

Part III: Differential geometry (Michaelmas 2019)

Example Sheet 2

Throughout the course you are expected to use standard results from analysis without proof. The questions or parts marked with * are not necessarily harder, but go slightly beyond the lectured material and will not be examined.

1. (i) Show that an $\omega \in \Lambda^2((\mathbb{R}^n)^*)$ can be written as a wedge product of co-vectors $\omega = \eta_1 \wedge \eta_2$, $\eta_i \in (\mathbb{R}^n)^*$, if and only if $\omega \wedge \omega = 0$ (n is arbitrary). If instead $\omega \in \Lambda^3((\mathbb{R}^n)^*)$ satisfies $\omega \wedge \omega = 0$, must ω be a wedge product of a co-vector and a 2-form?
(ii) Let α be a nowhere-zero 1-form. Prove that for a $(p+1)$ -form β ($p \geq 0$), one has $\alpha \wedge \beta = 0$ if and only if $\beta = \alpha \wedge \gamma$ for some p -form γ . [You might like to do it on \mathbb{R}^n first. Partition of unity is useful in the general case.]
2. Prove that $\mathbb{R}P^n$ is orientable if and only if n is odd.
[Hint: consider the $2 : 1$ map $S^n \rightarrow \mathbb{R}P^n$ and a suitable choice of orientation n -form on S^n .]
3. Show that if a manifold is simply-connected, then it is orientable.
4. Prove the identity $d\omega(X, Y) = X\omega(Y) - Y\omega(X) - \omega([X, Y])$, for a 1-form ω and vector fields X, Y . *Can you generalize this relation to the case when ω is a p -form?
5. Show that
$$d\omega = 0, \quad \text{where } \omega = \frac{-ydx + xdy}{x^2 + y^2},$$
and that on the half-plane $U = \{(x, y) \in \mathbb{R}^2 : x > 0\}$, $\omega = df$ for some smooth function $f : U \rightarrow \mathbb{R}$. Show that ω cannot be written as df for any smooth function f on $\mathbb{R}^2 \setminus \{0\}$.
Hence or otherwise deduce that the de Rham cohomology of the circle is $H^1(S^1) = \mathbb{R}$.
6. (i) Show that every closed 1-form on S^2 is exact.
(ii) Construct a linear isomorphism $H^k(S^n) \cong H^{k-1}(S^{n-1})$, for all $k, n > 1$. Calculate the de Rham cohomology $H^k(S^n)$ for every k, n .
[You may assume a generalized version of the Poincaré Lemma: for M any smooth manifold, $H^k(M \times \mathbb{R}) \cong H^k(M)$ for all k .]
7. Construct a nowhere-vanishing (smooth) vector field on S^{2n+1} for each n .
8. Prove that a principal G -bundle $P \rightarrow B$ has a smooth global section if and only if P is (isomorphic to) a trivial bundle.

9. Let $\pi : P \rightarrow B$ be a principal G -bundle. Show that $\pi^*P \rightarrow P$ is a trivial principal G -bundle.

10. Show that map $(x_0 : x_1 : x_2 : x_3) \in \mathbb{R}P^3 \rightarrow (x_0 + ix_1) : (x_2 + ix_3) \in \mathbb{C}P^1$ defines a principal $U(1)$ -bundle, the two standard coordinate patches on $\mathbb{C}P^1$ may be taken as trivializing neighbourhoods, and the transition function then is given by $\psi(z : 1) = (z/|z|)^2$.

11. Let G be a Lie group and $X_i, i = 1, \dots, d = \dim G$, a system of linearly independent left-invariant vector fields on G induced by a basis of $T_I G$. Show that the condition

$$\omega^i(X_j) = \delta_j^i \quad \text{identically on } G$$

defines a system of smooth 1-forms ω^i on G which are linearly independent at each point. Show further that the 1-forms ω^i are *left-invariant* in the sense that

$$L_g^*(\omega^i) = \omega^i, \quad \text{for every } g \in G.$$

(More precisely, $L_g^*(\omega^i(h)) = \omega^i(g^{-1}h)$. Here $L_g(h) = gh$ for each $h \in G$.) Let C_{ij}^k be a set of real constants determined by $[X_i, X_j] = C_{ij}^k X_k$ (the summation convention is assumed). Show that

$$d\omega^k = - \sum_{i < j} C_{ij}^k \omega^i \wedge \omega^j.$$

12.* (i) A *flow* on a manifold M may be defined as a smooth one-parameter family of diffeomorphisms A_t ($t \in \mathbb{R}$) of M onto itself, satisfying $A_{t+s} = A_t \circ A_s$ and $A_{-t} = A_t^{-1}$ and $A_0 = \text{id}_M$. Show that $X(p) = \frac{d}{dt}(A_t(p))|_{t=0}$ ($p \in M$) defines a (smooth) vector field on M . (In this sense, vector fields are the ‘infinitesimal diffeomorphisms’ of M .)

(ii) Recall that any diffeomorphism A of M converts a function f on M into a new function $f \circ A$ and a vector field Y into a new vector field $(dA)Y$. If A_t and X are as defined in (i) then the operation $\frac{d}{dt}(f \circ A_t)|_{t=0}$, resp. $\frac{d}{dt}((dA_t)Y)|_{t=0}$, is denoted \mathcal{L}_X and called the *Lie derivative* in the direction of X . Verify that

$$\begin{aligned} \mathcal{L}_X f &= Xf, \quad \text{for } f \in C^\infty(M), \\ \mathcal{L}_X Y &= [Y, X], \quad \text{for a vector field } Y \text{ on } M. \end{aligned}$$

(iii) (The ‘infinitesimal Stokes’ formula’.) The Lie derivative of any differential form ω of degree $r > 0$ is defined in a similar manner to (ii), i.e. $\mathcal{L}_X \omega = \frac{d}{dt}(A_t^* \omega)|_{t=0}$. Let $X \lrcorner \omega$ denote the interior product, i.e. a $(r-1)$ -form $(X \lrcorner \omega)(X_1, \dots, X_{r-1}) = \omega(X, X_1, \dots, X_{r-1})$. Show that the Lie derivative of ω may be computed as

$$\mathcal{L}_X \omega = X \lrcorner d\omega + d(X \lrcorner \omega).$$

13. Modify the construction of Hopf bundle the lectures replacing \mathbb{C} everywhere by \mathbb{R} to obtain a rank one real vector bundle over S^1 . The total space of this \mathbb{R} -analogue of Hopf (vector) bundle is thus a surface (2-dimensional manifold). Can you identify this surface?

Comments welcome at any time. A.G.Kovalev@dpmmms.cam.ac.uk