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The ‘Identity Theorem’

Definition. Let E C C. We say that a point w € E s an isolated if there is an open disc
D(w,¢e), € > 0, such that D(w,e) N E = {w}.

The opposite notion is that of accumulation point: w € C is an accumulation point of
E C Cif every open disc with centre w € D meets E in infinitely many points. (In this case,
there will be a sequence w,, # w converging to w as n — 00.)

Theorem 2.20 (Principle of isolated zeros). Assume that f : D(w, R) — C is a holomorphic
function which is not identically zero. Then there is an r > 0 such that f(z) # 0 whenever
0<|z—w|<r<R.

Proof. If f(w) # 0 then a required r > 0 exists since f is continuous.

Let f(w) = 0. By Theorem 2.17, f is represented on D(w, R) by convergent power series,
f(z) = >0 gem(z —w)™ valid for all z € D(w, R). and ¢y = 0. Let n > 0 be the smallest
such that ¢, # 0. Then f(z) = (z —w)" > o _ cm(z —w)"™™ = (z — w)"g(z), where g is
holomorphic on D(w, R) and g(w) # 0. Then g does not vanish on D(w,r) for some r > 0,
thus f does not vanish on D(w,r) \ {0}. O

We say that f has at w a zero of order n if f(z) = (z—w)"g(z) holds on some disc around
w with g is holomorphic and g(w) # 0. Thus if f is a non-constant holomorphic function on
some open set and f(w) = 0, then there is an integer n > 0, the order of this zero.

Here is another important consequence of Theorem 2.20.

Corollary 2.21 (‘Identity Theorem’). Let D C C be a domain and f, g holomorphic functions
on D. Ifthe set E={z € D : f(z) = g(z)} contains a non-isolated (i.e. accumulation) point,
then f(z) = g(z) for all z € D.

Proof. The function h(z) = f(z) — g(z) is holomorphic on D. If w € E is not isolated then h
must vanish on some disc D(w,¢), € > 0 (in fact on any disc centred at w and contained in
the domain D), otherwise there is a contradiction to Theorem 2.20.

Suppose a € D is a point not in D(w,e). As D is path-connected, we may consider a path
v :10,1] = D with v(0) = w, (1) = a. Let to = sup{t € [0,1] : h(y(s)) = 0 for all s € [0,¢]},
this is well-defined as the set in question is non-empty (contains zero) and bounded. Then
h(y(to)) = 0 as h oy is continuous. So (tg) is a non-isolated zero of h and (noting the
previous argument) h o v must vanish on [tg,tg + J) for some 6 > 0. This contradicts the
definition of o unless tg = 1. Thus h(a) = h(7y(1)) = 0 and the result follows. O



