

Part III: Differential geometry (Michaelmas 2019)

Example Sheet 3

Throughout the course you are expected to use standard results from analysis without proof. The questions or parts marked with * are not necessarily harder, but go slightly beyond the lectured material and will not be examined.

1. Let E, E' be vector bundles over M , with $\Gamma(E), \Gamma(E')$ respectively the spaces of their smooth sections (over M), and suppose that $\alpha : \Gamma(E) \rightarrow \Gamma(E')$ is a map which is linear over $C^\infty(M)$. In this exercise you will verify that α is induced by a bundle morphism $F : E \rightarrow E'$.
 - (i) Let $p \in M$ and $v \in E_p$. Show that there is an $s \in \Gamma(E)$ such that $s(p) = v$.
[Work in a local trivialization and use a smooth cut-off function.]
 - (ii) Now let $s \in \Gamma(E)$. Show that if s vanishes in a neighbourhood of p then so does $\alpha(s)$. Deduce that if $s(p) = 0$ then $\alpha(s)(p) = 0$.
[For the first use cut-off functions, for the second work in a local trivialization.]
 - (iii) Set $F(v) = \alpha(s)(p)$, where $s \in \Gamma(E)$ and $s(p) = v$. Show that F is a well-defined (independent of s) smooth bundle morphism, and finally show $\alpha(s) = F \circ s$.
2. Show that every (real) vector bundle can be given a positive definite inner product, varying smoothly with the fibres, i.e. given in each local trivialization (U_α, Φ_α) by a smooth map $g_\alpha : x \in U_\alpha \rightarrow g_\alpha(x) \in \text{Sym}_+(n, \mathbb{R})$. Here $n = \text{rank } E$ and $\text{Sym}_+(n, \mathbb{R})$ denotes the set of all real positive-definite $n \times n$ symmetric matrices.
[Hint: you might like to use a partition of unity.]
Deduce that every real vector bundle admits an $O(n)$ -structure. What about complex vector bundles?
3. (i) Consider the tangent bundle of S^2 endowed with an inner product on the fibres. Let Y denote the subset of the total space of TS^2 consisting of all the tangent vectors of unit length. Show that the tangent bundle TS^2 induces on Y the structure of a principal S^1 -bundle over S^2 .
(ii)* Show further that the 3-dimensional manifold Y is diffeomorphic to \mathbb{RP}^3 .
[Hint for (ii): Find a correspondence between points of Y and *ordered pairs* of orthogonal unit vectors in \mathbb{R}^3 . Recall also that \mathbb{RP}^3 is diffeomorphic to $SO(3)$.]
4. Let $E \rightarrow B$ be a rank 1 complex vector bundle with a unitary structure and A a unitary connection on E and $F(A)$ the curvature of A . Prove that the 2-form $\frac{i}{2\pi}F(A)$ on B is closed, and its de Rham cohomology class is well-defined independent of the choice of A . (This class therefore depends only on the bundle E ; it is sometimes called the *first Chern class of E* , denoted $c_1(E)$.)
- 5*. Consider the situation as in the previous question but now suppose in addition that the base B of E is a compact oriented 2-dimensional manifold. Show that the *first Chern number of E* , $\int_B c_1(E) = \frac{i}{2\pi} \int_B F(A)$, is well-defined (independent of the choice of connection A). Find the first Chern number of the Hopf vector bundle over \mathbb{CP}^1 .
[You will need to consider a unitary structure on Hopf bundle, as given in the lectures, and construct a unitary connection. If the curvature form of this connection vanishes on some open neighbourhood in \mathbb{CP}^1 then the integral can be effectively computed over an open domain in \mathbb{R}^2 , or \mathbb{C} , using Green's formula. Answer: -1 .]

6. Prove the following *integrability theorem* for flat connections. If E is a vector bundle over the open hypercube $H = \{x \in \mathbb{R}^n : \max_i |x_i| < 1\}$ and A is a flat connection on E then there is a bundle isomorphism taking E to the trivial bundle over H and A to the trivial (product) connection.

[Hint: it is a good idea to use induction in n . Killing the coefficient of A at any dx^k amounts to solving a linear ODE (with parameters).]

