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The ‘Identity Theorem’

Definition. Let E ⊂ C. We say that a point w ∈ E is an isolated if there is an open disc
D(w, ε), ε > 0, such that D(w, ε) ∩ E = {w}.

The opposite notion is that of accumulation point: w ∈ C is an accumulation point of
E ⊂ C if every open disc with centre w ∈ D meets E in infinitely many points. (In this case,
there will be a sequence wn 6= w converging to w as n→∞.)

Theorem 2.20 (Principle of isolated zeros). Assume that f : D(w,R)→ C is a holomorphic
function which is not identically zero. Then there is an r > 0 such that f(z) 6= 0 whenever
0 < |z − w| < r ≤ R.

Proof. If f(w) 6= 0 then a required r > 0 exists since f is continuous.
Let f(w) = 0. By Theorem 2.17, f is represented on D(w,R) by convergent power series,

f(z) =
∑∞

m=0 cm(z − w)m valid for all z ∈ D(w,R). and c0 = 0. Let n > 0 be the smallest
such that cn 6= 0. Then f(z) = (z − w)n

∑∞
m=n cm(z − w)m−n = (z − w)ng(z), where g is

holomorphic on D(w,R) and g(w) 6= 0. Then g does not vanish on D(w, r) for some r > 0,
thus f does not vanish on D(w, r) \ {0}. �

We say that f has at w a zero of order n if f(z) = (z−w)ng(z) holds on some disc around
w with g is holomorphic and g(w) 6= 0. Thus if f is a non-constant holomorphic function on
some open set and f(w) = 0, then there is an integer n > 0, the order of this zero.

Here is another important consequence of Theorem 2.20.

Corollary 2.21 (‘Identity Theorem’). Let D ⊂ C be a domain and f, g holomorphic functions
on D. If the set E = {z ∈ D : f(z) = g(z)} contains a non-isolated (i.e. accumulation) point,
then f(z) = g(z) for all z ∈ D.

Proof. The function h(z) = f(z)− g(z) is holomorphic on D. If w ∈ E is not isolated then h
must vanish on some disc D(w, ε), ε > 0 (in fact on any disc centred at w and contained in
the domain D), otherwise there is a contradiction to Theorem 2.20.

Suppose a ∈ D is a point not in D(w, ε). As D is path-connected, we may consider a path
γ : [0, 1]→ D with γ(0) = w, γ(1) = a. Let t0 = sup{t ∈ [0, 1] : h(γ(s)) = 0 for all s ∈ [0, t]},
this is well-defined as the set in question is non-empty (contains zero) and bounded. Then
h(γ(t0)) = 0 as h ◦ γ is continuous. So γ(t0) is a non-isolated zero of h and (noting the
previous argument) h ◦ γ must vanish on [t0, t0 + δ) for some δ > 0. This contradicts the
definition of t0 unless t0 = 1. Thus h(a) = h(γ(1)) = 0 and the result follows. �


