Part III: Differential geometry (Michaelmas 2003, 2004, 2014, 2018)

ALEXEI KOVALEV (A.G.Kovalev@dpmms.cam.ac.uk)

3 Riemannian geometry

3.1 Riemannian metrics and the Levi—Civita connection

Let M be a smooth manifold.

Definition. A bilinear symmetric positive-definite form
Gp : TyM xT,M — R

defined for every p € M and smoothly depending on p is called a Riemannian metric
on M.

Positive-definite means that g,(v,v) > 0 for every v # 0, v € T, M. Smoothly depending
on p means that for every pair X,,Y, of C"°-smooth vector fields on M the expression
9p(X,,Y,) defines a C*-smooth function of p € M.

Alternatively, consider a coordinate neighbourhood on M containing p and let a?,
¢t = 1,...,dim M be the local coordinates. Then any two tangent vectors w,v € T,M
may be written as u = u'(3%),, v = v'(3%), and g,(u,v) = g;j(p)u'v’, where the functions
gi;(p) = g(( (ﬁi)p, (%)p) express the coefficients of the metric ¢ in local coordinates. One
often uses the following notation for a metric in local coordinates

g= gijdxidxj.

The bilinear form (metric) g will be smooth if and only if the local coefficients ¢;; = ¢;;(2)
are smooth functions of local coordinates z* on each coordinate neighbourhood.

Example 3.1. Recall (from Chapter 1) that any smooth regularly parameterized surface S
in R3,
r:(u,v) €U CR*— r(u,v) € R’

is a 2-dimensional manifold (more precisely, we assume here that S satisfies all the defining
conditions of an embedded submanifold). The first fundamental form' Fdu?® + 2Fdudv +
Gdv? is a Riemannian metric on S.

The following formulae are proved in multivariate calculus.
e A curve on S may be given as y(t) = r(u(t),v(t)), a <t <b. The length of v is then
computed as fab |v(t)|dt = fab VEU? + 2Fu0 + Go? dt.

e The area of S is fo VEG — F? dudv.

'E = (ry,ry), F = (ry,1y), G = (r,,1,) using the Euclidean inner product

37



38 ALEXEI KOVALEV

Theorem 3.2. Any smooth manifold M can be given a Riemannian metric.

Proof. Indeed, M may be embedded in R™ by Whitney theorem (cf. Q9 Example Sheet 1).
Then the restriction (more precisely, a pull-back) of the Euclidean metric of R™ to M
defines a Riemannian metric on M. ]

Remark. A metric, being a bilinear form on the tangent spaces, can be pulled back via a
smooth map, f say, in just the same way as a differential form. But a pull-back f*g of a
metric g will be a well-defined metric only if f has an injective differential.

Remark . As a Riemannian metric on M is an inner product on the vector bundle T'M,
Theorem 3.2 is also a consequence of Q2 of Example Sheet 3.

Definition. A connection on a manifold M is a connection on its tangent bundle 7M.

Recall that a choice of local coordinates x on M determines a choice of local trivial-

ization of TM (using the basis vector fields 8‘2,~ on coordinate patches). The transition

function ¢ for two trivializations of T'M is given by the Jacobi matrices of the correspond-
ing change of coordinates (%) = ( 88;; ).
Let I, be the coefficients (Christoffel symbols) of a connection on M in local coordi-

nates . For any other choice z' of local coordinates the transition law on the overlap
becomes (cf. Chapter 2, eqn. (2.12a))
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One can see from the above formula that if F;k are the coefficients of a connection on M
then I'}; also are the coefficients of some well-defined connection on M (in general, this
would be a different connection).

The difference T}, = T, — T}, is called the torsion of a connection (T%,). The trans-
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formation law for T7, is T}, = T, 55 55 5or, thus the torsion of a connection is a well-

defined antisymmetric bilinear map sending a pair of vector fields X, Y to a vector field
T(X,)Y)= T]?kaY’“ on M.

Definition. A connection on M is symmetric if its torsion vanishes, i.e. if F;k = sz.

(3.3)

Notation: given a connection (covariant derivative) D : QS,(TM) — QL (T M) and a
smooth vector field X on M, we write Dy for the composition of D and contraction of
1-forms (in QL,(TM)) with X. Thus Dx : Q%,(TM) — Q8,(TM) is a linear differential
operator acting on vector fields on M. In local coordinates, it is expressed as (DxY)" =
X990,V + F;ijX’“.

It is not difficult to see, by comparing with the definition on page 31, that a family
of operators Dy, depending on a vector field X, defines a covariant derivative precisely if
DxY is C*°(M)-linear in X, R-linear in Y and satisfies the Leibniz rule

Dx(hY) = (Xh)Y + hDyY, (3.4)
for each h € C*°(M) and a vector field Y (recall Xh equals the contraction of dh with X).
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Here is a way to define a symmetric connection independent of the local coordinates.
Proposition 3.5. A connection D is symmetric if and only if DxY — Dy X = [X,Y].
The proof is an (easy) straightforward computation.

Theorem 3.6. On any Riemannian manifold (M, g) there exists a unique connection D
such that
(1) d(g(X,Y))(Z) = g(DzX,Y) 4+ g(X,DzY) for any vector fields X,Y,Z on M; and
(2) the connection D is symmetric.

D is called the Levi—Civita connection of the metric g.

The condition (1) in the above theorem is sometimes written more neatly as
dg(X,Y) = g(DX.Y) + g(X,DY).

Proof. Uniqueness. The conditions (1) and (2) determine the coefficients of Levi-Civita in

local coordinates as follows. A ‘coordinate vector field’ aai with constant coefficients has

T
covariant derivative D2 = I'!, 5% dz*. The condition (1) with X = ;2%,V = 2, Z = ;2

ozt ~— T ik OxP Oxd oxk
becomes 5
509 = Lirgos + UG gip- (3.7a)

Cycling 7, 7, k in the above formula, one can write two more relations

0

9 ki = 09pi + 17 Ghp, (3.7b)
0
Ot 9ik = F?igpk + I%iGip- (3.7¢)

Let (¢") denote the inverse matrix to (gig), 50 I, 9459’ = T%. Adding the first two
equations of (3.7) and subtracting the third, dividing by 2, and multiplying both sides of
the resulting equation by (g%), one obtains the formula

L i 994  O9kq  OYik
| A ] q _ J .
i = 99 (Omk * Ox 8:Bq) (38)

(also taking account of the symmetry condition (2)). Thus if the Levi-Civita connection
exists then its coefficients in local coordinates are expressed in terms of the metric by (3.8).

Exericise. By adapting the above method to arbitrary vector fields X,Y, Z on M, using
the symmetry condition (2) in the form DxY — Dy X = [X, Y], show that the Levi-Civita
connection is uniquely determined by the identity

g<DXY7 Z) = %(Xg(Y, Z)+Y9(Z7X>_ZQ(X7 Y)_g<Y7 [Xv Z])_g(Z7 [YvX]>+g(X7 [Zv Y]))

(3.9)
Verify that D defined by (3.9) satisfies the conditions (1) and (2) in Theorem 3.6 (this
might be argued by essentially following your calculation of (3.9) backwards).
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Existence. Proof 1. One way of proving the existence is to check that the Fék computed
by the formula (3.8) are indeed the coefficients of a well-defined connection on M. This
can be done by verifying that the Fz-k’s transform in the right way, i.e. as in (3.3), under
ox* Ol
W‘gi]’w, by the
usual linear algebra. Differentiating this latter formula and using the respective formula
for the induced inner product on the dual spaces, i.e. on the cotangent spaces to M, we
can verify that the coefficients given by (3.8) indeed transform according to (3.3) and so
the Levi-Civita connection of the metric g on M is well-defined.

Proof 2. Alternatively, assuming the exercise above, we shall be done if we show that
D, Y defined by the formula (3.9) is C°°(M)-linear in X and satisfies the Leibniz rule in Y.
For the first property, we note that [fX, 7] = fXZ-Z(fX) = f[X, Z]—(Zf)X, for every
f e C>®(M). Then 2¢9(D;xY, Z) becomes

fXg(Y,2) +Yg(Z, fX) = Zg(fX,Y) = g(Y,[f X, Z]) = g(Z,[Y, F X]) + g(f X, [Z,Y])
= [Xg(Y,2)+ (Y [)g(Z, X) + [Y9(Z,X) = (Zf)9(X,Y) = [Zg(X,Y)
—g(Y, fIX, 2] = (Z))X) — 9(Z, (Y )X + [[Y, X]) + fg(X,[Z2,Y]),
using the Leibniz rule for vector fields. It follows that g(D;xY, Z) = g(fDxY, Z), thus D
is C°(M)-linear in X,
For the Leibniz rule we calculate, with h a smooth function,
29(Dx(hY),Z) = X(hg(Y,Z)) + hY g(Z, X)
— Z(hg(X,Y)) = hg(Y,[X, Z]) — g(Z, [nY, X]) + (X, [Z, hY])
= (Xh)g(Y,Z)+hXg(Y,Z)+hYg(Z, X)— (Zh)g(X,Y) — hZg(X,Y)
—hg(Y,[X, Z]) = hg(Z,[Y, X]) + (Xh)g(Z,Y) + hg(X, [Z,Y]) + (Zh)g(X,Y)
2(Xh)g(Y, Z) + 2hg(DxY, Z)

a change of local coordinates. The transformation law for g;; is gy;» =

which gives (3.4) as required. Since DxY is clearly R-linear in Y we have proved that D
is a connection on M. O

