Part IB COMPLEX ANALYSIS (Lent 2019): Example Sheet 1

A.G. Kovalev

Comments and/or corrections concerning these questions are welcome at any time and can be emailed to me at a.g.kovalev@dpmms.cam.ac.uk.

- 1. Show that any real linear map $T: \mathbb{C} \cong \mathbb{R}^2 \to \mathbb{C} \cong \mathbb{R}^2$ can be written as $T(z) = Az + B\bar{z}$, for two complex numbers A and B. Considering T as a complex-valued function on \mathbb{C} , deduce that T is complex differentiable on \mathbb{C} if and only if B = 0.
- **2.** (i) Let $f: D(a,r) \to \mathbb{C}$ be a holomorphic function on a disc. Show that f is constant if either of its real part, imaginary part, modulus or argument is constant.
- (ii) Find all holomorphic functions on $\mathbb C$ of the form f(x+iy)=u(x)+iv(y), where u and v are both real valued.
- (iii) Find all the functions which are holomorphic on \mathbb{C} and which have the real part $x^3 3xy^2$. (The final answer should be in terms of the complex variable z = x + iy.)
- **3.** Define $f: \mathbb{C} \to \mathbb{C}$ by f(0) = 0 and

$$f(z) = \frac{(1+i)x^3 - (1-i)y^3}{x^2 + y^2}$$
 for $z = x + iy \neq 0$.

Show that f satisfies Cauchy–Riemann equations at 0 but is not differentiable there.

- **4.** (i) Find the set of complex numbers z for which $|e^z| < 1$ and the set of those for which $|e^z| \le e^{|z|}$.
- (ii) Find the zeros of $1 + e^z$ and $\cosh z$.
- **5.** (i) Define the differential operators $\frac{\partial}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$ and $\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} i \frac{\partial}{\partial y} \right)$. Prove that a C^1 function f is holomorphic if and only if $\partial f / \partial \bar{z} = 0$. Show that

$$\Delta = 4 \frac{\partial}{\partial z} \frac{\partial}{\partial \bar{z}} = 4 \frac{\partial}{\partial \bar{z}} \frac{\partial}{\partial z} \; ,$$

where $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ is the usual Laplacian on \mathbb{R}^2 .

- (ii) Let $f:U\to V$ be holomorphic and $g:V\to\mathbb{C}$ be harmonic. Show that the composition $g\circ f$ is harmonic.
- **6.** (i) Denote by Log the principal branch of the logarithm. If $z \in \mathbb{C}$, show that $n \operatorname{Log}(1 + z/n)$ is defined if n is sufficiently large, and it tends to z as n tends to ∞ . Deduce that for any $z \in \mathbb{C}$,

$$\lim_{n \to \infty} \left(1 + \frac{z}{n}\right)^n = e^z.$$

- (ii) Defining $z^{\alpha} = \exp(\alpha \operatorname{Log} z)$, where Log is the principal branch of the logarithm and $z \notin \mathbb{R}_{\leq 0}$, show that $\frac{d}{dz}(z^{\alpha}) = \alpha z^{\alpha-1}$. Does $(zw)^{\alpha} = z^{\alpha}w^{\alpha}$ always hold?
- 7. Prove that each of the following series converges uniformly on the corresponding subset of \mathbb{C} :

(a)
$$\sum_{n=1}^{\infty} \sqrt{n} e^{-nz}$$
, on $\{z : 0 < r \le \operatorname{Re} z\}$; (b) $\sum_{n=1}^{\infty} \frac{2^n}{z^n + z^{-n}}$, on $\{z : |z| \le r < \frac{1}{2}\}$.

- 8. Find conformal equivalences between the following pairs of domains:
 - (a) the sector $\{z \in \mathbb{C} : -\pi/3 < \arg z < \pi/3\}$ and the open unit disc D(0,1);

- (b) the half-plane $\{z \in \mathbb{C} : \operatorname{Re} z > 0\}$ and the half-disc $\{z \in D(0,1) : \operatorname{Re} z > 0\}$.
- (c) the horizontal strip $S=\{z\in\mathbb{C}:0<\operatorname{Im} z<1\}$ and the quadrant $Q=\{z\in\mathbb{C}:\operatorname{Re} z>0,$ $\operatorname{Im} z>0\};$

By considering a suitable bounded solution of Laplace's equation $u_{xx} + u_{yy} = 0$, find a non-constant harmonic function on Q which is constant on each of the two boundaries of the quadrant (it need not be continuous at the origin).

- **9.** (i) Show that the most general Möbius transformation which maps the unit disk onto itself has the form $z \mapsto \lambda \frac{z-a}{\bar{a}z-1}$, with |a| < 1 and $|\lambda| = 1$. [Hint: first show that these maps form a group.]
- (ii) Find a Möbius transformation taking the region between the circles $\{|z|=1\}$ and $\{|z-1|=5/2\}$ to an annulus $\{1<|z|< R\}$. [Hint: a circle can be described by an equation of the form $|z-a|/|z-b|=\ell$.]
- (iii) Find a conformal map from an infinite strip onto an annulus. Can such a map be a Möbius transformation?
- **10.** Calculate $\int_{\gamma} z \sin z \, dz$ when γ is the straight line joining 0 to i.
- 11. Show that the following functions do not have antiderivatives (i.e. functions of which they are derivatives) on the domains indicated:

(a)
$$\frac{1}{z}$$
, $(0 < |z| < \infty)$; (b) $\frac{z}{1+z^2}$, $(1 < |z| < \infty)$.