7. (i) Assuming the integrability theorem stated in question 6, deduce that if a vector bundle admits a flat connection then there is a choice of local trivializations of this bundle, so that the corresponding transition functions are *constant*, $\psi_{\beta\alpha}(x) \equiv h_{\beta\alpha} \in GL(V)$, for all $x \in U_\beta \cap U_\alpha$ (here V denotes the typical fibre).

(ii) Show further that a flat connection on a vector bundle E over a simply-connected base manifold B , determines an isomorphism between E and a product bundle, i.e. a trivialization of E over all of B .

[Hint: covariant-constant sections.]

8. Let $\pi : P \rightarrow B$ be a principal G -bundle, $G = GL(m, \mathbb{R})$, with $R_g : q \in P \rightarrow qg \in P$ the smooth free right action ($g \in G$). The definitions of vertical and horizontal subspaces $Tv_q P$ and S_q of $T_q P$ are identical to those for vector bundles in the lectures. Show that for all g , $(dR_g)_q$ maps every horizontal S_q onto a horizontal subspace.

We say that a field of horizontal subspaces $S = S_q$ is a **connection on P** if it is G -equivariant: $(dR_g)_q S_q = S_{qg}$, for all $q \in P$ and $g \in G$. Show that then in each local trivialization of P over a coordinate neighbourhood $U \subset B$ with coordinates x^k , $S_q = \bigcap_{i,j} \text{Ker}(\theta_j^i)_q$, where $(\theta_j^i)_q = dc_j^i + \Gamma_{sk}^i(x)c_j^s dx^k$ for some $\Gamma_{sk}^i \in C^\infty(U)$ and c_j^i are the standard coordinates on G . Show further that these Γ_{sk}^i also define a connection on the vector bundle E associated to P via the usual action of G on \mathbb{R}^m .

Show that for every connection S on P , the matrix-valued 1-forms $C^{-1}\theta = C^{-1}dC + C^{-1}AC$, where $C = (c_j^i)$, $\theta = (\theta_j^i)$ and $A = \Gamma_{jk}^i dx^k$, agree on the intersections $\pi^{-1}(U) \cap \pi^{-1}(U')$ and patch together to define a global 1-form on P .

9. Verify that if M is a submanifold of \mathbb{R}^N then the Euclidean inner product restricts to define a Riemannian metric on M .

Let the symbol dS^2 denote the expression for the induced metric on the unit sphere $S^{n-1} \subset \mathbb{R}^n$. Show that the Euclidean metric on $\mathbb{R}^n \setminus \{0\}$ can be expressed in polar coordinates as $g = dr^2 + r^2 dS^2$, where $r = |x|$, $x \in \mathbb{R}^n$.

10. Suppose that $\mathbf{r} = \mathbf{r}(u, v)$ is a regular parameterization of a surface S in the affine space \mathbb{R}^3 . There is a standard choice of a ‘moving frame’ (a basis of the tangent space $T_{\mathbf{r}}\mathbb{R}^3$) $\mathbf{r}_u, \mathbf{r}_v, \mathbf{n}$ at every point \mathbf{r} of S , where $\mathbf{n} = \mathbf{r}_u \times \mathbf{r}_v / |\mathbf{r}_u \times \mathbf{r}_v|$ is a unit normal vector to S . (Here the subscripts u and v at \mathbf{r} are used to denote the respective partial derivatives.) Then there is a unique way to write the second derivatives of \mathbf{r} as

$$\mathbf{r}_{uu} = \Gamma_{11}^1 \mathbf{r}_u + \Gamma_{11}^2 \mathbf{r}_v + L \mathbf{n}, \quad \mathbf{r}_{uv} = \Gamma_{12}^1 \mathbf{r}_u + \Gamma_{12}^2 \mathbf{r}_v + M \mathbf{n}, \quad \mathbf{r}_{vv} = \Gamma_{22}^1 \mathbf{r}_u + \Gamma_{22}^2 \mathbf{r}_v + N \mathbf{n},$$

for some functions Γ_{jk}^i , L, M, N on S . By deducing the expressions for Γ_{jk}^i in terms of the first fundamental form of S , or otherwise, show that Γ_{jk}^i are the Christoffel symbols for the Levi–Civita connection of the metric induced on S by restriction from the ambient \mathbb{R}^3 .

Comments welcome at any time. A.G.Kovalev@dpmms.cam.ac.uk