundle may in fact be realized as a matrix-valued differential 1-form, θ say,—though the
entries of θ will be 1-forms on the total space P , rather than on the base. More precisely,
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θ will determine a connection on P if and only if θ is (1) horizontal and (2) G-equivariant
with respect to the smooth free right action on P .

We may determine a choice of a field of horizontal subspaces by using the kernels of local
matrices of 1-forms θp = (θij)p defined around each p ∈ P , where (θij)p ∈ Ω1(π−1(U)) for
i, j = 1, . . . ,m and U ⊂ B a trivializing neighbourhood (and a coordinate neighbourhood)
U ⊂ B. Denote by cij the ‘obvious’ coordinates on the space Matr(m,R) and require that
(θij)p = dcij + Γisk(x)csjdx

k for some functions Γisk ∈ C∞(U) satisfying the transformation
law (2.12). In a more abbreviated notation, θ = dC+AC, where C = (cij) and A = (Aij) =
(Γijkdx

k). One can verify, noting (2.12) and C ′ = ψC (cf. (2.11) and page 23), that the
forms C−1θ = C−1dC + C−1AC agree on the intersections π−1(U) ∩ π−1(U ′) and patch
together to define a global 1-form θ on P . Cf. Sheet 3 Q8.

Note the construction of θ does not extend to the vector bundles.

Covariant derivatives

Definition . A covariant derivative on a vector bundle E is a R-linear operator
∇E : Γ(E)→ Γ(T ∗B ⊗ E) satisfying a ‘Leibniz rule’

∇E(fs) = df ⊗ s+ f∇Es (2.14)

for any s ∈ Γ(E) and function f ∈ C∞(B).

Here I used Γ(·) to denote the space of sections of a vector bundle. Thus Γ(E) = Ω0
B(E)

and Γ(T ∗B ⊗ E) = Ω1
B(E).

Example. Consider a connection A and put ∇E = dA defined in a local trivialization by

dAs = ds+ As, s ∈ Γ(E).

More explicitly, one can write s = (s1, . . . , sm) with the help of a local trivialization, where
sj are smooth functions on the trivializing neighbourhood, and then

dA(s1, . . . , sm) =
(
(
∂s1

∂xk
+ Γ1

jks
j)dxk, . . . , (

∂sm

∂xk
+ Γmjks

j)dxk
)
.

The operator dA is well-defined as making a transition to another trivialization we have
s = ψs′ and A = ψA′ψ−1 − (dψ)ψ−1, which yields the correct transformation law for
dAs = ds+ As = d(ψs′) + (ψA′ψ−1 − (dψ)ψ−1)s′ = ψ(ds′ + A′s′) = ψ(dAs)

′.

Theorem 2.15. Any covariant derivative ∇E arises as dA from some connection A.

Proof (gist). Firstly, any covariant derivative ∇E is a local operation, which means that
is s1, s2 are two sections which are equal over an open neighbourhood U of b ∈ B then
(∇Es1)|b = (∇Es2)|b. Indeed, let U0 be a smaller neighbourhood of b with the closure
U0 ⊂ U and consider a cut-off function α ∈ C∞(B), so that 0 ≤ α ≤ 1, α|U0 = 1, α|B\U = 0.
Then 0 = d(α(s1 − s2)) = (s1 − s2)⊗ dα + α∇E(s1 − s2), whence (∇Es1)|b = (∇Es2)|b as
required. So, it suffices to consider ∇E in some local trivialization of E.
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The proof now simply produces the coefficients Γijk of the desired A in an arbitrary
local trivialization of E, over U say. Any local section of E defined over U may be written,
with respect to the local trivialization, as a vector valued function U → Rm (m being
the rank of E). Let ej, j = 1, . . .m denote the sections corresponding in this way to the
constant vector-valued functions on U equal to the j-th standard basis vector of Rm. Then
the coefficients of the connection A are (uniquely) determined by the formula

Γijk =
(
(∇Eej)(

∂

∂xk
)
)i
, (2.16)

where ∇E(ej) is a vector of differential 1-forms which takes the argument a vector field. We
used a local coordinate vector field ∂

∂xk
(which is well-defined provided that a trivializing

neighbourhood U for E is also a coordinate neighbourhood for B) and obtained a local
section of E, expressed as a smooth map U → V . Then Γijk ∈ C∞(U) is the i-th component
of this map in the basis ej of V .

