Part IB COMPLEX ANALYSIS (Lent 2019): Example Sheet 2

A.G. Kovalev

Comments and/or corrections are welcome at any time and can be emailed to me at a.g.kovalev@dpmms.cam.ac.uk.

1. (i) Use the Cauchy integral formula to compute

$$\int_{|z|=1} \frac{e^{\alpha z}}{3z^2 - 7z + 2} dz,$$

where $\alpha \in \mathbb{C}$.

(ii) By considering suitable complex integrals, show that if $r \in (0,1)$,

$$\int_0^{\pi} \frac{\cos(n\theta)}{1 - 2r\cos\theta + r^2} d\theta = \frac{\pi r^n}{1 - r^2}. \quad \text{and} \quad \int_0^{2\pi} \cos(\cos\theta) \cosh(\sin\theta) d\theta = 2\pi$$

- **2.** Let f be an entire function. Prove that if any of the following conditions hold, then f is constant:
- (i) $f(z)/z \to 0$ as $|z| \to \infty$;
- (ii) for some $a \in \mathbb{C}$ and $\varepsilon > 0$, f never takes values in the disc $D(a, \varepsilon)$;
- (iii) f = u + iv and |u(z)| > |v(z)| for all $z \in \mathbb{C}$.
- **3.** Let $f: D(a,r) \to \mathbb{C}$ be holomorphic, and suppose that Re(f) attains a maximum at z=a. Show that f is constant.
- **4.** (i) Let f be an entire function. Show that f is a polynomial, of degree $\leq k$, if and only if there is a constant M for which $|f(z)| < M(1+|z|)^k$ for all z.
- (ii) Show that an entire function f is a (non-constant) polynomial if and only if $|f(z)| \to \infty$ as $|z| \to \infty$.
- (iii) Let f be a function which is holomorphic on \mathbb{C} apart from a finite number of poles. Show that if there exists $k \in \mathbb{Z}$ such that $|f(z)| < |z|^k$, for all z with |z| sufficiently large, then f is a rational function (i.e. a quotient of two polynomials).
- 5. Prove Schwartz's lemma: if $f: D(0,1) \to \mathbb{C}$ is a holomorphic function such that $|f(z)| \le 1$ and f(0) = 0, then **either** |f(z)| < |z| whenever 0 < |z| < 1 **or** $f(z) = e^{i\theta}z$ for some real constant θ . [Hint: consider the function g(z) = f(z)/z on the closed discs $\{|z| \le 1 \varepsilon\}, \varepsilon > 0$, and apply the maximum modulus principle.]
- (ii) Deduce from Schwartz's lemma that any conformal equivalence from D(0,1) onto itself is given by a Möbius transformation.
- **6.** (i) Let f be an entire function such that for every positive integer n one has f(1/n) = 1/n. Show that f(z) = z.
- (ii) Let g be an entire function. If $g(n) = n^2$ for every $n \in \mathbb{Z}$, must $g(z) = z^2$?
- (iii) Let h be a holomorphic function on D(0,2). Show that there exists a positive integer n such that $h(1/n) \neq 1/(n+1)$.
- 7. Find the Laurent expansion, in powers of z, of $1/(z^2-3z+2)$ in each of the domains:

$$\{z \in \mathbb{C}: |z| < 1\}, \qquad \{z \in \mathbb{C}: 1 < |z| < 2\}, \qquad \{z \in \mathbb{C}: |z| > 2\}.$$

8. Classify the singularities of each of the following functions:

$$\frac{z}{\sin z}, \qquad \frac{1}{z^4+z^2}, \qquad \cos\frac{\pi}{z^2}, \qquad \frac{1}{z^2}\cos\frac{\pi z}{z+1}.$$

- **9.** (i) Let $w \in \mathbb{C}$ and let $\gamma, \delta : [0,1] \to \mathbb{C}$ be closed curves such that for all $t \in [0,1]$, $|\gamma(t) \delta(t)| < |\gamma(t) w|$. By computing the winding number $n(\sigma,0)$ of the closed curve $\sigma(t) = \frac{\delta(t) w}{\gamma(t) w}$ about the origin, show that $n(\gamma, w) = n(\delta, w)$.
- (ii) If $w \in \mathbb{C}$, r > 0 and γ is a closed curve which does not meet D(w, r), show that $n(\gamma, w) = n(\gamma, z)$ for every $z \in D(w, r)$.
- (iii) Deduce that if γ is a closed curve and U is the complement of (the image of) γ then the function $w \mapsto n(\gamma, w)$ is a locally constant function on U.
- 10. Show that

$$\varphi: \{z \in \mathbb{C}: |z| > 1\} \to \mathbb{C} \setminus [-1, 1], \quad z \mapsto \frac{1}{2} \left(z + \frac{1}{z}\right)$$

is a conformal equivalence between the two domains. If an entire function f never takes values in the line segment $[-1,1] \subset \mathbb{R}$, show that $\varphi^{-1} \circ f$ is holomorphic and deduce that f is constant.

11. (Casorati-Weierstrass theorem) Let f be holomorphic on a punctured disc $D^*(a,r)$ with an essential singularity at z=a. Show that for any $b\in\mathbb{C}$, there exists a sequence of points $z_n\in D(a,r)$, with $z_n\neq a$, such that $z_n\to a$ and $f(z_n)\to b$, as $n\to\infty$.

Find such a sequence when $f(z) = e^{1/z}$, a = 0 and b = 2.

[A much harder theorem of Picard asserts that in any neighbourhood of an essential singularity a holomorphic function takes *every* complex value except possibly one.]

12. Let f be a holomorphic function on a punctured disc $D^*(a, R)$. Show that if f has a non-removable singularity at z = a then the function $\exp(f(z))$ has an essential singularity at z = a. Deduce that if there exists M such that $\operatorname{Re} f(z) < M$ for $z \in D^*(a, R)$, then f has a removable singularity at z = a.