3.2 Geodesics on a Riemannian manifold

Let £ — M be a vector bundle endowed with a connection (F;k) A parameterized smooth
curve on the base M may be written in local coordinates by (x%(¢). A lift of this curve
to E is locally expressed as (z'(t), a’(t)) using local trivialization of the bundle F to define
coordinates @’ along the fibres. A tangent vector (i(t),a(t)) € Tiuigyaw@)E to a lifted
curve will be horizontal (recall from the chapter 2, eqn. (2.10b)) at every t precisely when
a(t) satisfies a linear ODE
a' + T (z)a’d* =0, (3.10)

where ¢, =1,...,rank E, k=1,...,dim B.

Now if E = T'M then there is also a canonical lift of any smooth curve ~(t) on the
base, as §(t) € T M.
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Definition. A curve 7(¢) on a Riemannian manifold M is called a geodesic if §(t) at
every t is horizontal with respect to the Levi-Civita connection.

Thus we are looking at a special case of (3.10) when a = #. The condition for a path
in M to be a geodesic may be written explicitly in local coordinates as

B+ Ty (x)? " =0, (3.11)

a non-linear second-order ordinary differential equation for a path z(t) = (z%(t)) (here
i,7,k = 1,...,dim M). By the basic existence and uniqueness theorem from the theory
of ordinary differential equations, it follows that for any choice of the initial conditions
xz(0) = p, #(0) = a there is a unique solution path z(¢) defined for |t| < e for some
positive €. Thus for any p € M and a € T,M there is a uniquely determined (at least
for any small |t|) geodesic with this initial data (i.e. ‘coming out of p in the direction a’).
Denote this geodesic by 7,(t,a) (or v(t,a) if this is not likely to cause confusion).

Proposition 3.12. If v(t) is a geodesic on (M, g) then |¥(t)|, = const.

Proof. We shall first make a rigorous sense of the equation
Dy=0 (3.13)

and show that (3.13) is satisfied at each ~(t) if and only if 7 is a geodesic curve. The
problem with (3.13) at the moment is that 4 is not a vector field defined on any open set
in M, but only along a curve y. We define an extension, still denoted by 4, on a coordinate
neighbourhood U of v(0) as follows. It may be assumed, without loss, that §(0) = (2%(0))
has #'(0) # 0. We may further assume, taking a smaller U if necessary, that v N U, is
a graph of a smooth function z! — (z?(z!'),...,2"(z')). In particular, z'(¢) # 0 for any
small |t| and also any hyperplane ' = z{, such that |z} — 2'(7(0))| is small, meets the
curve yNU in exactly one point. Denote by 7 the projection along hyperplanes z' = const
onto ¥ N U. Define, for every p € U, ¥(p) = ¥(7(p)) and then 7 is a smooth vector field
on U, such that (§), = ¥(t) whenever p = ~(t).

Now let T%; be the coefficients of the Levi-Civita in the coordinates on U. So DzY =
(Z'19 Y + F;ijZk)@- for any vector fields Z = Z'0,, Y = Y9, on U. Let Y = Z = 7.

7

Then at any point p = v(t) we have Z!9,Y* = i! Lo by the chain rule. It follows

]
that the equation (3.11) is equivalent to (3.13) if tﬁe latter if restricted to the points of
the curve «. It can also be seen, by inspection of the above construction, that D% at the
points of v is independent of the choice of extension of #(t) to a vector field on U.

We have ¥(7,7)g = (D+¥,%)y + (7, D+¥)y on U from the defining properties of the
Levi-Civita. Hence 4(]§|2) = 0 at each y(t) € U, by (3.13). From the construction of the
extension 4 on U, we find that the directional partial derivative §(|¥|2) at the points y(t)

0 d
is expressed as a’chM; = Eh(t)@ by the chain rule again, whence |§|, = const as we
T

had to prove. O
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Examples. 1. On R™ with the Euclidean metric > (dz*)? we have I, = 0, so the Levi-
Civita is just the exterior derivative D = d. The geodesics zi = 0 are straight lines
Yp(t, a) = p + at parameterized with constant velocity.

2. Consider the sphere S™ with the round metric (i.e. the restriction of the Euclidean
metric to S C R™!). Then p € S™ and a € T,5" may be regarded as the vectors
in R"™. Suppose a # 0, then the orthogonal reflection L in the 2-dimensional subspace
P = span{p, p+a} is an isometry of S™. Now L preserves the metric and p and a, the data
which determines the geodesic v,(-,a). As 7,(+,a) is moreover uniquely determined it must
be contained in the fixed point set of L. But the fixed point set is a curve, the great circle
PN S™ We find that great circles, parameterized with velocity of constant length—and
only these—are the geodesics on S™.