It follows, from the R-linearity and Leibniz rule for ∇E, that for an arbitrary local
section we must have

∇Es = ∇E(sjej) = (dsi + sjΓijkdx
k)ei = dAs

where as usual A = (Aij) = (Γijkdx
k), so we recover the dA defined above. It remains to ver-

ify that Γijk’s actually transform according to (2.12) in any change of local trivialization, so
we get a well-defined connection. The latter calculation is straightforward (and practically
equivalent to verifying that dA is well-defined independent of local trivialization.)

The definition of covariant derivative further extends to differential forms with values
in E by requiring the Leibniz rule, as follows

dA(σ ∧ ω) = (dAσ) ∧ ω + (−1)qσ ∧ (dω), σ ∈ Ωq
B(E), ω ∈ Ωr(B),

with ∧ above extended in an obvious way to multiply vector-valued differential forms and
usual differential forms. It is straightforward to verify, considering local bases of sections
ej and differential forms dxk, that in any local trivialization one has dAσ = dσ + A ∧ σ,
where σ ∈ Ωq

B(E).

Remark (Parallel sections). A section s of E is called parallel, or covariant constant,
if dAs = 0. In a local trivialization over coordinate neighbourhood U the section s is
expressed as s = (s1(x), . . . , sm(x)), x ∈ U and the graph of s is respectively Σ =
{(xk, sj(x)) ∈ U × Rm : x ∈ B}, a submanifold of U × Rm. The tangent spaces to Σ are

spanned by ∂
∂xk

+ ∂sj

∂xk
∂
∂aj

, for k = 1, . . . , n. We find that the 1-forms θis(x) = dai + Γijkdx
ksj,

i = 1, . . . ,m, vanish precisely on the tangent vectors to Σ.
This is just the horizontality condition for a tangent vector to E and we see that

a section s is covariant constant if and only if any tangent vector to the graph of s is
horizontal. Another form of the same statement: s : B → E defines an embedding of B
in E as the graph of s and the tangent space to the submanifold s(B) at p ∈ E is the
horizontal subspace at p (relative to A) if and only if dAs = 0.
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To sum up, a connection on a vector bundle E can be given in three equivalent
ways:

(1) as a (smooth) field of horizontal subspaces in TE depending linearly on the fibre
coordinates, as in (2.10a);
or

(2) as a system of matrix-valued 1-forms Aij (a system of smooth functions Γijk) assigned to
every local trivialization of E and satisfying the transformation rule (2.12) on the overlaps;
or

(3) as a covariant derivative ∇E on the sections of E and, more generally, on the differential
forms with values in E.

2.3 Curvature.

Let A be a connection on vector bundle E and consider the repeated covariant differentia-
tion of an arbitrary section (or r-form) s ∈ Ωr

B(E) (assume r = 0 though). Calculation in
a local trivialization gives

dAdAs = d(ds+As)+A∧(ds+As) = (dA)s−A∧(ds)+A∧(ds)+A∧(As) = (dA+A∧A)s.

Thus dAdA is a linear algebraic operator, i.e. unlike the differential operator but dA, the
dAdA commutes with the multiplication by smooth functions.

dAdA(fs) = fdAdAs, for any f ∈ C∞(B). (2.17)

Notice that the formula (2.17) does not make explicit reference to any local trivialization.
We find that (dAdAs) at any point b ∈ B is determined by the value s(b) at that point. It
follows that the operator dAdA is a multiplication by an endomorphism-valued differential
2-form. (This 2-form can be recovered explicitly in coordinates similarly to (2.16), using
a basis ei say of local sections and a basis of differential 1-forms dxk in local coordinates
on B.)

Definition. The form

F (A) = dA+ A ∧ A ∈ Ω2(B; EndE).

is called the curvature form of a connection A.

Definition. A connection A is said to be flat is its curvature form vanishes F (A) = 0.

Example. Consider a trivial bundle B × Rm, so the space of sections is just the vector-
functions C∞(B;Rm). Then exterior derivative applied to each component of a vector-
function is a well-defined linear operator satisfying Leibniz rule (2.14). The corresponding
connection is called trivial, or product connection. It is clearly a flat connection.

The converse is only true with an additional topological condition that the base B is
simply-connected; then any flat connection on E induces a (global) trivialization E ∼= B ×
Rm (Examples 3, Q7(ii)) and will be a product connection with respect to this trivialisation.
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Bianchi identity.

