

Part III: Differential geometry (Michaelmas 2019)

Example Sheet 1

Throughout the course you are expected to use standard results from analysis without proof. The questions marked with * are not necessarily harder, but may go slightly beyond the lectured material and will not be examined.

1. (i) Let M_1 and M_2 be smooth manifolds of dimension m_1 and m_2 respectively. Show that $M_1 \times M_2$ is naturally a manifold of dimension $m_1 + m_2$ and the projections $p_i : M_1 \times M_2 \rightarrow M_i$ are smooth maps. Show also that if N is another manifold then a map $f : N \rightarrow M_1 \times M_2$ is smooth if and only if $p_i \circ f$ is smooth for each $i = 1, 2$.
(ii) Let M be a smooth manifold, $U \subset M$ is a non-empty open subset and $f : U \rightarrow \mathbb{R}$ a smooth function. Must f extend smoothly to M ? Justify your answer.
2. Do the charts $\varphi_1(x) = x$ and $\varphi_2(x) = x^3$ ($x \in \mathbb{R}$) belong to the same C^∞ structure on \mathbb{R} ? Let R_j , $j = 1, 2$, denote the manifold obtained by using the chart φ_j on the topological space \mathbb{R} . Are R_1 and R_2 diffeomorphic?
3. (i) Let $S^n \subset \mathbb{R}^{n+1}$ be the unit n -sphere about the origin and consider

$$\varphi_i^\pm : (x_0, \dots, x_n) \in V_i^\pm \rightarrow (x_0, \dots, \hat{x}_i, \dots, x_n) \in \mathbb{R}^n$$

where $V_i^+ = \{(x_0, x_1, \dots, x_n) : x_i > 0\}$, $V_i^- = \{(x_0, x_1, \dots, x_n) : x_i < 0\}$. Verify that φ_i^\pm define charts inducing a C^∞ structure on S^n . Are these charts compatible (belong to the same C^∞ structure) with stereographic projections as in the lectures?
(ii) Show that the natural map $(x_0, \dots, x_n) \in S^n \rightarrow x_0 : \dots : x_n \in \mathbb{R}P^n$ is smooth.

4. By adapting the construction of charts via exponential mapping, as defined in the lectures, or otherwise, show that the following are Lie groups
 - (i) special linear group $SL(n, \mathbb{R}) = \{A \in GL(n, \mathbb{R}) : \det A = 1\}$;
 - (ii) unitary group $U(n) = \{A \in GL(n, \mathbb{C}) : AA^* = I\}$, where A^* denotes the conjugate transpose of A and I is the $n \times n$ identity matrix;
 - (iii) $Sp(m) = \{A \in U(2m) : AJA^t = J\}$, where A^t denotes the transpose of A (no complex conjugation!) and $J = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$.

Identify the respective Lie algebras and find the dimensions of the above Lie groups.

5. Show that
 - (i) the complex projective line $\mathbb{C}P^1$ is diffeomorphic to the sphere S^2 ;
 - (ii) $SU(2)$ is diffeomorphic to S^3 ;
 - (iii) TS^1 is diffeomorphic to $S^1 \times \mathbb{R}$;
 - (iv) TS^3 is diffeomorphic to $S^3 \times \mathbb{R}^3$ (and, more generally, if G is a Lie group then TG is diffeomorphic to $G \times \mathbb{R}^d$, where $d = \dim G$).

In (iii) and (iv) it is understood that the diffeomorphism should convert the tangent bundle projection into the first projection of the product.

6. Let $f : M \rightarrow N$ be a diffeomorphism of manifolds and X, Y two smooth vector fields on M . Show that the differential map df commutes with the Lie brackets, i.e. that $(df)([X, Y]) = [(df)X, (df)Y]$ as vector fields on N .

7. Construct an embedding of the n -dimensional torus T^n in \mathbb{R}^{n+1} .

8. For which values of $c \in \mathbb{R}$ is the zero locus in \mathbb{R}^3 of the polynomial

$$z^2 - (x^2 + y^2)^2 + c$$

an *embedded* submanifold of \mathbb{R}^3 and for which c is it an *immersed* submanifold?

9. Prove that a compact manifold M of dimension n can be embedded in \mathbb{R}^N , for some N . [Hint: use a finite open cover of M by coordinate patches U_1, \dots, U_m , with φ_i the charts on U_i , and use cut-off functions $\beta_i \in C^\infty(M)$, $0 \leq \beta_i \leq 1$, so that $\beta_i|_{M \setminus U_i} \equiv 0$, $\beta_i|_{W_i} \equiv 1$ for some open $W_i \subset M$, with $\cup_{i=1}^m W_i = M$. Consider a map $p \in M \rightarrow (\dots, \beta_i(p)\varphi_i(p), \beta_i(p), \dots) \in \mathbb{R}^{m(n+1)}$.]

10. Prove that the map

$$\rho(x : y : z) = \frac{1}{x^2 + y^2 + z^2}(x^2, y^2, z^2, xy, yz, zx)$$

gives a well-defined embedding of $\mathbb{R}P^2$ into \mathbb{R}^6 . Find on \mathbb{R}^6 a finite system of polynomials, of degree ≤ 2 , whose common zero locus is precisely the image of ρ . Compare the codimension $\dim \mathbb{R}^6 - \dim \mathbb{R}P^2 = 4$ and the number of polynomials you required. (The map ρ is a variant of ‘Veronese embedding’ important in Algebraic Geometry.) Construct an embedding of $\mathbb{R}P^2$ in \mathbb{R}^4 .

11.* Show that $SO(3)$ is diffeomorphic to $\mathbb{R}P^3$. [Hint: every rotation $A \in SO(3)$ may be written as a composition of two reflections in the planes orthogonal to unit vectors, say **a**, then **b**. After **a** is chosen, **b** is determined up to a ± 1 factor. Express the desired diffeomorphism using the map $(\mathbf{a}, \mathbf{b}) \mapsto (\mathbf{a} \times \mathbf{b}, \mathbf{a} \cdot \mathbf{b})$ onto $S^3 / \pm 1$.] Deduce that $T(\mathbb{R}P^3)$ is diffeomorphic to $\mathbb{R}P^3 \times \mathbb{R}^3$.

12.* (Calabi–Rosenlicht) Let $X = \{(x, y, z) \in \mathbb{R}^3 : xz = 0\}$ be the union of the (x, y) - and (y, z) -coordinate planes and define a family U_a , $a \in \mathbb{R}$, of subsets of X by $U_a = \{(x, y, z) \in X : x \neq 0 \text{ or } y = a\}$ (you might find it helpful to make a sketch of U_a). What is $U_a \cap U_b$ for $a \neq b$?

Now let the map $h_a : U_a \rightarrow \mathbb{R}^2$ to the plane \mathbb{R}^2 with the coordinates (u_a, v_a) be given by

$$u_a = x, \quad v_a = \begin{cases} (y - a)/x, & \text{if } x \neq 0 \\ z & \text{if } x = 0 \end{cases}.$$

Show that h_a is a bijection onto \mathbb{R}^2 , find its inverse, and obtain the formula for $h_b \circ h_a^{-1} : h_a(U_a \cap U_b) \rightarrow h_b(U_a \cap U_b)$, for any $a, b \in \mathbb{R}$. Deduce that the family of charts h_a , $a \in \mathbb{R}$, defines a smooth structure on X and that X (with the induced topology from this smooth structure) is Hausdorff, connected, but *not* second countable.

Comments welcome at any time. A.G.Kovalev@dpmms.cam.ac.uk