Observe that for any geodesic 7, (¢, a) and any real constant A the path v,(At, a) is also
a geodesic and 7, (At, a) = v,(t, \a).

By application of a general result in the theory of ordinary differential equations, a
geodesic v,(t,a) must depend smoothly on its initial conditions p,a. Furthermore, there
exist €; > 0 and €2 > 0 independent of a and such that if |a| < 1 then v,(¢,a) exists for
all —2e9 <t < 2e4. It follows that 7,(1, a) is defined whenever |a| < & = &1¢e9.

Definition. The exponential map at a point p of a Riemannian manifold (M, g) is
exp, : a € Ball .(0) € T,M — ~v(1;p,a) € M.
Proposition 3.14. (dexp,)o = id(T,M)

Proof. We use the canonical identification a € T,M — 4(ta)|,—o to define (dexp,)o as a
linear map on T, M (rather than on To(T,M)).
Let |a|] < &, s0 7,(t,a) = 7,(1,ta) is defined for 0 < ¢ < 1. Then we have

(dexp,)oa = % exp,(ta)|i—o
= %Wp(la ta)lt:o

= %7p<t7 a)li=o
=4(0,a) = a. O

Corollary 3.15. The exponential map exp,, defines a diffeomorphism from a neighbour-
hood of zero in T,,M to a neighbourhood of m in M.

Proof. Apply the Inverse Mapping Theorem (page 11 of these notes). [

Corollary 3.15 means that the exponential map defines near every point p of a Rieman-
nian manifold a system of local coordinates—called normal (or geodesic) coordinates
at p. It is not difficult to see that the geodesics v,(t,a) are given in these coordinates by
rays emanating from the origin.
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It also makes sense to speak of geodesic polar coordinates at p € M defined by the
polar coordinates on T, M via a diffeomorphism

fi(r,v)€]0,e[x 8" — exp,(rv) € M. (3.16)

Here ]0,e[xS™! is regarded as a subset in T,M = R™ via the inner product g(p). If
0 < r < e then the image ¥, = f({r} x S*~' C T,M) of the metric sphere of radius r
is well-defined on M and is called a geodesic sphere about p. (So X, is an embedded
submanifold of M.) The following remarkable result asserts that ‘the geodesic spheres are
orthogonal to their radii’.

Gauss Lemma. The geodesic v,(t,a) is orthogonal to X,. Thus the metric g in geodesic
polar coordinates has local expression g = dr® + h(r,v), where for any 0 <r < e, h(r,v) is
the metric on X, induced by restriction of g.

Proof. Let X be an arbitrary smooth vector field on the unit sphere S"~!' C T,M. Use
polar coordinates to make sense of X as a vector field (independent of r) on the punctured
unit ball B\ {0} C T,M. Define a vector field X(r,v) = rX(v) on B\ {0}. The map

exp, induces a vector field Y (f(r,v)) = (dexp,)rvX(r,v) on the punctured geodesic ball
B'\ {p} = exp,(B\ {0}) in M.

We shall be done if we show that Y is everywhere orthogonal to the radial vector
field %. Note that, by construction, any geodesic from p is given in normal coordinates
by 7,(t,a) = at, so 4,(t,a)/|la] = £. Here |a| means the norm in the inner product g,
on the vector space T,M. By application of Corollary 3.15, the family 4,(¢,a), where
la| =1 and 0 < [t| < ¢, defines a smooth vector field on B"\ {p}. Recall from (3.13) that
D~ = 0 for any geodesic 7, where D denotes the Levi-Civita covariant derivative. Also
%g(%, %) = 4 4(¥4,%) = 0 by Proposition 3.12, so g(%, %) = 1. It remains to show that

9(Y,9) = 0.
Using the diffeomorphism f in (3.16) to go to polar geodesic coordinates, we obtain

. 5 d 5
DY — Dy = (df)(Dy X ~ D) = (df) - X = (@) (X /) = V/r,
with the help of Proposition 3.5. Therefore, we find

d ) . ) . o1 1 )
ag(Y, ¥) = g(D5Y, %) + g(Y, Dsy) = g(D5Y, %) = g(Dy¥ + ;Y, ¥) = ;g(Y, ).

as 2g(D7¥,%) = dg(¥,%) = 0 by Proposition 3.13. Thus d%G = G/r, where G = g(Y,%).
Hence G is linear in r and dirG independent of r. But lim,_,q d%G = lim, 0 (X, %) =0, as
(dexp,)o is an isometry by Proposition 3.14, and so g(Y,+) = 0 and the result follows. [