Covariant derivative on a vector bundle E with respect to a connection A can be extended,
in a natural way, to any section of B of EndE by requiring the following formula to hold,

(dAB)s = dA(Bs)−B(dAs),

for every section s of E. Notice that this is just a suitable form of Leibniz rule.
The definition further extends to differential forms with values EndE, by setting for

every µ ∈ Ωp(B; EndE) and σ ∈ Ωq(B;E),

(dAµ) ∧ σ = dA(µ ∧ σ)− (−1)pµ ∧ (dAσ).

(Write µ =
∑

k Bkωk and σ =
∑

j sjηj.) It follows that a suitable Leibniz rule also
holds when µ1 ∈ Ωp(B; EndE), µ2 ∈ Ωq(B; EndE) to give dA(µ1 ∧ µ2) = (dAµ1) ∧ µ2 +
(−1)pµ1 ∧ (dAµ2). In the special case of trivial vector bundle, E = B×R and with dA = d
the exterior differentiation, the above formulae recover the familiar results for the usual
differential forms.

In particular, any µ ∈ Ω2(B; EndE) in a local trivialization becomes a matrix of 2-forms
and its covariant derivative is a matrix of 3-forms given by

dAµ = dµ+ A ∧ µ− µ ∧ A.

Now, for any section s of E, we can write dA(dAdA)s = (dAdA)dAs, i.e. dA(F (A)s) =
F (A)dAs and comparing with the Leibniz rule above we obtain.

Proposition 2.18 (Bianchi identity). Every connection A satisfies dAF (A) = 0.

2.4 Orthogonal and unitary connections

Recall that an orthogonal structure on a (real) vector bundle E defined as a family Φα of
local trivializations (covering the base) of this bundle so that all the transition functions ψβα
between these take values in the orthogonal group O(m), m = rkE. These trivializations
Φα are then referred to as orthogonal trivializations. There is a similar concept of a unitary
structure and unitary trivializations of a complex vector bundle.

Given a choice of orthogonal (unitary) structure on E, the standard Euclidean (Hermi-
tian) inner product on the typical fibre Rm (Cm) induces, with the help of the orthogonal
(unitary) local trivializations, a well-defined inner product on the fibres of E. Cf. Examples
3 Q2.

Definition. We say that A is an orthogonal connection relative to an orthogonal structure,
respectively a unitary connection relative to a unitary structure, on a vector bundle E if

d〈s1, s2〉 = 〈dAs1, s2〉+ 〈s1, dAs2〉

for any two sections s1, s2 of E, where 〈·, ·〉 denotes the inner product on the fibres of E.
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Proposition 2.19. An orthogonal connection has skew-symmetric matrix of coefficients
in any orthogonal local trivialization. A unitary connection has skew-Hermitian matrix of
coefficients in any unitary local trivialization.

Proof.

0 = 〈dA(si1ei), s
j
2ej〉+ 〈si1ei, dA(sj2ej)〉 − d〈si1ei, s

j
2ej〉 = (Aij + Aji )s

i
1s
j
2 for any si1, s

j
2,

where ei is the standard basis of Rm or Cm.

Corollary 2.20. The curvature form F (A) of an orthogonal (resp. unitary) connection A
is skew-symmetric (resp. skew-Hermitian) in any orthogonal (unitary) trivialization.

2.5 Existence of connections.

Theorem 2.21. Every vector bundle E → B admits a connection.

Proof. It suffices to show that there exists a well-defined covariant derivative∇E on sections
of E. We shall construct a example of ∇E using a partition of unity.

Let Wα be an open covering of B by trivializing neighbourhoods for E and Φα the
corresponding local trivializations. Then on each restriction E|Wα we may consider a
trivial product connection d(α) defined using Φα. Of course, the expression d(α)s will only
make sense over all of B if a section s ∈ Γ(E) is equal to zero away from Wα. Now consider
a partition of unity ρi subordinate to Wα. The expressions ρis, ρid(i)s make sense over all
of B as we may extend by zero away from Wi. Now define

∇Es :=
∞∑
i=1

d(i)(ρis) =
∞∑
i=1

ρid(i)s, (2.22)

where for the second equality we used Leibniz rule for d(i) and the property
∑∞

i=1 ρi = 1
(so

∑∞
i=1 dρi = 0). The ∇E defined by (2.22) is manifestly linear in s and Leibniz rule for

∇E holds because it does for each d(i).