3.3 Curvature of a Riemannian manifold

Let g be a metric on a manifold M. The (full) Riemann curvature R = R(g) of ¢ is, by
definition, the curvature of the Levi-Civita connection of g. Thus R € Q3%,(End(TM)),
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locally a matrix of differential 2-forms R = (RZ kldx Adx®), i, 5, k0 =1...n =dim M.
The coefficients (R?,;) form the Riemann curvature tensor of (M,g). Given two vector
fields X, Y, one can form an endomorphism field R(X,Y) € T'(End(T'M)); its matrix in
local coordinates is R(X,Y); = R}, X*Y" (as usual X = X*0;, Y = Y'9;). Denote
Ry = R(0,0,) € End(7,M) (here p is any point in the coordinate neighbourhood).
Recall that in local coordinates a connection (covariant derivative) may be written as
d+ A, with A = Flkdx = Apdz®. We write D, = D o= 9 4+ A. The definition of the

curvature form of a connection (Chapter 2, p. 31) ylelds an expression in local coordinates
Rl = (DiDyzs — DiDig%)', or Ry = —[Dy, Dy, (3.17)

considering the coefficient at dz! A dz*. Now Dx = X*D,, and so we have —[Dx, Dy] =
—[X*Dy, X!'D)] = —X*(0, YY)D, — X*Y'Dy Dy + Y*(0, XY D, + X*Y'D, Dy, = X*Y' Ry, —
[X,Y]'D,. We have thus proved

Lemma 3.18. R(X, Y) = D[X’y] - [D)(,Dy].

One also can combine (3.17) with (3.8) and thus obtain an explicit local expression for
R!,; in terms of the coefficients of the metric g and their first and second derivatives.
It is convenient to consider R;j = giqR? > Which defines a map on 4-tuples of vector

fields (X,Y,Z,T) — g(R(X,Y)Z,T).
Proposition 3.19.

(i) Rz’j,lk: = —Rij,kl = Rji,kl;'

(ii) R;

(111) Rij,kl - Rkl,ij'

w + Riy; + Ri i =0 (the first Bianchi identity®);

Proof. (i) The first equality is clear. For the second equality, one has, from the definition
of the Levi-Civita connection, dag’“j = g(Di:%, %) + 9(:% 5075 Dizy 29, and further

Zawka8$l
0 g 8 8 0 0 8 8 8 0

The right-hand side of the above expression is symmetric in 4, j as 6@%’;@ = aiiga’“;i. The
anti-symmetric part of the right-hand side (which has to be zero) equals R;; i + Rji -

(i) Firstly, (Dy%)" = I = (D; 52:)", by the symmetric property of the Levi-Civita.
The claim now follows by straightforward computation using (3.17).

We note for use in the proof of (iii) that multiplying (ii) by ¢, gives Riju + Rikij +
R i = 0.

(iii) We organize the argument using the vertices and faces of an octahedron (see the
next page).

2also known as the algebraic Bianchi identity, not to be confused with the differential Bianchi identity
in Chapter 2.
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Rij i = Rjik Assign to each vertex a simulta-
neous application of the two iden-
tities in (i). Then, for each shaded
face, we may arrange the three co-
efficients of R to have the same
first index (indicated by a letter
in the middle of the face) so that
the Bianchi identity (ii) can be ap-
plied. Adding the instances of (ii)
for the two upper shaded faces and
subtracting those for the two lower
shaded faces, we obtain the re-
quired identity (iii) as all the terms
in the vertices of the equatorial

square cancel.?
Ryi5 = Rig ji ]

Rk
= Ryi

Remark . Notice that the proof of (ii) shows the first Bianchi identity is valid for every
symmetric connection on M.

Corollary 3.20. The Riemann curvature tensor (R;ju), defines, at any point p € M a
symmetric bilinear form on the fibres of A*T,M.

There are natural ways to extract “simpler” quantities (i.e. with less components) from
the Riemann curvature tensor.

Definition. The Ricci curvature of a metric g at a point p € M, Ric, = Ric(g),, is the
trace of the endomorphism v — R,(z,v)y of T,M depending on a pair of tangent vectors
x,y € T,M.

Thus in local coordinates Ric(p) is expressed as a matrix Ric = (Ricy;), Ric; = >° RY ;.

That is, the Ricci curvature at p is a bilinear form on 7,M. A consequence of Proposi-
tion 3.19(iii) is that this bilinear form is symmetric, Ric;; = Ricj;.

Definition. The scalar curvature of a metric g at a point p € M, s = scal(g), is a
smooth function on M obtained by taking the trace of the bilinear form Ric;; with respect
to the metric g.

If local coordinates are chosen so that g;;(p) = d;; at a point, then the latter definition
means that s(p) = ZZ Ricy;(p) = Z” R;jji(p). For a general g,;, the formula may be
written as s = ), g Ric;;, where g% is the induced inner product on the cotangent space
with respect to the dual basis, algebraically (¢*) is the inverse matrix of (g;;).

31 learned this argument from the lectures of M.M. Postnikov.
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3.3.1 Some examples

(1) Tt makes sense to consider the condition
Ric = Ag (3.21)

for some constant A € R, as both the metric and its Ricci curvature are symmetric bilinear
forms on the tangent spaces to M. When the condition (3.21) is satisfied, the Riemannian
manifold (M, g) is called Einstein manifold. In particular, if (3.21) holds with A = 0 then
M is said to be Ricci-flat.

(2) Recall that if ¥ is a surface in R® (smooth, regularly parameterized by (u,v) in an
open set in R?) then there is a metric induced on ¥, expressed as the first fundamental
form Edu? + 2Fdudv + Gdv®. The second fundamental form Ldu? + 2Mdudv + Ndv? is
defined by taking the inner products L = (ry,,n), M = (ry,n), N = (r,,,n) with the
unit normal vector to ¥, n = r, X r,/|r, X r,| (the subscripts v and v denote respective
partial derivatives). The quantity

LN — M?
- EG — F?

is called the gaussian curvature of X. A celebrated theorema egregium, proved by Gauss,
asserts that K is determined by the coefficients of first fundamental form, i.e. by the metric
on X (and so K is independent of the choice of an isometric embedding of 3 in R?).

Taking up a general view on X as a 2-dimensional Riemannian manifold, one can check
that 2(EG — F?)"'Ry391 = s, the scalar curvature of 3. From the results of the next
section, we shall see (among other things) that the scalar curvature of a surface ¥ is twice
its gaussian curvature s = 2K.

K

3.4 Riemannian submanifolds

When a manifold M" is an embedded submanifold of a Riemannian manifold, say V""",
the Riemannian metric gy on V' induces, by restriction, a Riemannian metric g; on M.
What is the relation between the Levi-Civita connection D of gy and the Levi-Civita
connection D of g7

To see this relation, it is convenient to consider the vector bundle E = *(TV') over M,
where ¢ : M < V is the embedding map. (Informally, £ is just the restriction of TV to M
if the latter is regarded as a subset of V.)

In the next proposition, we write 2* for local coordinates on M, 17 for local coordinates
onV,and a,3,y=1,...,n+r.

Proposition 3.22. Any connection V on 'V induces in a canonical way a connection on E
with the coefficients 'y, = %ng, where I'yare the coefficients of V and y = y(x) is the
local expression of the embedding .

We shall still denote by V the connection on E defined by the above proposition. For
p € E, consider the tangent space T,E as a subspace of T,V and then the corresponding
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horizontal subspace of T,F is just the intersection S, N T,E, where S, C T,V is the
horizontal subspace for the connection on V.

There is also an interpretation in terms of the covariant derivatives (needed for the
proof of Gauss—Weingarten formulae below). Any local vector field X on M (respectively
local section o of E) can be extended smoothly to a local vector field X (respectively &)
on V. Then (V4&)|y = Vxo, where in the left-hand side we use the connection on E. In
particular, the right-hand side is independent of the choices of extensions X and &.

Thus the connection V on E makes natural sense from all three points of view. Note
that we did not require any metric to define this induced connection.

Each fibre E, of E contains T, M as a subspace. Using now the metric on M we obtain
a direct sum decomposition

E,=T,M @ (T,M)*. (3.23)

The disjoint union of the orthogonal complements L, ps (T, M )L forms a vector bundle of
rank r over M called the normal bundle of M in V, denoted N, y. Exercise: verify
that Ny v is indeed a well-defined vector bundle (recall Theorems 1.8 and 2.4).

For any two vector fields X,Y on M, we can decompose the covariant derivative
(VxY), = (VxY)s + (M(X,Y)),, according to (3.23), where h(X,Y) is some section
of Nygv. It turns out that V is a well-defined covariant derivative (connection) on M and
h is a bilinear map T,M x T,M — (T,M)* (depending smoothly on x). Furthermore, in
the case when V = D is the Levi-Civita connection on V we obtain.

Theorem 3.24 (Gauss formula). For any vector fields X, Y on M,
DxY = DxY + II(X,Y),

where D is the Levi-Civita connection of the induced metric on M, and 11 is a symmetric
bilinear map called the second fundamental form of M in V.

Theorem 3.25 (Weingarten formula). For any vector field X on M and section £ of the
normal bundle Ny,

where for any &, 8¢ is a endomorphism of the vector bundle T'M called the shape operator
and V' is a connection on Ny . Furthermore, the shape operator is symmetric with respect
to the induced Riemannian metric M,

for any vector field Y on M.

By direct application of the above, we can compute the Riemann curvature R = (R;; )
of M in terms of the curvature of the ambient manifold and the second fundamental form.

Theorem 3.26 (Gauss).

R(X,Y,Z,T) = R(X,Y,Z,T) + gv(II(X, Z),11(Y,T)) — gy (II(X,T), I1(Y, Z)).
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Corollary 3.27. The curvature of a submanifold M of a flat manifold is determined by
the second fundamental form of M.

When M is a surface in the Euclidean R?, this is equivalent to theorema egregium
discussed in the previous section.

3.5 Laplace—Beltrami operator

Throughout this section M is a connected oriented Riemannian manifold of dimension n.
Let g denote a metric on M and let the orientation be given by a nowhere-zero n-form ¢.
Starting from the vector fields %, e % at a point x in a coordinate neighbourhood
U, we can apply Gram—Schmidt process with x as a parameter. Thus we obtain a new
system of (smooth) vector fields eq,..., e, which give an orthonormal basis of tangent
vectors on a perhaps smaller neighbourhood of p (still denote this neighbourhood by U).

Let wq,...,w, on U be the dual 1-forms to eq,...,e,, in the sense that
w;(e;) = 9y at any point in U.

Then w; give at every point p of U a basis of T M, the dual basis to e;.
The metric on M induces, for every p = 0, ..., n an inner product on the bundle APT* M
by making {w;, (z) A... Aw;, (z) : 1 <4y < ... <1, <n} an orthonormal basis of APT M.
If w} is another system of local 1-forms, on another coordinate neighbourhood U’ say,
and w’ are orthonormal at every point in U’ then

WA Aw, =det(P)wy AL Aw, on U N,

for some orthogonal matrix ® (depending on x € U’ N U). Assuming, as we can on
an oriented M, that all the coordinate neighbourhoods are chosen so that the Jacobians
det(®) are positive on the overlaps, we find that w; A. .. Aw, is a well-defined nowhere-zero
n-form w, on all of M. We can further ensure that w, = ac for some positive function
a € C*(M). Then w, is called the volume form of M.

In (positively oriented) local coordinates, w, = \/det g;jda' A ... A dz™.

Definition. The Hodge star on M is a linear operator on the differential forms

x: APT2M — NPT M,
such that for any two p-forms o, 8 € APT M one has a A x5 = (a, ), wy(z), where w, is
the volume form on M.

It follows that if w; is an orthonormal basis of a cotangent space T, M then necessarily
*(wi Ao Awp) = Wpy1 A ... Awy. In particular, *1 = w, and *w, = 1. By permutations
of indices and by linearity, the Hodge star is then uniquely determined for any differential
form on M. Further, it follows that s = (—1)?™~P) on the p-forms.

Using the Hodge star we construct a differential operator

§:QP(M) — QP Y (M)
putting § = (—1)"PTV+ L x dx if p £ 0 and 6 = 0 on Q°(M) = C=(M).
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Definition. The Laplace—Beltrami operator, or Laplacian, on M is a linear differen-
tial operator A : QP(M) — QP (M) given by

A = dd + do.
Straightforward computation shows that when M is the Euclidean R"™ the definition
2 2
gives Af = — ( §$1f)2 — .= ( ;17{)2 for any smooth function f. For a general metric
= (gi), the local expression becomes A,f = — L9 det g g" of
9 = \9ij); p g) = Jdet g Oz 99 ori )’

Proposition 3.28. The operator § is the adjoint* of d in the sense that

| ey, = [ (@59)y,

for every compactly supported o € QP~1(M), 3 € QP(M).

Using the inner product on the spaces APT; M, p € M, we can define an inner product on
QP(M), called the L* inner product, by putting (o, 8) 2 = [, (@, 8)4w,. The inner product
makes each QP(M) into a normed space, with L?-norm defined by ||a|| = ({a, a)2)"/2. In
particular, o = 0 if and only if ||a|| = 0.

Thus Proposition 3.28 says that (da, 8)r2 = (o, 08) 12 and, consequently, (Aa, B)12 =
(o, AB) 2. Tt follows immediately that the Laplace—Beltrami operator is self-adjoint.

A differential form o € QP(M) is called harmonic if Aa = 0.

Corollary 3.29. FEvery harmonic differential form on a compact manifold is closed and
co-closed: Aa =0 if and only if both dae = 0 and da = 0.

Proof. Integration by parts, 0 = (dda + ddov, ) 12 = (dov, 0a) 2 + (dov, dov) p2. O
It is also easily checked that *A = Ax on any QP(M). Therefore the Hodge star of any

harmonic form is again harmonic.

Hodge Decomposition Theorem. Let M be a compact oriented Riemannian manifold.
For every 0 < p < dim M, the space HP of harmonic p-forms is finite-dimensional. Fur-
thermore, there are L*-orthogonal direct sum decompositions

OP(M) = AQP(M) & HP
= d6QP (M) @ 6dQP (M) @ HP
= AN (M) @ 5 (M) & HP

(where we formally put Q=1 (M) = {0}).

Remark: the compactness condition on M cannot be removed.?

41t is more correct to say that 6 is the ‘formal adjoint’ of d for reasons that have to do with the Analysis.
5The reason is that certain results in Analysis fail on non-compact sets, but this is another story.
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Short summary of the proof. We need to introduce the concept of a weak solution of
Aw = a. (3.30)

A weak solution of (3.30) is by definition, a linear functional [ : QP(M) — R which is
(i) bounded, |I(B8)| < C||B]|, for some C' > 0 independent of [, and
(ii) satisfies [(Ap) = {a, @) 2.
Any solution w of (3.30) defines a weak solution by putting l,(3) = (w, 8) Lz.
The proof of Hodge Decomposition Theorem requires some results from Functional
Analysis.

Regularity Theorem. Any weak solution | of (3.30) is of the form I(B) = (w, B) 2, for
some w € QP(M) (and hence defines a solution of (3.30)).

Compactness Theorem. Assume that a sequence o, € QP(M) satisfies ||| < C and
|Aa,|| < C, for some C independent of n. Then v, contains a Cauchy subsequence.

We shall assume the above two theorems (and the Hahn-Banach theorem below)
without proof.

Compactness Theorem implies at once that HP must be finite-dimensional (for,
otherwise, there would exist an infinite orthonormal sequence of forms). As H? is finite-
dimensional, we can write an L2-orthogonal decomposition QP(M) = HP & (HP)*.

It is easy to see that AQP(M) C (HP)* (use Proposition 3.28). For the reverse inclusion,
suppose that a € (HP):. We want to show that the equation (3.30) has a solution.
Assuming the Regularity Theorem, we shall be done if we obtain a weak solution [ :
QP(M) — R of (3.30).

Define [ first on a subspace AQP(M), by putting [(An) = (n,a)rz. It is not hard to
check that [ is well-defined. Further, (ii) is automatically satisfied (on this subspace); we
claim that (i) holds too. To verify the latter claim, we show that [ is bounded below on
AQP(M) using, once again, the Compactness Theorem.

In order to extend [ to all of QP(M), we appeal to

Hahn-Banach Theorem. Suppose that L is a normed vector space, and Lo a subspace
of L, and l : Ly — R a linear functional satisfying l(xo) < ||zol|, for all zo € Ly. Then 1
extends to a linear functional on L with I(z) < ||z|| for all x € L.

Thus we obtain a weak solution of (3.30) and deduce that QP(M) = AQP(M) & H?
as desired. The two other versions of the L*-orthogonal decomposition of Q?(M) follow
readily by application of Proposition 3.28. ]

Corollary 3.31. Every de Rham cohomology class a € H" (M) of a compact oriented Rie-
mannian manifold M is represented by a unique harmonic differential r-form o € Q" (M),
la] =a. Thus H" = H"(M).

Proof. Uniqueness. If ay,ay are harmonic p-forms and a; — as = df then |dB|* =
<dﬁ7 a1 — C]52>L2 = <57 5(051 - a2)>L2 =0.
Existence. If « is such that dda = 0 then ||da|| = 0. Hence any closed p-form must

be in dQP~H (M) @& HP. O
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Corollary 3.31 is a surprising result: an analytical object (harmonic forms) turns out to
be equivalent to a topological object (de Rham cohomology) via some differential geometry.
Here is a way to see ‘why such a result can be true’.

A de Rham cohomology class, a € H"(M) say, can be represented by many differential
forms; consider the (infinite-dimensional) affine space

By ={{ Q' (M)|d§ =0, [{]=aec H' (M)}
= {£ € Q" (M)|¢ = o+ df, for some 3 € Q"1 (M)}.
When does a closed form a have the smallest L>-norm amongst all the closed forms in a
given de Rham cohomology class B,7

Such a form must be a critical point of the function F'(a + dB) = ||a + dB)||* on B, so
the partial derivatives of F' in any direction should vanish. That is, we must have

d
0=— <C¥+tdﬁ,0&+tdﬁ>L2:2<Oé,dB>L2.
at|,_,

Integrating by parts, we find that [, (e, 3), = 0 must hold for every § € Q"~'(M). This
forces da = 0, and so the extremal points of F' are precisely the harmonic forms «a.
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